Warin and Suebnukarn BMC Oral Health (2024) 24:212
https://doi.org/10.1186/512903-024-03993-5

BMC Oral Health

Deep learning in oral cancer- a systematic

review

Kritsasith Warin'" and Siriwan Suebnukarn'

®

Check for
updates

Abstract

of oral cancer.

studies.

Background Oral cancer is a life-threatening malignancy, which affects the survival rate and quality of life of patients.
The aim of this systematic review was to review deep learning (DL) studies in the diagnosis and prognostic prediction

Methods This systematic review was conducted following the PRISMA guidelines. Databases (Medline via PubMed,
Google Scholar, Scopus) were searched for relevant studies, from January 2000 to June 2023.

Results Fifty-four qualified for inclusion, including diagnostic (n=>51), and prognostic prediction (n=3). Thirteen
studies showed a low risk of biases in all domains, and 40 studies low risk for concerns regarding applicability. The per-
formance of DL models was reported of the accuracy of 85.0-100%, F1-score of 79.31 - 89.0%, Dice coefficient index
of 76.0 - 96.3% and Concordance index of 0.78-0.95 for classification, object detection, segmentation, and prognostic
prediction, respectively. The pooled diagnostic odds ratios were 2549.08 (95% Cl 410.77-4687.39) for classification

Conclusions The number of DL studies in oral cancer is increasing, with a diverse type of architectures. The reported
accuracy showed promising DL performance in studies of oral cancer and appeared to have potential utility
in improving informed clinical decision-making of oral cancer.

Keywords Artificial intelligence, Deep learning, Neural network, Oral cancer, Systematic review

Background

Oral cancer is one of the major causes of death globally,
the 17th most common worldwide and the 11th most
common in Asia. According to the World Health Organi-
zation, more than 370,000 new cases of oral cancer were
reported and caused over 170,000 deaths in 2020 [1].
There are various types of oral cancer depending on its
origin (carcinoma and sarcoma), but the most common
type is oral squamous cell carcinoma (OSCC), which is
mostly transformed from oral potentially malignant dis-
orders (OPMDs). The definitive gold standard diagnostic
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tool of oral cancer and OPMDs is surgical biopsy and his-
topathologic evaluation [2, 3]. The treatment modalities
for oral cancer were surgery, radiotherapy, and chemo-
therapy either alone or in combination, which is gener-
ally determined according to the stage of the disease. The
treatment outcomes, especially in advanced stages, have
resulted in high morbidity, affecting the masticatory
function, facial esthetics, and quality of life of oral cancer
patients [2]. Currently, advances in oral cancer treatment
have not improved the prognosis of oral cancer over the
past decade [4]. Oral cancer prognosis has been based
on cancer staging [5], which decreases significantly in
advanced stages compared to early stages of oral cancer
or in the stage of OPMDs. Therefore, the early diagnosis
of oral cancer is the crucial step to increase the survival
rate of oral cancer patients.
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Deep learning (DL), a subset of artificial intelligence
(AI), is built based on neural networks, which are bio-
logically inspired programming algorithms that have the
ability to learn complex representations to improve pat-
tern recognition from raw data [6]. These algorithms are
composed of multiple layers, which transform input data
(such as medical images) into outputs (such as diagnos-
tic or prognostic recommendations) while automatically
learning higher-level features [6, 7]. DL has been proven
capable of analyzing complex data and is widely applied
in the medical field, including diagnostics, detecting
abnormalities in medical images, etc. [7]. Integrating DL
technology into routine clinical practice relies on achiev-
ing diagnostic accuracy that is not inferior to professional
healthcare. In addition, it must provide other benefits,
such as speed, efficiency, reduced cost, enhanced acces-
sibility, and ethical conduct [8].

