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Abstract
Background  The oral microbiome plays an essential role in maintaining oral homeostasis and health; smoking 
significantly affects it, leading to microbial dysbiosis. The study aims to investigate changes in the oral microbiome 
composition of smokers in the Qatari population and establish a correlation with lipid biomarkers.

Methods  The oral microbiota was profiled from saliva samples of 200 smokers and 100 non-smokers in the 
Qatari population, and 16s rRNA V3-V4 region were sequenced using the Illumina MiSeq platform. The operational 
taxonomic units (OTUs) were clustered using QIIME and the statistical analysis was performed by R.

Results  Non-smokers exhibited a more diverse microbiome, with significant alpha and beta diversity differences 
between the non-smoker and smoker groups. Smokers had a higher abundance of Firmicutes, Bacteroidota, 
Actinobacteriota, Patescibacteria, and Proteobacteria at the phylum level and of Streptococcus, Prevotella, Veillonella, 
TM7x, and Porphyromonas at the genus level. In contrast, non-smokers had more Bacteroidota, Firmicutes, 
Proteobacteria, Fusobacteriota, and Patescibacteria at the phylum level, and Prevotella, Streptococcus, Veillonella, 
Porphromonas, and Neisseria at the genus level. Notably, Streptococcus was significantly positively correlated with 
LDL and negatively correlated with HDL. Additionally, Streptococcus salivarius, within the genus Streptococcus, was 
substantially more abundant in smokers.

Conclusion  This study highlights the significant influence of smoking on the composition of the oral microbiome 
by enriching anaerobic microbes and depleting aerobic microbes. Moreover, the observed correlation between 
Streptococcus abundance and the lipid biomarkers suggests a potential link between smokers-induced salivary 
microbiome dysbiosis and lipid metabolism. Understanding the impact of smoking on altering the oral microbiome 
composition and its correlation with chemistry tests is essential for developing targeted interventions and strategies 
to improve oral health and reduce the risk of diseases.
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Background
A healthy oral microbiome is colonized by 50 to 
100  million bacteria belonging to approximately 700 
distinct species, rendering it the second most abun-
dant and diverse microbiome in the human body fol-
lowing the gut [1, 2]. According to multiple studies, 
the phyla predominantly found in the oral microbiome 
are Bacteroidetes, Firmicutes, Proteobacteria, Actino-
bacteria, and Fusobacteria [3, 4]. The oral cavity is a 
dynamic ecosystem, which provides an environment 
suitable for microbial colonization with a pH range of 
6.5 to 7.5 and an average temperature of 37 °C in saliva 
[5]. It is an open system influenced by several factors, 
including diet, lifestyle, and environmental exposures. 
One notable exposure is smoking, which has been 
shown to significantly impact the oral cavity by intro-
ducing it to several toxins, leading to a disturbance 
known as microbial dysbiosis.

Smoking is a widespread practice that affects almost 
every organ system in the body [6] Approximately 
1.1 billion individuals are actively smoking, and 1.9 bil-
lion are passive smokers [7]. It is a global health con-
cern associated with increased risk of certain diseases 
such as dental caries, periodontitis, oral diseases, 
cardiovascular diseases (CVD), chronic obstructive 
pulmonary disease (COPD), and various types of can-
cer. Smoking-induced microbial dysbiosis can foster 
anaerobic conditions, promoting the proliferation of 
pathogenic bacteria due to reduced oxygen availability, 
ultimately culminating in disease [8, 9].

The impact of smoking on the oral microbiome has 
been previously studied, and the results have been 
inconsistent due to various factors. These include a 
limited number of participants, variation in sampling 
sites, and differences in laboratory methodologies, 
some of which may constrain bacterial profiling [8, 
10–15]. Smoking has been linked to shifts in the oral 
bacterial genera and has demonstrated correlations 
with inflammation and carcinogenesis-associated hor-
mones and cytokines [11]. Further investigations have 
indicated alterations in the oral microbiome of smok-
ers, resulting in an environment favoring anaerobes 
[8, 13]. While the separate influences of smoking and 
microbial dysbiosis on diseases have been studied, 
their combined effect remains an enigma.

