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Abstract

Background Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although
changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabo-
lites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse
alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accord-
ingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of
dental caries.

Methods We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial
community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we
conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined
with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation
with the clinical caries status.

Results There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further,
metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with den-
tal caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism,
ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo
differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might
be jointly applied as biomarkers (area under the curve =0.734). Furthermore, the caries status was correlated with
microorganisms and metabolites. Additionally, Spearman’s correlation analysis of differential microorganisms and
metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with dif-
ferential metabolites.

Conclusion This study identified different microbial communities and metabolic profiles in saliva, which may be
closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detec-
tion, and treatment.
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smooth-surface caries in children<3 years of age, and
from ages 3 through 5, one or more cavitated, missing
(due to caries), or filled.

smooth surfaces in primary maxillary anterior teeth or
a decayed, missing, or filled score of >4 (age 3),>5 (age
4), or > 6 (age 5) surfaces constitute S-ECC [2]. The prev-
alence of ECC in developed and developing countries is
1-12% and up to 70%, respectively [3]. Additionally, ECC
is more prevalent in lower social income groups [4, 5]. A
Chinese oral epidemiological survey conducted in 2018
found that the prevalence of dental caries in the milk
teeth of 5-year-old children was 71.9%, which indicated a
~ 6% increase compared with that reported 10 years ago;
further, the untreated rate was as high as 95.9% [6].

The severe effects of SECC on masticatory function
may cause height and weight deficits in children [7],
which results in various adverse physical and psychologi-
cal effects. Moreover, SECC reduces the overall quality of
life and imposes a huge economic burden on families and
society [8, 9]. Therefore, there is a need to elucidate the
underlying mechanism and develop relevant biomarkers
for early personalized prevention, diagnosis, and treat-
ment of caries [10].

The oral microbiota is among the most complex micro-
biotas in the human body, with>700 bacterial species
present [11]. Due to the limitations of microbiological
research, Streptococcus mutans and Lactobacillus have
been long considered the specific pathogens for ECC.
However, from an ecological perspective, ECC is now
considered to arise when environmental disturbances
alter the oral microbiota balance. Eventually, caries-caus-
ing bacteria predominate, resulting in demineralization
and decomposition of dental tissue [12—14].

Variations in oral microbiota among different ecologi-
cal niches as well as interactions within and outside the
host during ECC development remain unclear. Saliva is
considered an important medium for reflecting indi-
vidual oral microbial characteristics and various disease
states [15]. There are significant differences in the salivary
microbial community between caries hosts and caries-
free hosts [16, 17], with several studies exploring possi-
ble biomarkers [18—20]. The application of metabolomics
techniques has facilitated the identification of small mol-
ecule metabolites that partly reflect the metabolic pro-
file of the flora and are used to identify disease-related
biomarkers. Metabolomics techniques have recently
become increasingly sophisticated and have been used
in studies on dental caries [21], periodontitis [22], and
oral cancer [23]. However, only a few studies have inves-
tigated childhood caries, mainly involving plaque [24]
and saliva [25]. A study on the salivary nuclear magnetic
resonance (NMR) metabolome of children under differ-
ent conditions suggested that non-stimulated salivary
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metabolomics may present the metabolite profile of car-
ies [26]. However, most studies have conducted inde-
pendent microbiome analyses. Additionally, although
several studies have demonstrated differences in flora
according to the disease states, the microbial interactions
remain unclear.

To our knowledge, no studies have applied a multi-
omics approach to explore salivary microbial interac-
tions in the caries state. We aimed to identify microbial
communities and metabolic profiles in children with and
without SECC by combining high-throughput sequenc-
ing of 16S ribosomal RNA (rRNA) genes and untargeted
metabolomics through ultra-high performance liquid
chromatography combined with quadrupole time-of-
flight mass spectrometry (UHPLC-Q/TOF-MS). Addi-
tionally, we aimed to explore salivary biomarkers for
caries status and the possible mechanisms of microbial
interactions in order to inform future strategies for the
prevention and diagnosis of caries in children.

Materials and methods

Study population and clinical examination

This study was approved by the Ethics Committee of
Hebei Children’s Hospital (No. 207). All legal guardians
of participating children were provided written informed
consent following the Declaration of Helsinki. In June
2020, the Department of Stomatology of Hebei Children’s
Hospital enrolled 60 children in a kindergarten under
the jurisdiction of Shijiazhuang, including 30 children
with SECC (SECC group) and 30 children without car-
ies (Group CF). The inclusion criteria were as follows:
local kindergarten students in Shijiazhuang, no history
of long-term (>3 months) relocation; no use of antibiot-
ics, antibacterial mouthwash, or toothpaste use within
1 month; no orthodontic devices; no systemic diseases;
no oromandibular system abnormalities and salivary
gland diseases; and no irritable or restless behaviour dur-
ing examination or sample collection. A single physician
clinically examined the caries status of the children under
natural light based on the World Health Organization
guidelines and records regarding the child’s sex, age, eth-
nicity, caries status, etc.