Nowadays, DL research in oral cancer is highly
dynamic and keeps increasing due to its feasibility and
many advantages to improve the cancer survival rate in
the aspect of detection, prevention, and prognostic pre-
diction [8-10]. There are studies that developed a mobile
phone-based application for the oral cancer screening as
an alternative method for early detection of oral cancer
with a high accuracy to distinguish oral lesions from clin-
ically suspicious lesions, which showed the potential of
the application of computer-assisted visualization in the
clinical practice [11, 12]. Application of DL to oral cancer
data can assist clinicians in the diagnosis, detection, and
prognostic prediction of oral cancer in clinical practice
for early diagnosis and selection of the most appropriate
treatment to increase the survival rate of patients with
oral cancer.

There have been some previous systematic reviews
on Al and machine learning in oral cancer [13, 14]. This
study, therefore, mainly focused on the application of
DL, which is the neural network-based architecture that
has an ability to learn complex features, on oral cancer
data. The main objective of this study is to systemati-
cally analyze evaluation studies of the application of DL
in oral cancer data to aid in the diagnosis, detection, and
prognostic prediction of oral cancer, and compare their
results regarding the reported performance measures.
In addition, this study further aimed to synthesize the
results and assess the robustness of the body of evidence
of DL-based diagnostic and prognostic predictive models
on oral cancer data.

Methods

This is a systematic review of diagnostic and prognos-
tic prediction studies. Reporting of this study follows
the PRISMA guideline [15]. The study protocol was
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registered at the international prospective register of sys-
tematic reviews (PROSPERO) (CRD42023425992).

Inclusion criteria and exclusion criteria

The eligible studies must have evaluated the diagnostic
or prognostic significance of oral cancer using DL algo-
rithms. Publications were selected for review if they satis-
fied the following inclusion criteria: full texts available in
English language; studies using DL (of any class) to pro-
vide diagnostic and prognostic prediction information of
oral cancer and OPMDs; studies providing outcomes of
model performance (diagnostic and prognostic predic-
tion accuracy) and/or compared to a human diagnostic
performance. For DL-based diagnostic studies in clini-
cal and radiographic images (classification, detection,
or segmentation), ground truth of captured images was
identified by histopathologic result as the gold standard
diagnosis of oral cancer and OPMDs.

Studies with the following criteria were excluded: stud-
ies where ground truth of DL-based diagnostic studies
was not explicitly confirmed; studies of machine learn-
ing (ML) applications without DL algorithms; studies
without sufficient details on the data used for training
and testing (e.g., dataset size, data modality, etc.); studies
without a clear explanation of the DL model; studies that
examined DL applications for normal oral mucosa, oral
lesions (without cancer or OPMDs), periodontal disease,
or dental caries, DNA and RNA microarray genes, prot-
eomics, fluorescence spectroscopy, and genetic program-
ming; articles in languages other than English. The details
of the inclusion and exclusion criteria are presented in
Fig. 1.

Information sources and search

An electronic search was conducted in the following
electronic databases up to 14th June 2023: Medline via
PubMed, Google Scholar, and Scopus. The search was
conducted from January 2000 through June 2023. Each
database was searched with adapted keywords. The
search query for each database is described in Table 1.

Study selection

For managing the citations, Endnote 20 (Clarivate, Phil-
adelphia, USA) was used. Two independent reviewers
performed title and abstract screening after removing
duplicate papers (K.W. and S.S.). Then, the reviewers
evaluated full texts of eligible studies based on inclusion
and exclusion criteria. Any disagreements or discrepan-
cies were resolved by discussion and consensus of the
two reviewers.