This study aims to advance our understanding of the 
impact of cigarette smoking on oral microbial compo-
sition and how this is correlated with metabolic syn-
drome biomarkers. Unfortunately, Qatar is among the 
nations with the highest incidence of CVD and meta-
bolic syndromes [16]. The rapid transition to a West-
ernized lifestyle, characterized by sedentary living, 
calorie-rich diet consumption, and urbanization, has 
resulted in a higher incidence of metabolic diseases 

(obesity, CVD, diabetes, hypertension) [17]. This 
study aims to investigate the effect of smoking on oral 
microbiome dysbiosis and its correlation with meta-
bolic syndrome biomarkers in the Qatari population.

Methods
Study cohort
Qatar Biobank (QBB) is a large-scale health initiative to 
provide biological samples and population data to scien-
tists for research support to guide healthcare strategies 
for effective prevention of diseases and the development 
of new treatments (https://www.qatarbiobank.org.qa/). 
In the current study, 300 subjects were randomly selected 
from QBB, irrespective of their age and health status. 200 
subjects self-reported being smokers, and 100 were non-
smokers. Information on their general health status, dis-
ease history, and medications was collected on a designed 
questionnaire. Data for clinical chemistry was obtained 
from QBB. Saliva samples (500 µL) were collected from 
the participants by spitting directly into sterile tubes and 
immediately frozen at -80oC. These saliva samples were 
used for microbiome analysis. All the participants signed 
an informed consent form to use their data and biologi-
cal samples as anonymous volunteers. The study was 
approved by the QBB Institutional Review Board (IRB) 
(IRB-QBB-2019-001) and Qatar University IRB (QU-IRB 
1390-E/20). During the laboratory and data analysis, the 
research team followed research ethics, morals and bio-
safety guidelines according to the regulation by Qatar 
University and maintained participants’ anonymity [18].

Saliva for microbiome analysis
Saliva samples were transported on ice from QBB to 
Qatar University. 200 µL of saliva samples were subjected 
to DNA extraction using a commercially available DNA 
extraction kit (QIAamp DNA Mini Kit, 51,306, MD, 
USA) according to the manufacturer’s instructions. The 
concentration and quality of the DNA were measured 
using Qubit-4 (Life Technologies, Carlsbad, Califor-
nia, US) and NanoDrop-2000 (Thermo Fisher Scientific, 
Waltham, Massachusetts, US). DNA extraction was sent 
to ABM Company (Richmond, Canada) for 16s rDNA 
metagenomics sequencing. The samples were prepped 
using the 16s rDNA Amplicon Sequencing pipeline. The 
quality of these libraries was assessed by Agilent Bioana-
lyzer 2100 and qPCR. The samples were pooled at equal 
concentrations. Paired-end sequencing was performed 
on the Hiseq 4000. A total of 12.3  million paired-end 
reads were obtained on demultiplexing using the pro-
vided adaptors.

Bioinformatics analysis
The MiSeq run generated output in the form of FASTQ 
files, which were processed using the MiSeq Reporter 

https://www.qatarbiobank.org.qa/
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software. The subsequent bioinformatics analysis uti-
lized QIIME2 [19], employing various plugins for tasks 
such as quality control, filtering, assembly, OTU clus-
tering, and taxonomy assignment. Since the dataset was 
already demultiplexed by sample, we imported using the 
sequences into qiime via the qiime import module with 
--type SampleData[PairedEndSequencesWithQuality] 
and --input-format PairedEndFastqManifestPhred33V2. 
Subsequently, sequence trimming to a uniform length 
and removal of non-biological sequences were performed 
using the QIIME cutadapt trim-paired command, where 
we used the default options except for --p-cores 31 and 
--p-error-rate 0.01. To group similar sequences, the 
denoising method was implemented using the qiime 
dada2 denoise-paired module using the options --p-trim-
left-f 13 --p-trim-left-r 13 --p-trunc-len-f 300 --p-trunc-
len-r 300 and --p-n-threads 31. We opted for inferring 
exact sequence variants, known as amplicon sequence 
variants (ASVs), which represent unique biological 
sequences. This allows for more precise taxonomic 
assignment and diversity analysis compared to the older 
OTU clustering method. For OTU clustering, close-ref-
erence clustering was executed with the QIIME vsearch 
cluster-features-closed-reference, specifying a percent 
identity of 0.97. Taxonomy assignment for the bacte-
rial 16 S rRNA marker gene was accomplished using the 
QIIME feature-classifier classify-consensus-search, with 
parameters set at a percent identity of 0.9 and a query 
coverage of 0.829. The Silva 138 database, containing 99% 
OTUs full-length sequences, was employed as the refer-
ence database https://www.arb-silva.de/documentation/
release-138/ [20].