Sample collection

The participants and their guardians were instructed not
to perform oral care (brushing and flossing) in the morn-
ing on the day of sample collection and not to eat or drink
for 2 h before sample collection. Sample collection was
performed in the morning (9:30 a.m. to 10:00 a.m.) by
four paediatric dentists and six kindergarten teachers (for
emotional reassurance of young children). Specifically,
after mouth rinsing with distilled water, approximately
3 mL of non-irritating saliva was collected in a quiet state
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using a sterile 50 ml centrifuge tube. Subsequently, sam-
ples were stored in two separate 1.5 mL Eppendorf tubes
using sterile pipettes, immediately placed in an insulated
box filled with dry ice, and transported to the laboratory
for storage at -80 °C before further processing. One sam-
ple was used for 16SrRNA sequencing and the other for
metabolic assessment. The successful sample collection
rate was 100%.

Sample preparation and 16S rRNA gene sequencing
Genomic DNA extraction and PCR amplification

The genomic DNA of the samples was first extracted
using the CTAB/SDS method, the DNA purity and con-
centration were checked using agarose gel electropho-
resis. DNA was diluted as per the concentration | pg/pL
using sterile water.

Using the diluted genomic DNA as template, the 16S
V3-V4 sequencing region was selected and PCR was per-
formed using specific primers (341F CCTAYGGGRBG-
CASCAG and 806R GGACTACNNGGGTATCTAAT).
All PCR reactions were carried out with 15uL of Phu-
sion® High-Fidelity PCR Master Mix (New England Bio-
labs). The PCR reaction procedure was as follows: 98 °C
pre-denaturation for 1 min; 30 cycles including (98 °C,
10s; 50 °C, 30 s; 72 °C, 30 s); 72 °C, 5 min.

Mixing and purification of PCR products

The PCR products were detected by electrophore-
sis using 2% concentration of agarose gel; the resulting
products were purified by magnetic beads, quantified
by enzyme labelling, and then mixed in equal amounts
according to the concentration of PCR products. Then,
they were mixed thoroughly and detected by electropho-
resis using a 2% agarose gel. The products were recovered
using Qiagen gel recovery kit (Qiagen, Germany) for the
target bands.

Library construction and sequencing

Libraries were constructed using TruSeq® DNA PCR-
Free Sample Preparation Kit (Illumina, USA) library
construction kit, and the constructed libraries were quan-
tified by Qubit® 2.0 Fluorometer (Thermo Fisher, USA)
and Q-PCR; subsequently, the libraries were sequenced
using NovaSeq6000 (Illumina, USA) and 250 bp paired-
end reads were generated. Sequence are processed using
the Tags quality control process from QIIME (Ver-
sion 1.9.1, http://qiime.org/scripts/split_libraries_fastq.
html). The UPARSE algorithm was applied to analyze the
sequences (UPARSE v7.0.1001, http://www.drive5.com/
uparse/). Sequences with > 97% similarity were assigned
to the same operational taxonomic units (OTUs). The
abundance information of the OTUs was normalized
using a standard of sequence number corresponding
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to the sample with the least number of sequences. The
subsequent computation of alpha and beta diversities
was performed using QIIME (Version 1.9.1) (Additional
file 1).

Metabolome sample preparation and testing conditions
Sample preparation

The samples were sent to the laboratory for centrifuga-
tion at 13,500 r/min at 4 °C for 10 min. The superna-
tant was removed, dispensed and stored at -80 °C. The
samples were removed from the -80 °C refrigerator at
the beginning of the experiment and thawed; 100 pL of
acetonitrile was added to 50 pL of the saliva sample, vor-
texed for 30 s at 15,000 r/min, and centrifuged at 4 °C for
10 min; this process was performed again. The superna-
tant was used for analysis. Three different types of sam-
ples were used during the sample analysis, including the
blank solution, quality control sample, and real sample.
The injection order of the samples can have a significant
impact on the experimental results. Therefore, the injec-
tion sequence in each model was varied. The blank solu-
tion and QC sample were sequentially injected five times
and six times, respectively. After that, the random sam-
pling method was performed in the real sample analysis
process and one blank solution and one QC sample were
inserted into every eight real samples. The blank solu-
tion was a 95% acetonitrile solution to balance the sys-
tem. The QC was used to evaluate the precision of the
instrument before the analysis process and to evaluate
whether the experimental condition was stable from the
first real sample to the last one in each analysis model.
It was separately prepared, pooled, and separately mixed
with the same volume of six randomly selected processed
real samples.