Warin and Suebnukarn BMC Oral Health

Fig. 1 Flow diagram of search methodology and literature selection process

Table 1 The results of the electronic search in the various databases

Page 3 of 21

(2024) 24:212
[ Identification of studies via databases and registers
 \
- Records identified from database
o searching (n=905):
§ Duplicatt d d
£ 1 — MEDLINE (n = 316) > UE 1’;:2888 records remove
= 2 - Google Scholar (n = 112) (n = 328)
3 3 - Scopus (n = 477)
I
)
. Reports excluded due to
Records after duplicates »| Focusing on other topics (n = 461)
= removed (n = 577) In other languages (n = 2)
£ (n =463)
c
@
: :
[
(7]
Records screened
(n=114)
—
) i
> o Full-text articles excluded:
= Full text assessed for eligibility No deep learning models were used
’g, (n=112) No desire model's outcome
T Dataset size not reported
Did not use biopsy as gold standard
— etc.
(n=58)
)
Studies included in qualitative studies
(n =54)
1 — Classification studies (n = 40)
2 — Object detection studies (n = 5)
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Database

Keywords

Results Date

Medline via PubMed

Google Scholar

Scopus

((artificial intelligence [MeSH]) OR “artificial intelligence” OR (machine learning [MeSH]) OR “machine
learning”OR (deep learning [MeSH]) OR “deep learning” OR “neural network” OR “‘computer vision”)
AND (‘oral cancer” OR “oral squamous cell carcinoma”OR “oral potentially malignant disorder” OR “oral

precancerous” OR (mouth neoplasms [MeSH]))

allintitle:("artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR ‘com-
puter vision”) AND (“oral cancer”OR “oral squamous cell carcinoma”OR “oral potentially malignant

disorders”OR “oral precancerous”)

(“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR ‘computer
vision”) AND (“oral cancer”OR “oral squamous cell carcinoma”OR “oral potentially malignant disorder”

OR “oral precancerous”)

316 14 June 2023

112 14 June 2023

477 14 June 2023
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Data collection and extraction

Two reviewers (K.W. and S.S.) independently collected
data from the included studies. Any disagreements or
discrepancies were resolved by discussion and consen-
sus of the two reviewers. The following data items were
extracted: bibliographic details (name of authors, the year
of publication and country), data modality, dataset size
(train/valid/test, if given), augmentation, DL algorithms
examined in the study, the definition of the study objec-
tive (diagnostic or prognostic), ground truth identifica-
tion and annotation and task (classification, detection,
segmentation) in the DL based diagnostic study, hyperpa-
rameters of the DL models, hardware used, performance
metrics reported, including precision, recall, accuracy,
sensitivity, specificity, F1-score, average precision (AP),
Dice index, area under receiving operating character-
istics curve (AUC), Concordance index (c-index) and
Integrated Brier score (IBS). If more than one model was
used, this study only reported on the best performance
model.

Risk of bias and applicability

The methodological quality of the included studies was
evaluated using the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) tool [16] for risk of bias
assessment. The QUADAS-2 checklist consists of four
risks of bias domains, including patient selection, index
test, reference standard, and flow and timing. Any disa-
greements between the two reviewers were resolved by
discussion and consensus. Some questions were slightly
modified to specifically assess studies on DL [17]. In
“patient selection’, limited information about the pre-
sented dataset as well as unclear data allocation strategies
were considered to indicate a high risk of bias. For “index
test’, insufficient information on model construction,
including hyperparameters, and lack of model robustness
analyzes were considered to indicate high risk of bias. For
“reference standard’, the lack of information on the defi-
nition of the reference standard and the use of a single
examiner to establish the reference test were considered
to indicate a high risk of bias. Finally, in “flow and tim-
ing’; the indicators used different reference standards in
the same study and inappropriate intervals between the
index test and the reference standard. Details of the mod-
ified QUADAS-2 tool are provided in the supplemental
information (Table 18S).

Statistical analysis

All statistical analyses were performed using R software,
version 3.6.3 (Vienna, Austria) and IBM SPSS Statistics
version 26. Because a few studies reported the number
of true positives (TP), true negatives (TN), false positives
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(FP) and false negatives (FN). This study used the diag-
nostic odds ratios (DOR) as pooled outcome from the
reported sensitivity and specificity to determine the diag-
nostic accuracy of the deep learning system [18], calcu-
lated as follows:

Sensitivity x Specificity

DOR =
(1 — Sensitivity) x (1 - Speciﬁcity)

Results

Study selection and study characteristics

The search results and process of selecting articles are
shown in Fig. 1. After the literature search, a total of 905
articles were identified. Articles were excluded for the
following reasons: studies that were duplicated (n =328),
studies focusing on other topics (1 =461), and studies
that were not written in English language (n=2). A total
of 112 studies were assessed in full text. Fifty-eight of
these studies, including studies that did not use DL mod-
els, studies that did not report the desired outcomes and
dataset size, and studies on clinical images that did not
use biopsy as the gold standard, were excluded after full
text assessment.