Statistical analysis
The statistical analysis and plots were performed using 
R version 4.3.1 (2023). Wilcoxon test was performed to 
compare the mean differences in plasma biochemistry 
and demographic characteristics between the study 
groups. Plots were done by using the ggplot2 pack-
age, version 3.4.3, and for significance in plots, the 
ggsignif package, version 0.6.4. Samples with insuffi-
cient reads were excluded, and the microbial relative 
abundance lower than 10% were replaced with a 0. In 
total 244 samples were included in the analyses. Three 
different alpha diversity metrics (sobs, Shannon, and 
Simpson) and beta diversity (Bray – Curtis dissimi-
larity) were calculated using the vegan package 2.6.4 
[21]. The significance for beta diversity was calculated 
using the adinos2 function (PER-MANOVA) from the 
vegan package. Wilcoxon test was performed for sta-
tistical significance for microbial data, and Benjamini-
Hochberg (BH) method was applied for the p-value 
adjustment. A p-value less than 0.05 was considered 
statistically significant. Spearman’s rank correlation 
coefficient was applied to measure the correlation 
between the microbial taxa and participants’ data.

Results
Characteristics of the study participants
Our study included 300 samples from the Qatari popu-
lation who completed a smoking and health status ques-
tionnaire. The clinical characteristics of the sample are 
summarized in Table 1. As reported in Tables 1 and 200 
(66.66%) were smokers and 100 (33.33%) were non-smok-
ers. Notably, among the smokers, 17 individuals reported 
to be diabetic, 46 reported to have high cholesterol and 
24 reported to have high blood pressure.

Smokers were significantly older with higher triglycer-
ides, higher low-density lipoprotein (LDL), lower high-
density lipoprotein (HDL), and a lower ratio of forced 
expiratory volume in 1 s (FEV1) versus forced vital capac-
ity (FVC).

Bacterial diversity and community of salivary microbiota
To investigate the effect of smoking on salivary micro-
biota diversity, we analyzed three alpha metrics on 
the smoker and non-smoker groups: species richness, 
Simpson index, and Shannon index. Non-smokers had 
a higher alpha diversity using three alpha diversity met-
rics (Sobs, Simpson, and Shannon indexes) (Fig.  1A, B 
& C). Alpha diversity represents microbiome diversity 
per sample. Non-smokers had a significantly higher spe-
cies richness than smokers (Fig. 1A). The salivary micro-
biome was significantly richer and more diverse in the 
non-smokers as described by the Simpson index, which 
considers the number of species and the relative abun-
dance (Fig. 1B). The Shannon index considers the number 

Table 1  Participant characteristics
Non Smokers 
n = 100

Smokers 
n = 200

p-value

Age 32.63 ± 9.20 35.44 ± 9.85 0.03
BMI (Kg/m2) 28. 52 ± 5.18 27.84 ± 5.43 0.3
Smoking Duration - 13.88 ± 11.80 -
Systolic bp (mm/Hg) 110.04 ± 13.63 110.97 ± 12.62 0.38
Diastolic bp (mm/Hg) 65.94 ± 8.63 66.99 ± 9.76 0.2741
FEV1 (L) 2.94 ± 0.8 2.74 ± 1.16 0.6876
FVC (L) 3.53 ± 1.0 3.37 ± 1.43 0.7088
FEV1/FVC 0.84 ± 0.08 0.73 ± 0.26 0.000771
Cholesterol (mmol/L) 4.83 ± 0.83 5.11 ± 1.16 0.06784
Triglycerides (mmol/L) 1.17 ± 0.66 1.37 ± 0.94 0.033
HDL (mmol/L) 1.45 ± 0.37 1.28 ± 0.38 0.000639
LDL (mmol/L) 2.85 ± 0.77 3.23 ± 1.07 0.0045
Glucose (mmol/L) 4.9 ± 0.52 5.01 ± 1.4 0.1668
BMI: Body Mass Index. bp: Blood pressure. FEV1: Forced Expiratory Volume in 
1 s. FVC: Forced Vital Capacity. HDL: High density lipoprotein. LDL: Low density 
lipoprotein. p-value < 0.05 is significant in bold.

https://www.arb-silva.de/documentation/release-138/
https://www.arb-silva.de/documentation/release-138/
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and the abundance of species found in a sample together 
(Fig. 1C). The more diverse the species within a sample, 

the higher the Shannon index; our results show that the 
non-smoker group is significantly more diverse. Table 2 
provides an overview detailing each metric’s mean, stan-
dard deviation, and p-values.