Testing conditions

An AB SCIEX Q-TOF 5600 +triple quadrupole-time of
flight mass spectrometer with Shimadzu LC-30A ultra
performance liquid chromatograph (Kyoto, Japan) and
Triple-TOFTM5600 4+ mass spectrometer (AB SCIEX,
USA) was used. Since saliva contains approximately 99%
water, many endogenous metabolites were expected to
be highly polar. HILIC columns have excellent separation
capabilities for the analysis of strongly polar endogenous
substances, while HSS T3 columns target substances with
low to medium polarity. The liquid phase part was sepa-
rated using a hydrophilic (HILIC) column and a reversed-
phase (HSS T3) column, and the mass spectrometry part
was acquired in full scan mode using an ESI source in the
positive ion mode. The experiments were divided into
two modes HILIC (+) mode and HSS T3 (+) mode. The
hydrophilic column was ACQUITY UPLC® BEH HILIC
(2.1 x 100 mm, 1.7 um), and the mobile phases included
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10 mM aqueous ammonium acetate (A) and acetoni-
trile (B) with gradient elution. The elution procedure
was as follows: 0—2 min, 95-95% B; 2—8 min, 95-75% B;
8-9.5 min, 75-55% B; 9.5-10 min, 55-95% B; 10—15 min,
95-95% B; flow rate: 0.3 mL/min; column tempera-
ture: 35.00 °C; injection volume 5 pL; sample chamber
temperature: 4 °C. The reversed-phase column was an
ACQUITY UPLC® HSS T3 (2.1 x 100 mm, 1.8 um) with
the mobile phases of 1%o formic acid-5 mM aqueous
ammonium acetate (A) and acetonitrile (B), and the gra-
dient elution program was as follows: 0-2 min, 10-50%;
2-9.5 min, 50-95% B; 9.5-10 min, 95-10% B 10—15 min,
10-10% B; flow rate: 0.3 mL/min; column temperature:
35.00 °C; injection volume 5pL; sample chamber temper-
ature: 4 °C.

Mass spectrometry conditions in positive ion mode:
ion source, ESI source; full scan mode acquisition. MS1
conditions: acquisition range, 100-1000 Da; nebulizing
gas (Gas 1), 55 psi; heating gas (Gas 2), 55 psi; curtain gas
(CUR), 35 psi; temperature (TEM), 550 °C; source injec-
tion voltage (IVF), 5500 V; declustering Information-
dependent acquisition (IDA): MS2 acquisition of the
eight most responsive peaks above 50 cps, with dynamic
background subtraction (DBS) turned on. MS2 condi-
tions: acquisition range, 50—1000 Da; DP, 50 V; CE, 30 eV;
collision energy expansion (CES), 15 eV. The experimen-
tal procedure was performed using automatic calibration
(CDS).

Statistical analysis

The 16S rRNA sequence data were analysed using the
QIIME software package (Version 1.9.1) to calculate
the Ace, chaol and Shannon indices for assessing alpha
diversity. Analysis of variance was performed using Stu-
dent’s t-test. Additionally, cumulative box plots of species
were plotted using R software (Version 2.15.3). Addi-
tionally, beta-diversity analysis was performed using R
software to plot weighted/unweighted UniFrac distance
metrics, principal coordinate analysis (PCoA) plots, and
nonmetric multidimensional scaling (NMDS) plots based
on operational taxonomic unit (OTU) levels. PCoA was
performed using the WGCNA, stats, and ggplot2 pack-
ages of R software. Further, NMDS analysis was per-
formed using the vegan package of R software. Metastats
analysis was conducted using R software at each classi-
fication level (Phylum, Class, Order, Family, Genus, Spe-
cies) through between-group permutation tests to obtain
p values, which were visualized as violin plots. We per-
formed analysis of similarity (ANOSIM), multi-response
permutation procedure (MRPP), and ADONIS (permu-
tational multivariate analysis of variance) analysis using
the R vegan package’s anosim function, mrpp function,
and adonis function. R software based on the analysis
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of species abundance can be used to perform a random
forest model, Significant species were screened by Mean-
DecreaseAccuracy and MeanDecreaseGin, after which
cross-validation (default tenfold) was done for each
model and ROC curves were plotted.

The raw data for the MS downcomers were acquired
using Analyst TF 1.6 software (AB SCEIX, USA) and
converted to mzML format through ProteoWizard using
the XCMS program (http://www.bioconductor.org/
packages/release/bioc/html/ xcms.html). We performed
peak extraction, alignment, and retention time correc-
tion. Peak areas were corrected using the "SVR" method;
moreover, peaks with>50% deletion rate in each sample
group were filtered. After calibration and filtering, peaks
were identified by querying the laboratory’s database,
integrating public libraries, and mtDNA method. All sta-
tistical analyses, which included univariate and multivar-
iate statistical analyses, were conducted using R software
(Version 2.15.3). Univariate statistical analysis included
multiplicative analysis of variance while multivariate sta-
tistical analysis included principal component analysis
(PCA) and orthogonal partial least squares discrimina-
tion analysis (OPLS-DA). The quality of the OPLS-DA
was evaluated by the values of R*X or R?Y and Q*We
performed differential metabolite enrichment analyses
using the KEGG database (KEGG, http://www.genome.
jp/kegg) and MetaboAnalyst 3.0 (Montreal, QC, Canada).
Values for the area under the curve (AUC) of the ROC
were used to assess the diagnostic utility of candidate
metabolites for SECC.

We analysed the relationships among microbial com-
munities, metabolites, and clinical indicators through
Spearman’s correlation analysis and drew the heat
maps. Spearman was performed with R software (R
package = psych).

Results

Microbial profiles of saliva samples

The physiological indicators including age and sex of the
participants are known to affect experimental results.
The Wilcoxon Rank Sum test and Chi-squared test
were used to access whether age and sex affected the
experimental grouping result. There were no significant
between-group differences in age or sex (Table 1).