Characteristics of relevant studies

The individual studies are summarized in Tables 2, 3, 4
and 5 with each table showing studies using DL in diag-
nostic studies, including classification (Table 2), object
detection (Table 3), segmentation (Table 4), and prognos-
tic prediction studies (Table 5).

Of the 54 included studies, 51 studies examined the
use of DL applications in the diagnostic performance
on medical images and 3 studies evaluated the prognos-
tic prediction of DL applications. Most studies on the
application of DL techniques in oral cancer were pub-
lished recently, i.e. in 2019 and 2023 (n=52) (Fig. 2).
With regards to the regions of relevant articles, 37 of the
studies were carried out entirely in Asia, 9 in Europe, 2 in
Africa and 6 in the United States.

Seven different types of imagery data were employed
to the DL applications on diagnostic studies, includ-
ing histopathological images (#=30), CT images
(n=8), clinical oral images (#=9), and other types of
image (n=4), including confocal laser endomicros-
copy images, optical coherence tomography images,
and endoscopic videos. Clinicopathological and treat-
ment data (n=3) were incorporated in the DL appli-
cations on prognostic prediction studies. In addition,
types of oral cancer data which were used in the devel-
opment of DL models included OSCC (#=41), non-
specific type of oral cancer (n=5), OPMDs (n=5), and
multiclass analysis of OSCC and OPMDs (n=3). In
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diagnostic studies, some studies used expert annota-
tion to set the reference test (n=19). Specifically, one
human expert (n="7), two (n=3), three or more (n=9)
experts were involved in defining the reference test.

Regarding the DL task, the most often chosen task
was classification (n=40), followed by segmentation
(n=10) and object detection (n=5). Various DL mod-
els were used. In classification studies, most of the stud-
ies used multiple DL models (#=25), including transfer
learning models and multi-layer perceptron, followed
by customized CNN structures (#=38), LeNet-5 (n=2),
AlexNet (n=2), DenseNetl21 (n=1), EfficientNet BO
(n=1), and Swin-Transformer (n=1). Regarding seg-
mentation, most of the studies used multiple DL mod-
els, including auto-encoders models (#=5), customized
CNN structures (n=3), and single auto-encoders mod-
els (e.g., U-Net) (n=2). Regarding object detection,
one-stage object detectors (e.g., YOLO) or two-stage
object detectors (e.g., Faster R-CNN) were used in the
majority of studies (n=5). Classification studies mainly
reported on precision, recall (sensitivity), Fl-score,
accuracy, and specificity; other outcome measures were
the area-under-the receiver-operating-characteristics
curve (AUC). In object detection studies, most stud-
ies were focused on precision, recall, Fl-score, aver-
age precision (AP) and the AUC. Segmentation studies
were more heterogeneous but additionally reported the
Dice coefficient index and the mean Intersection over
Union (mloU). Furthermore, studies in prognostic pre-
diction consistently reported the Concordance index
(c-index) and Integrated Brier score (IBS) in all studies
(Tables 3, 4 and 5).
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Risk of bias and applicability

Detailed information about modified leading questions
of QUADAS-2 for critical appraisal and the risk of bias
are presented in Table S1-S5. Among the included stud-
ies, 13 (24.1%) were found to have low risk of biases in all
four domains. Moreover, 40 studies (74.1%) were evalu-
ated as low risk for concerns regarding applicability. The
most problematic domain was “Reference Standard’,
where only 22 studies (40.7%) were classified as low risk
of bias followed by “Patient selection” where 32 studies
(59.3%) were classified as low risk of bias.