To analyze beta diversity (diversity of microbiome 
within a community), we conducted Bray. Curtis dissimi-
larity, as shown in (Fig. 2.) Principal coordinates analysis 
(PCoA) was used to visualize the clustering of the simi-
larities between non-smokers and smokers. Bray-Curtis 

Table 2  Alpha diversity. Represents the mean, standard 
deviation, and p-value of each alpha diversity metric
Alpha diversity Non-Smokers Smokers p-value
Sobs 8.37 ± 1.81 7.15 ± 1.72 < 2.2E-16
Simpson 0.85 ± 0.04 0.82 ± 0.05 < 2.2E-16
Shannon 2.00 ± 0.23 1.82 ± 0.26 < 2.2E-16

Fig. 2  Beta diversity. Principal coordinates analysis (PCoA) of the distance matrix generated using Bray-Curtis Dissimilarity. Red is the control and blue 
are the smokers

 

Fig. 1  Boxplots of alpha diversity metrics. (A) Observed species richness (B) Simpson Index (C) Shannon index. Red boxplots represent the smokers and 
blue represent the controls. Statistically significant differences analysis was with Wilcoxon test
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compares the abundance of each species between non-
smokers and smokers to give a parameter between 0 and 
1. This metric quantifies the difference in abundance 
between the difference between samples and to visual-
ize the two samples are similar. There is a significant dif-
ference between the non-smokers and smokers’ groups 
(PER-MANOVA, p-value < 0.001).

Visualization of the taxonomic relative abundance
The relative abundance of phylum and genus were gen-
erated from taxonomy table. After filtration, the num-
ber of the non-smoker group remained at 100, and the 
smoker group declined to 144 samples. Relative abun-
dant stacked bar charts were generated for visualization 
to compare non-smokers and smokers (Fig. 3). The mean 
of the 5 dominant phyla in the non-smoker group were, 
Bacteroidota (41.46%), Firmicutes (33.2%), Proteobac-
teria (7.29%), Fusobacteriota (2.79), and Patescibacte-
ria (1.22%) covering on average 86% of the non-smokers 
microbiome. The mean of the 5 abundant phyla from 
the smokers group were Firmicutes (53.42%), Bacte-
roidota (36.44%), Actinobacteriota (1.92%), Patescibac-
teria (0.86%), and Proteobacteria (0.64%), covering on 
average 93% of the smokers Qatari salivary microbiome. 
At the genus level the top 5 genera of their mean in the 

non-smoker group were Prevotella (29.22%), Strepto-
coccus (12.39%), Veillonella (10.48%), Porphyromonas 
(4.46%), and Neisseria (3.32%) composing approximately 
of 60% of the genus level of the non-smokers group. 
However, the top 5 mean of the genera in the smoker’s 
group were Streptococcus (38.19%), Prevotella (33.37%), 
Veillonella (6.73%), TM7x (0.8%), and Porphyromonas 
(0.71%) making 80% of the genera in the smoker’s salivary 
microbiome.

Analysis
The assessment of significance between smokers and 
non-smokers is represented in Table  3. It includes the 
fold change, p-value, and adjusted p-value at the phy-
lum level. There was a 1.61-fold significant increase in 
Firmicutes in the smokers group. In contrast, there was 
a significant decline in the levels of Proteobacteria, Fuso-
bacteria, and Bacteriodota with 11.34, 18.33, and 1.14 
fold changes, respectively, in smokers. Actinobacteriota 
was not detected in the non-smoker samples with a cut-
off value abundance equal to or higher than 10% (Fig. 4) 
displays the significant phylum.

The differences of the salivary microbiome on the 
genus level were identified. The relative abundance of 
Streptococcus increased by three folds in smokers. A 

Fig. 3  Relative abundance of saliva microbiome ≥ 10%. (A) Relative abundance per sample at the phylum level. (B) Relative abundance per sample at 
the genus level
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significant 6.32, 9.57, and 1.57 fold reduction in the genus 
Porphyromonas, Neisseria, and Veillonella, respectively, 
was detected in smokers in comparison to non-smokers. 
Fusobacterium was not detected in smokers; however, 
0.65% was detected in non-smokers. Table 4. Summariz-
ing these results, Fig. 5 provides a visualization of the sig-
nificant genera.