A total of 120 saliva samples were collected, with 60
being for 16S rRNA gene sequencing. A total of 3,871,616
high-quality sequences were obtained, and the average
number for each sample was 62,527. Sequence clustering
yielded 2877 OTUs, which involved 42 phyla, 90 classes,
190 orders, 300 families, and 513 genera.

The species accumulation box plot reflects the rate of
emergence of new OTUs (new species) with continuous
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Table 1 Demographic and clinical characteristics of the subjects

Clinical parameters SECC Caries-free
Age (month)? 58.57 4958 51.6349.95
Sex®

Male 16 17

Female 14 13
Caries status

dmft 8.83+263 0

dmfs 14.83+4.44 0

? Represented as mean =+ standard deviation, No significance between SECC
group and caries-free group (p > 0.05), by Wilcoxon Rank Sum test

b No significance between SECC group and caries-free group (p >0.05), by
Chi-squared test

sampling. The box plot position levelled off with increas-
ing sample size, which indicated that the sampling depth
could reflect the flora of salivary microorganisms (Fig. 1).

We used the alpha and beta diversity of the microbial
community to further analyse its overall compositional
richness and structural characteristics. Compared with
the CF group, the SECC group showed significantly larger
Alpha-diversity indices, including the abundance-based
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coverage estimator (ACE, p<0.01), chaol index (p<0.01)
and Shannon index (p<0.05), which indicated a higher
richness and diversity of salivary microbial communities
(Fig. 2a—c). Beta-diversity analysis using OTUs in NMDS
analysis, as well as PCoA analysis based on the weighted
and unweighted Unifrac distance, revealed between-
group differences in microorganisms (Fig. 3a—c). Moreo-
ver, the non-parametric statistical methods, including
ANOSIM, ADONIS, and MRPP, revealed significant
between-group differences in the overall biotope struc-
tures (all p<0.05).

The five most abundant species under both groups at
the phylum level were Proteobacteria, Firmicutes, Bac-
teroidota, Actinobacteriota, and Fusobacteriota, which
accounted for >97% of the total sequences (Fig. 4a).

The top five most abundant species in both groups at
the genus level were Neisseria, Streptococcus, Haemo-
philus, Prevotella, and Alloprevotella which accounted
for > 64% of the total sequences (Fig. 4b).

Regarding Metastats analysis at the phylum and
genus levels, there were between-group differences
in the abundance of 8 phyla and 32 genera (relative
abundance > 0.01%).
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At the phylum level, the relative abundance of Fir-
micutes, Cyanobacteria, Acidobacteriota, Methylomira-
bilota, Chloroflexi, Gemmatimonadetes, and Myxococcota
was significantly higher in the SECC group than in the
CF group. Moreover, the relative abundance of Gracili-
bacteri was significantly higher in the CF group than in
the SECC group (Additional file 2: Fig. S1).

The top eight taxa with the highest between-group dif-
ferences in abundance at the genus level are presented as
violin plots to visualize the distribution characteristics
of the data. Lautropia, Veillonella, Lactobacillus, and
Aggregatibacter were significantly enriched in the SECC
group than in the CF group. Contrastingly, Neisseria,
Porphyromonas,unidentified_Absconditabacteriales_
(SR1), and Streptobacillus were lower in the SECC group
than in the CF group (Fig. 5).

For further sample analysis using a random forest
machine learning approach, we constructed a prediction
model based on two parameters (MeanDecreaseAccu-
racy and MeanDecreaseGin20; Fig. 6a, b). The experi-
mental analysis was performed at genus level including
513 genera. MeanDecreaseAccuracy is the degree of
reduction in the predictive accuracy of a random forest
by taking the value of a variable and turning it into a ran-
dom number ( larger values indicate a greater importance
of the variable.) MeanDecreaseGin calculates the effect
of each variable on the heterogeneity of observations at
each node of the classification tree, and thus compares
the importance of the variables (larger values indicate a
greater importance of the variable) to filter out impor-
tant species. Additionally, we verified that the maximum
AUC was 85.71% when 20 microorganisms were selected,
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which allowed satisfactory between-group distinction
(Additional file 3: Fig. S2).

Shifts in the metabolomic profiles of saliva samples

To investigate changes in salivary metabolomics under
SECC and their relationship with microbial changes, we
performed untargeted metabolomics using 60 saliva sam-
ples. A total of 356 qualifiable metabolites were used in
the subsequent analysis after removing internal stand-
ards and false positive peaks as well as combining peaks
of the same metabolites. The experimental, control, and
quality control samples in the PCA showed good aggre-
gation. Moreover, the pre-treatment and experimental
conditions for each shot were stable, which indicated
that the sample data was reliable in this analytical mode
(Fig. 7a). There was a clear between-group distinction in
the model established using OPLS-DA; moreover, evalu-
ation of the model quality using the 200 permutation test
revealed reliable prediction and modelling ability (Addi-
tional file 4: Fig. S3), with significant alterations of the
metabolic substances in the SECC group (Fig. 7b). A total
of 32 differential metabolites were yielded in the HILIC
(4+) and HSS T3 (+) analysis models based on the crite-
ria of a fold change > 1.5 or < 0.67 and VIP > 1. Among
the differential metabolites, 24 and 8 were significantly
upregulated and downregulated, respectively (Fig. 7c).
Cytidine, 3-indoleacrylic acid, 2-formaminobenzoylac-
etate, guanosine, stachydrine epinephrine, Ala-Tyr-Thr-
Lys, Arg-Ser-Ser, and Pro-Pro-His were significantly
increased in the SECC group. Contrastingly, L-erythru-
lose 4-phosphate, galactosylglycerol, PC(16:0/16:0), Lys-
Met-His, fluazinam, uridin’ 5’-diphosphate, Val-Pro-Val,