Findings of the studies
In diagnostic studies, classification studies reported accu-
racies ranging from 85.0 to 100%, 78.2 to 93.62%, and 76.0
to 98.58% for classifying oral cancer on histopathological
images, CT images and oral clinical images, respectively.
The detection performance of object detection studies
reported the Fl-score ranging from 79.31 to 89.0%. In
addition, the model performance of segmentation stud-
ies reported the Dice coefficient index ranging from 76.0
to 96.3%. In prognostic prediction studies, the prediction
performance of DL models reported the c-index and IBS
ranging from 0.78 to 0.95 and 0.04 to 0.12, respectively.
As outlined, classification and segmentation studies
of oral cancer were used for further synthesis. Of these,
23 studies could be pooled, including classification of
20 studies and segmentation of 3 studies. The pooled
sensitivity, specificity, and DOR of classification studies
were 0.92 (95% CI 0.87-0.97), 0.92 (95% CI 0.88-0.96),
and 2549.08 (95% CI 410.77-4687.39), respectively
(Fig. 3). The pooled sensitivity, specificity, and DOR
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of segmentation studies were 0.87 (95% CI 0.72-1.02),
0.96 (95% CI 0.86-1.06), and 340.68 (95% CI -414.87 —
1096.22), respectively (Fig. 4). In addition, the major-
ity of studies used histopathological data to develop the
DL-based image classification with a high sensitivity and
specificity of 0.99 (95% CI 0.98-0.99), and 0.97 (95% CI
0.94-0.99), respectively.

Discussion

Oral cancer is a life-threatening malignancy with fre-
quent tumor metastasis and recurrence, which affects
the survival rate and quality of life of patients [73-75].
The number of studies investigating the application of
DL in oral cancer has increased in recent years. Most of
the studies in this systematic review were published in
2019. This study compiled and assessed studies involv-
ing the DL for diagnosis and prognostic prediction of oral
cancer by analyzing medical data including histopatho-
logical, CT, clinical image data, clinicopathological and
treatment modality features data. Notably, however, the
studies were of limited quality overall and comparison
between studies was impeded by heterogeneity in con-
ducting and reporting of the studies.

This systematic review found that most of the studies
showed relatively high accuracy, sensitivity, and speci-
ficity of DL for the diagnosis of oral cancer (generally
exceeding 80%). Nevertheless, heterogeneity in study
conduct and reporting was high, precluding further com-
parisons between studies or quantitative synthesis. This
review found that the included studies lacked details on
the annotation process, did not mention the separation
of the test dataset and the proportion between training,
validation, and test dataset, which resulted in a high risk
of bias in the reference test and patient selection. Addi-
tionally, seven diagnostic studies that mentioned the
annotation process were annotated by one expert, result-
ing in these studies lacking inter-annotator agreement.
To reduce the high risk of bias, future diagnostic studies
should address minimum standard guidelines, such as
Standards for Reporting of Diagnostic Accuracy Study-
AI (STARD-AI); standards for diagnostic studies using Al
models [76], ChecKklist for Artificial Intelligence in Medi-
cal Imaging (CLAIM); and a checklist for Al in medical
imaging [77].

Regarding the heterogeneity in DL diagnostic studies
of oral cancer, most studies did not report the value of
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TP, TN, FP, and FN; which caused a limitation for this
systematic review of qualitative analysis of the results of
oral cancer diagnostic study. Alternatively, the authors
considered pooling sensitivity and specificity to calcu-
late summary DORs as a single accuracy parameter.
Moreover, the hyperparameter of DL models is essen-
tial for the explanation of tuning DL models to achieve
the best performance from the model. This study found
that several studies did not report the hyperparameters
of DL models. This had a significant impact on the reli-
ability and explainability of DL model performance, lead-
ing to a high risk of bias in the index test. To the best of
our knowledge, there are no guidelines on reporting the
hyperparameter tuning outcome/procedure for DL as
models for medical diagnosis and prediction. This could
explain why the hyperparameters reported in DL studies
were heterogeneous.