As it has been mentioned above, Streptococcus is 
prevalent in smokers, our analysis also revealed the sig-
nificance of Streptococcus salivarius (S. salivarius), at 
the species level, with a mean relative abundance of 14% 

in smokers and no detection in non-smokers. During 
analysis a potential novel Streptococcus species and Fuso-
bacterium species were identified. There was a notable 
doubling in the presence of the novel Streptococcus; __ 
among smokers , while the novel Fusobacterium; __ spe-
cies was detected in non-smokers with a relative abun-
dance of 0.5%.

Correlation analysis
Spearman correlation between the clinical measure-
ments and microbiome taxa is presented in a heatmap 

Table 3  Summary of phylum level mean relative abundance in non-smokers and smokers with fold change. The asterisk (*) indicates 
the significant values
Phylum Non-Smokers Smokers Fold Change p-value p-adjust (BH)
Firmicutes 33.20% 53.41% 1.61 1.86E-20 * 1.11E-19 *
Proteobacteria 7.29% 0.64% -11.34 4.93E-16 * 1.48E-15 *
Fusobacteriota 2.79% 0.15% -18.33 9.05E-08 * 1.81E-07 *
Bacteroidota 41.46% 36.44% -1.14 7.25E-05 * 1.09E-04 *
Actinobacteriota 0% 1.92% - 1.64E-05 * 0.000197 *
Patescibacteria 1.22% 0.86% -1.42 1.35E-01 1.35E-01

Table 4  Summary of genus level mean relative abundance in non-smokers and smokers with fold change. The asterisk (*) indicates 
the significant values
Genus Non-Smokers Smokers Fold Change p.value p.adjust (BH)
Streptococcus 12.40% 39.20% 3.08 5.53E-25 * 5.53E-24 *
Porphyromonas 4.46% 0.71% -6.32 1.56E-09 * 7.82E-09 *
Neisseria 3.32% 0.35% -9.57 1.28E-08 * 4.26E-08 *
Veillonella 10.48% 6.73% -1.56 8.84E-04 * 2.21E-03 *
Fusobacterium 0.65% 0% - 3.01E-03 * 6.03E-03 *
TM7x 0% 0.80% - 3.95E-02 * 6.58E-02
Rothia 0% 0.47% - 9.44E-02 1.35E-01
Leptotrichia 0.23% 0.15% -1.49 7.03E-01 8.79E-01
Capnocytophaga 0.10% 0.23% 2.30 8.04E-01 8.93E-01
Prevotella 29.22% 33.37% 1.14 9.92E-01 9.92E-01

Fig. 4  Visualization of the significant phyla between smokers and non-smokers. Wilcoxon test was performed p-value < 0.05
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in (Fig. 6). The colour intensity (ranging from white and 
red) indicates the strength of the correlation, r-value, 
with asterisks indicating significant p-values lower than 
0.05.

The microbial genera Streptococcus was positively 
correlated with smoking duration (p ≤ 0.01; r ≤ + 0.5). 
However, Porphyromonas (p ≤ 0.01; r ≤ -0.2), Veillonella 
(p ≤ 0.05; r ≤ -0.2), Neisseria (p ≤ 0.01; r ≤ -0.2), and Fuso-
bacterium (p ≤ 0.05; r ≤ − 0.2) were negatively correlated 
to smoking duration. HDL was negatively correlated 
with TM7x, Rothia, and Streptococcus. However, LDL 
was positively correlated with Streptococcus. Rothia and 
Streptococcus were positively associated with age, in con-
trast to Leptotrichia that was negatively associated with 

age. TM7x was positively associated with age, and Rothia 
was positively correlated with Triglyceride. Pulmonary 
function indicators, FEV1 and FVC, were negatively cor-
related with Veillonella and TM7x was negatively corre-
lated with FEV1 and FVC.