Neisseria Porphyromonas
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and 1,2,4-oxadiazole were significantly increased in the
CF group. These compounds are listed in Fig. 7c and
table 2. Next, we used the KEGG database annotation to
hierarchically classify the differential metabolites accord-
ing to their involvement in the KEGG metabolic path-
way. Subsequently, we performed an enrichment analysis
of the differential metabolites in the KEGG pathways to
identify the related metabolic pathways [27]. We identi-
fied several metabolic pathways of the differential sali-
vary metabolites associated with dental caries, including
tryptophan metabolism, pyrimidine metabolism, purine
metabolism, ABC transporters, tyrosine metabolism,
cAMP signalling pathway, renin secretion, galactose
metabolism, phenylalanine, tyrosine and tryptophan
biosynthesis (Fig. 8). Additionally, there was enrichment
of intermediate metabolites such as epinephrine (neu-
roactive ligand-receptor interactions, renin secretion),
guanosine (ABC transporters, purine metabolism), and
2-benzylmalate (phenylalanine, tyrosine and tryptophan
biosynthesis, and 2-carbonylformate metabolism).

Correlations of the microbiota and metabolites

with the clinical indices for caries

We found that 25 genera were significantly correlated
with at least one of the clinical datasets (Fig. 9a). Known
caries-related genera, including Streptococcus and Weis-
sella, were positively correlated with caries status, while
Eggerthella, Sutterella, Peptococcus, and Atopobium
were negatively correlated with clinical indices. These

findings suggest that alterations in some salivary flora
may be related to clinical indices in children. Regarding
the metabolome, nine differential metabolites were posi-
tively correlated with clinical data, which suggests a close
association between salivary metabolites and dental car-
ies given the abundance and diversity of microorganisms
in the SECC group (Fig. 9b). Among the aforementioned
metabolites, we included four endogenous metabolites
in the ROC analysis, including 2-benzylmalate, epineph-
rine, 2-formaminobenzoylacetate, and 3-indoleacrylic
acid. They demonstrated moderate predictive power
(AUC=0.734), and thus could be potential biomarkers
of the inflammatory status (Fig. 10). To further explore
the correlation between salivary microbial alterations
and metabolite changes, we examined the correlations
between phylum and genus with between-group differ-
ences and 32 metabolites. The metabolites were corre-
lated with five phyla, including Gracilibacteria, Firmiutes,
Acidobacteriota, Methylomirabilota, and Myxococcota
(Additional file 5: Fig. S4). Moreover, 20 genera were
correlated with metabolites. Among them, Veillonella,
Staphylococcus, Neisseria, and Porphyromonas showed
the most extensive correlations with metabolic differen-
tials; specifically, they were correlated with 7, 14, 7, and
13 differential metabolites, respectively. Moreover, Veil-
lonella and Staphylococcus showed significant positive
correlations with the metabolites, while Neisseria and
Porphyromonas showed negative correlations with the
metabolites (Fig. 11).
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concentration in the SECC and CF groups, respectively

Discussion

We used 16SrRNA gene sequencing and UHPLC-Q/
TOF-MS untargeted metabolomics to assess and com-
pare differential salivary microbiota and their metabo-
lites in children with and without SECC. We screened
for potential microbial and metabolite markers for caries
in children and investigated the mechanisms underlying
changes in the oral microbial ecosystem in SECC.

Microbiome

Dental caries is caused by various microorganisms rather
than a specific bacterium. Specifically, it is caused by a
complex interaction involving at least tens of bacteria [28,

29]. Differences in the composition of oral microorgan-
isms can distinguish the caries status and can facilitate
disease diagnosis and prognosis [30—32] as well as pre-
diction of caries occurrence [33]. However, there remains
no consensus regarding cariogenic microorganisms and
functional composition.

The composition of the oral microbiota changes
throughout the life span from newborns to young adults
with mixed and permanent dentition to the elderly [34—
36]; further, it differs according to sex [37].