Only three prognostic prediction studies applied DL
algorithms, such as DeepSurv and DeepHit, in clinico-
pathologic and treatment modality data. The number
of studies on DL was even less than studies in the era of

machine learning (ML) [13, 14]. Nevertheless, the pre-
dictive performance of DL also yielded high accuracy for
this task, achieving a c-index of 0.78-0.95 [70-72]. The
predicted parameters were still the same as those of the
ML era, which was interested in using clinicopathological
and treatment modalities data to predict the prognosis
and survival rate of oral cancer patients [13, 14]. Further-
more, there are no prognostic prediction studies of oral
cancer in DL using molecular, cytological, and genomic
data as a predictor, especially during preoperative evalu-
ation. Combining various types of oral cancer data with
the AI model could develop future prognostic prediction
models allowing clinicians to decide on the most appro-
priate treatment plan to increase the survival rate of oral
cancer patients.

All the studies included in this systematic review
highlighted that DL techniques provide an increased
precision approach for clinicians in making informed
decisions. It should be emphasized that almost all the
included studies only determined the accuracy per-
formance of the DL model, in a few cases comparing it
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against the clinicians or experts. Furthermore, a funda-
mental element in achieving safe and efficient deploy-
ment of DL models in clinical practices is that the models
achieve reliable generalizability. That is, the performance
of the model when it is applied to external cases outside
of the data for which it was trained [8, 10]. Therefore, the
international collaboration among multiple healthcare
centers could collect the data from multiple sources to
develop the DL-based medical diagnosis and prognostic
prediction system with the potential to be used in clinical
practice. Nowadays, there are no standard guidelines for
the appropriate accuracy of Al for clinical practice. Cli-
nicians should understand that AI models are a decision
support tool to improve treatment effectiveness and effi-
ciency, but management options are based on the clini-
cian’s decision.

This study has a number of strengths and limita-
tions of the included studies and the review analysis.
First, this review comprehensively and systematically
appraised studies on DL for the diagnosis and prog-
nostic prediction of oral cancer, and thus allows a nar-
rative synthesis of the calculated DOR. Second, for
limitation, this study selected only the scope of DL in
oral cancer and found that studies reported hetero-
geneity, including various types of data and different
reported outcome parameters, which was limited in
qualitative analysis. In addition, this systematic review
did not analyze the diagnostic performance of classifi-
cation studies with the receiver operating characteris-
tic (ROC) curve, which is one of the most widely used
to analyze the diagnostic accuracy of classification
models [78]. Future studies should critically determine
reference tests and patient selection by addressing the
checklist for Al in medical diagnostic and prognos-
tic studies [76, 77, 79], which could improve utility to
assess potential impact and clinical utility. Further-
more, many DL-based clinical image studies used
image data from a public database and did not report
diagnostic biopsy of lesions, which is an important
ground truth that shows the reliability of the data for
pathological Al research. Therefore, the future study
should address the method to verify the reliability of
clinical image from public database apart from biopsy
proven to verify the ground truth of clinical image data
for the medical Al study.

Conclusions

This systematic review reveals the increasing num-
ber of DL studies in oral cancer with a diverse type of
architectures. The reported accuracy showed promising
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performances for diagnostic and prognostic analyses
in studies of oral cancer, Furthermore, this systematic
review found that different oral cancer data modalities in
diagnostic studies impacted the sensitivity and specific-
ity results of DL. This presents researchers with oppor-
tunities to investigate DL algorithms to various data
modalities. Finally, the application of DL in oral cancer
appeared to have potential utility in improving informed
clinical decision-making and providing better diagnosis
and prognosis of oral cancer. Future work to improve the
explainability and interpretability of DL models and the
use of clinically applicable performance measures would
be needed to translate these models for use in clinical
practice.
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