Discussion
Smoking has a profound impact on the microbial com-
position of various body sites, particularly the oral 
microbiome, which serves as the first point of con-
tact for cigarette smoke toxins. The effects of smoking 
on microbial ecology include increased saliva acidity, 
reduced oxygen levels, antibiotic effects, alterations in 
bacterial adherence to mucosal surfaces, and impaired 

Fig. 6  Correlating microbial taxa with participants’ demographic data. Statistical analysis was conducted using Spearman correlation analysis. * 
p.value < 0.05. Age: years. Duration: Duration of smoking in years. BMI: Body Mass Index (Kg/m2). bp: Blood pressure (mm/Hg). FEV1: Forced Expiratory 
Volume in 1 s. FVC: Forced Vital Capacity. HDL: High density lipoprotein (mmol/L). LDL: Low density lipoprotein (mmol/L). Glucose (mmol/L). Cholesterol 
Total (mmol/L)

 

Fig. 5  Visualization of the significant genera between smokers and non-smokers. Wilcoxon test was performed p-value < 0.05
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host immunity [8]. Studies have identified shifts in 
metabolic pathways, such as decreased aerobic metab-
olism and increased glycolysis, in smokers [8]. Further-
more, cigarette smoke contains toxins and mutagenic 
chemicals that can directly interact with human cells 
in the oral cavity, initiating oral diseases and influenc-
ing the cellular environment, including the oral micro-
biome [22, 23].

Our study aimed to investigate the salivary micro-
biome composition in smokers and non-smokers 
within the Qatari population. Analyzing a cohort of 
300 Qatari participants, including 200 smokers and 
100 non-smokers, we employed sequencing of v3-v4 
regions of 16 S rRNA to assess microbial diversity. As 
expected, smokers exhibited a higher prevalence of 
harmful bacteria compared to non-smokers, consistent 
with previous research [4, 10]. Our analysis of alpha 
diversity metrics, including ASV richness, Shannon, 
and Simpson index, revealed significantly lower diver-
sity in smokers compared to non-smokers, aligning 
with prior studies [4, 10]. Beta diversity analysis using 
Bray-Curtis dissimilarity metrics further underscored 
significant differences between smoker and non-
smoker microbiomes [10].

At the phylum level, smokers exhibited reductions 
in Proteobacteria and enrichments in Firmicutes and 
Actinobacteria,  which align consistent with metage-
nomic analyses suggesting changes in oral oxygen 
availability and breakdown of foreign substances 
in smokers [8]. Notably, we observed a decrease in 
Fusobacteriota in smokers, contrary to some previ-
ous findings, possibly influenced by dietary factors 
[4]. Our analysis uncovered variations in genus-level 
abundance, with smokers displaying decrease in Neis-
seria, Porphyromonas, and Veillonella compared to 
non-smokers, suggesting potential shifts in microbial 
community dynamics linked to smoking [8, 10]. Strep-
tococcus, known for its anaerobic characteristics and 
acid tolerance, was highly abundant in smokers and 
significantly associated with lipid metabolism markers 
[8, 24–26].

Age-related changes in saliva composition were evi-
dent, with weak positive correlations between age and 
Streptococcus and Rothia abundance [28, 29]. Fur-
thermore, we identified associations between certain 
microbial taxa and health-related biomarkers, such 
as TM7x with BMI and Rothia with cardiovascular 
risk factors, highlighting potential links between oral 
microbiome composition and systemic health condi-
tions [30, 31].

Limitations of our study include the lack of infor-
mation on participants’ oral hygiene and oral health, 
which could potentially influence the observed micro-
bial composition. Additionally, metabolic pathway 

analysis should be included in future studies to fur-
ther investigate how the enrichment or depletion of 
certain bacteria involved in pathways may contribute 
to disease development. In summary, our study con-
tributes to the growing body of evidence demonstrat-
ing the impact of smoking on the salivary microbiome, 
characterized by dysbiosis favoring anaerobic bacte-
ria. By elucidating these microbial shifts, our find-
ings underscore the importance of smoking cessation 
interventions in promoting oral and systemic health. 
The correlations observed between microbial taxa 
and health biomarkers provide valuable insights into 
potential mechanisms underlying smoking-related 
health outcomes. Further research is warranted to 
explore these associations and their implications for 
disease prevention and management.

Conclusion
In conclusion, our study sheds light on smoking-
induced dysbiosis in the salivary microbiome and its 
correlations with lipid biomarkers. These findings 
underscore the need for targeted interventions to mit-
igate the adverse effects of smoking on oral and sys-
temic health.
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