A study on children aged 4—6 years showed that the
plaque microbiota showed increased sensitivity to the
host than saliva with age progression; moreover, the
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Table 2 Details of the differential metabolites between the SECC and CF groups

Compounds Formula VIP Log2FC Type
Acetylpseudotropine C10H17NO2 1.35 9.81 Up
3-Indoleacrylic acid C1THINO2 1.98 0.62 Up
2-Formaminobenzoylacetate C10HONO4 215 0.86 Up
Cytidine CO9H13N305 1.66 0.73 Up
Guanosine CT0H13N505 2.30 0.73 Up
Stachydrine C7H13NO2 1.07 0.63 Up
Epinephrine C9H13NO3 1.77 1.03 Up
AlaTyr Thr Lys C22H35N507 2.12 0.87 Up
Arg Ser Ser C12H24N606 2.06 1.05 Up
Pro Pro His C16H23N504 2.03 0.86 Up
L-Erythrulose 4-phosphate C4H9O7P 1.35 —-0.72 Down
Phe GIn Val CT19H28N405 1.87 118 Up
Mepirizole C1TH14N402 2.56 0.86 Up
3-beta-D-Galactosyl-sn-glycerol;Galactosylglycerol C9H1808 1.32 —061 Down
N-Methylephedrine C1TH17NO 1.36 9.68 Up
Dodecylbenzenesulfonic acid C18H3003S 2.00 0.84 Up
GIn Arg Leu C17H33N705 1.93 0.88 Up
Arg Thr Ala Arg C19H38N1006 2.02 0.77 Up
PC(16:0/16:0) C40H75NO9 1.06 —0.71 Down
Lys Met His C17H30N604S1 1.51 —083 Down
Leu Val Leu Gly Phe C28H45N506 142 257 Up
Alangicine C28H36N205 2.00 0.79 Up
2-Benzylmalate C11H1205 1.24 1.08 Up
Hexaethylene glycol C12H2607 2.16 1.15 Up
Ethyl-L-NIO C9H19N302 1.90 117 Up
(25)-N-[(25)-1-hydroxy-3-(1H-indol-3-yl)propan-2-yl]-3-methyl-2-  C17H25N302 227 1.12 Up
(methylamino)butanamide

Bucladesine C18H24N508P 2.23 1.62 Up
Val Pro Val C15H27N304 1.60 —096 Down
1,2,4-Oxadiazole, 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-  C20H10FE6N20S 143 —-1.03 Down
(trifluoromethyl)phenyl]-

Uridine 5"-diphosphate COH14N2012P2 123 —067 Down
1,2-Dibenzoylbenzene C20H1402 1.93 0.60 Up
Fluazinam C13H4CI2F6N404 133 —0.86 Down

oral microbiota could distinguish the different age-
related changes and identify caries occurrence in these
children [38]. In our study, there were no between-
group differences in age and sex; moreover, all partici-
pants were from a local kindergarten and belonged to
the Han ethnicity.

The oral cavity is a highly heterogeneous ecosys-
tem with “a healthy core microbiota" in children [39].
Compared with dental plaque, saliva has more micro-
bial functional markers since microbiota attached to
teeth and soft tissue surfaces continuously flow into
saliva, which makes saliva a reservoir of the entire oral
microbiota [40]. The microbial and metabolic composi-
tions and pathways differ across ecological niches. The

salivary microbiota is valuable for predictive modelling
and has considerable practical advantages as a sampling
site, especially for children with poor compliance.

We further investigated the microbiota data through
alpha and beta diversity analysis. Compared with the CF
group, the SECC group showed a significantly greater
alpha index (ACE, chaol, p<0.01 and Shannon, p<0.05)
than the CF group. This is indicated that children with
SECC had a higher microorganism abundance and diver-
sity than children without SECC, which is consistent with
previous reports [38, 41]. Previous studies have demon-
strated that only the flora structure, but not the salivary
microbial communities, differ between children with and
without SECC [42-44].
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These findings suggest that the appearance of den-
tal caries may be related to oral flora disorders, which
should be further investigated. The observed between-
group differences in the indices of community diversity
(ANOSIM, MRPP, and ADONIS; p <0.05) demonstrate
that the significant alterations in the structure of the
salivary microbial community contributed to caries
occurrence. Regarding genus classification, Metastat
analysis revealed significant between-group differences
in the abundance of Neisseria, Lautropia, Lactobacillus,
Porphyromonas, and Aggregatibacter (p < 0.05). A previ-
ous study reported that Neisseria was more abundant
in CF children and could be a diagnostic biomarker
[45], which is consistent with our findings. Addition-
ally, a previous study found that Veillonella was more
abundant in childhood caries and that its co-aggrega-
tion and adhesion with Streptococcus spp. promotes
biofilm formation and metabolic synergistic growth
[46]. However, our findings regarding the differential
flora are only partially consistent with previous reports
[34, 47]. This could be attributed to differences in the
study methodology as well as the age, ethnicity, and
regions of the participants. There may be similarities in
the functional performance of the combinations of dif-
ferent strains, which demonstrates the need for related
metabolomic studies. Furthermore, most differential
strains were of species with low abundance, which is
consistent with previous reports [48]. This suggests the
dominant flora routinely defined in the oral cavity do

not comprise the microbiome biomarkers or disordered
flora related to caries development.

Additional screening of the species using a random
forest machine learning algorithm [49] showed that the
selection of 20 bacterial species yielded the largest ROC
value (85.71%). Among these species, only six had an
abundance < 1%, which further demonstrates the impor-
tance of low-abundance species in saliva as markers for
oral caries.

Metabolome

To our knowledge, this is the first study to apply UHPLC-
MS untargeted metabolomics to probe the salivary
metabolomic profile of children with SECC and to com-
bine this approach with microbiomics.

Metabolomic studies on caries have mainly applied
NMR assays [50, 51], with only a few studies using MS
[25]. NMR-based metabolomics techniques are widely
used in non-targeted studies given their stability, high
discrimination, and excellent reproducibility; however,
NMR has an inherent disadvantage of low resolution
[52].

Contrastingly, MS-based metabolomics allows highly
selective and sensitive quantitative analysis, which facili-
tates the detection of low-molecular-weight compounds
at concentrations below the range of nanogram per mil-
lilitre [53]. Additionally, since LC-MS allows optimized
detection of each compound in a complex mixture, it
facilitates improved separation of complex systems [54].
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In our study, salivary metabolites, including amino and
organic acids, were positively correlated with the bacte-
rial load; furthermore, the oral microbiota significantly
contributed to the salivary metabolome. The salivary
metabolome can facilitate the diagnosis of conditions
reflecting ecological dysbiosis [55]. In addition, the sali-
vary metabolome composition is influenced by multiple
physiological and environmental factors [56]. The inclu-
sion of children as study participants allows circumven-
tion of the effects of smoking, alcohol consumption, and
complex organismal and oral environment. A previous
NMR study showed that caries status, but not sex and
dental stage, significantly affected the salivary metabolic
profile [26]. Additionally, the salivary metabolic pro-
file did not significantly differ between stimulated and
unstimulated saliva. However, stimulation is expected
to affect salivary composition since unstimulated saliva

(resting state) is mainly secreted by the submandibular
and sublingual glands, while stimulated saliva is mainly
secreted by the parotid gland [57].

Previous metabolomic studies on bacterial plaque bio-
films [24, 58] have suggested large differences in the two
ectopic differential metabolites according to caries sta-
tus, which is slightly inconsistent with our findings. This
could be attributed to between-study differences in the
ectopic flora, participants, experimental and statistical
methods, saliva collection site in the oral cavity, and host
circulating metabolites.

Carbohydrate metabolism

Oral microorganisms in children with caries can metabo-
lize intrinsic carbohydrates through various pathways.
Additionally, carbohydrate metabolism is closely related
to caries occurrence and development. In our study,
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we observed metabolite pathway analysis revealed sig-
nificant enrichment of galactose metabolism. Strepto-
coccus mutans, which is the main pathogen in dental
caries, shows highly complex galactose utilization [59,
60]. Galactose metabolism may be used as a marker for
children at a high risk of caries risk [61] and is active in
the gingival crevicular fluid in patients with periodontitis
[62].

During caries development, excess carbohydrate levels
can alter the local microenvironment and contribute to
caries induction by related bacteria such as Streptococcus
mutans [63].

Galactose metabolism by Streptococcus mutans mainly
occurs in the plaque. Our findings of decreased galac-
tose metabolite levels in the SECC group are inconsist-
ent with previous reports by NMR metabolomic studies.
This could be attributed to the fact that differences in the
ingested carbohydrates and/or oral habits among partici-
pants may influence the measured carbohydrate levels.
Therefore, our findings regarding carbohydrate metabo-
lism should be treated with caution.

Organic acid metabolism

Unexpectedly, 2-benzylmalate was the only differential
organic acid metabolite, which appears to be inconsistent
with the acidic conditions contributing to surface demin-
eralization of dental tissues, and thus caries production.
Short-term salivary secretion may not allow sufficient
accumulation of organic acids due to saliva removal as
well as the saliva’s strong buffering and dilution capac-
ity. This further demonstrates the large differences in
the saliva metabolic changes within the two ecological
niches. A study on the metabolic pathways involved in

different oral hygiene practices suggested the involve-
ment of 2-oxocarboxylic acid metabolism [64]. Previous
studies have reported altered levels of lactate [50] and
butyric acid [26], which is inconsistent with our findings.
This could be attributed to differences in the experimen-
tal techniques or classes of bacteria fermentation.

Amino acid metabolism
We did not identify any differential amino acids, which
is consistent with a previous study on salivary metab-
olomics [65]. However, we observed enrichment of
tryptophan metabolism; tyrosine metabolism; and inter-
mediates of phenylalanine, tyrosine, and tryptophan bio-
synthesis processes. This could be attributed to matrix
collagen degradation in the dentin during caries develop-
ment [66] as well as the hydrolysis of salivary proteins/
peptides by protein-hydrolysing oral bacteria [67]. In
saliva, there is complex mutual facilitation between the
synthesis and metabolism of tryptophan and tyrosine.
Our finding of increased metabolism of tyrosine, which
is an amino acid precursor for the synthesis of catecho-
lamines such as epinephrine, norepinephrine, and dopa-
mine, is consistent with previous reports [26]. Moreover,
disrupted tyrosine metabolism may be closely related to
aggressive periodontitis [68]. Additionally, the observed
increased tryptophan synthesis is consistent with previ-
ous reports [47]. Disrupted tryptophan metabolism is
also related to the development of oral ulcers [69]. Con-
trastingly, other studies have reported decreased pheny-
lalanine levels in children with dental caries [51]. There
are significant changes in aspartic acid, ornithine, argi-
nine, and proline metabolism related to dental caries
[25]. Differences in previous reports regarding the types
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and pathways of amino acids in saliva involved in caries,
which have also been demonstrated in studies on peri-
odontal metabolomics [62], suggest the need to focus on
changes in the amino acid metabolic pathways rather
than single metabolites.

Taken together, functions related to amino acid metab-
olism may be crucial in the oral microecology under car-
ies conditions, which should be further investigated.

Other metabolic pathways and metabolites

ABC transporters mediate important substances, includ-
ing carbohydrates, amino acids, proteins, lipids, and
inorganic ions, crucially involved in biofilm formation
[70]. The formation and maturation of plaque biofilm is
a prerequisite for caries formation; accordingly, the sali-
vary microecology undergoes changes that promote car-
ies development.
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A previous microbiomic study reported a correlation of
SECC and recurrent caries with ABC transporters [71].
Accordingly, it is important to pay attention to further
elucidate the role of ABC transporters in biofilm for-
mation and function as a necessary condition for caries
development.

Uridine 5’-diphosphate, cytidine, and guanosine were
enriched in purine and pyrimidine metabolism, which is
consistent with previous reports [26]. Moreover, a study
on periodontitis reported increased hypoxanthine levels
[72]. This suggests that oxidative stress and inflamma-
tion accelerate purine degradation. Pyrimidine metabo-
lism is crucially involved in the synthesis, degradation,
and interconversion of DNA, RNA, lipids, and carbohy-
drates. Pathogenic bacteria can use pyrimidine metabo-
lism to potentially alter the metabolic activity of the hosts
and create favourable conditions for themselves [73], and
therefore affect the health of dental tissues.

Salivary epinephrine levels are correlated with the
severity of periodontitis [74]. Moreover, enrichment
analysis has demonstrated the involvement of increased
epinephrine levels in the cAMP signalling pathway, which
can regulate salivary amylase secretion [75, 76]. Amylase
secretion contributes to reduced plaque acid produced
by Streptococcus mutans, which dissolves the enamel and
may be a biomarker for dental caries [77]. a-amylase is
closely associated with dental caries; additionally, low
a-amylase levels may promote the development of early
childhood caries [78]. We observed upregulated levels
of stachydrine, which has anti-inflammatory activity. In
many Middle Eastern and African countries, Salvadora
persica L. (toothbrush tree, Miswak) is used as a tooth-
brush, with its root being rich in stachydrine [79].

The remaining metabolic pathways such as glycerolipid
metabolism and neuroactive ligand-receptor interaction
are crucially involved in the pathogenesis of oral squa-
mous carcinoma [80, 81]. Future studies should inves-
tigate their relationship with dental caries in children.
We used ROC curves to assess the accuracy of salivary
metabolites as biomarkers. In our study, we identified
four metabolites that could be jointly used as biomarkers
for SECC.

This study demonstrated that non-differential salivary
microorganisms were related to caries severity and were
mostly in the low-abundance species groups. This could
be attributed to the following factors. First, saliva is not
the site of caries occurrence; accordingly, caries occur-
rence is weakly correlated with salivary microorganisms.
Second, our microbial sequencing depth may not have
been sufficiently deep, and it would be better to draw
conclusions at the species or strain level. Third, there is
extensive heterogeneity in our ECC classification with
respect to caries severity and intraoral distribution [82].
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Further clarification of microbial roles should apply a
combination of multi-omic approaches, including tran-
scriptomics. The combined application of multi-omics
may provide the most powerful diagnostic tool in studies
on diseases [83].

Regarding metabolites, some differential metabolites
were correlated with clinical data, which suggests the
potential utility of salivary metabolites in dental car-
ies research. Combined analysis of microorganisms and
metabolites revealed significant correlations of most dif-
ferential salivary microorganisms with metabolites. Spe-
cifically, Veillonella and Staphylococcus enriched in the
SECC group as well as Neisseria and Porphyromonas
enriched in the CF group were extensively correlated
with metabolites. Most genera enriched in the SECC
group were positively and negatively correlated with up-
regulated and down-regulated metabolites, respectively,
in the CF group. Opposite correlations were observed
between genera enriched in the CF group and metabo-
lites upregulated in the SECC group. Our findings con-
firm that host and oral microorganisms are closely
connected and interact in the development of dental
caries.

Shortcomings and outlook

This study has several limitations. First, this study had
a small sample size. Second, the depth of microbi-
ome sequencing was not sufficiently deep; moreover,
16SrRNA technology could not sufficiently reveal the
structure of flora composition under the species classifi-
cation. Third, we did not conduct a longitudinal analysis.
Future longitudinal studies combining host genomics,
behavioural factors, and environmental factors, as well as
screening of precise biomarkers, are warranted.

Using a multi-omics approach can help elucidate the
composition and function of the salivary microbial com-
munity in the caries condition, as well as inform caries
prevention and treatment.
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*p < 0.01).
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