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Abstract
Objective  The prevalence of type 2 diabetes mellitus (T2DM) and bone metabolism disorders increase with age. 
Diabetic kidney disease (DKD) is one of the most serious microvascular complications of T2DM, and bone metabolism 
disorders are closely linked to the occurrence of DKD. The relationship between bone turnover markers(BTMs) and the 
kidney disease in elderly patients with T2DM remains unclear. Therefore, this study aims to investigate the association 
between common BTMs and DKD in a large sample of elderly patients. The goal is to provide a basis for early 
identification of high-risk individuals for DKD among elderly T2DM patients from a bone metabolism perspective.

Methods  In this cross-sectional study, BTMs were collected from a cohort of 2,051 hospitalized Chinese patients. The 
relationships between 25-hydroxyvitamin D (25-OH-D), β-CrossLaps (β-CTX), osteocalcin (OSTEOC), intact parathyroid 
hormone (iPTH), and total type I collagen N-terminal propeptide (TP1NP), and DKD, as well as urinary albumin-to-
creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were analyzed using regression analysis and 
restrictive cubic spline (RCS) curves.

Results  Higher 25-OH-D levels were independently linked to a lower incidence of DKD and decreased UACR. The 
RCS curves showed a linear association of 25-OH-D and DKD, approaching the L-shape. β-CTX was independently 
and positively correlated with UACR. There is an independent positive correlation between OSTEOC and UACR and a 
negative correlation with eGFR. iPTH is independently and positively correlated with DKD incidence and UACR, and 
negatively correlated with eGFR. Additionally, the RCS curves showed a non-linear association of OSTEOC and iPTH 
and DKD, approaching the J-shape, and the point of inflection is 10.875 ng/L and 34.15 pg/mL respectively. There is 
an independent positive correlation between TP1NP and UACR incidence, and a negative correlation with eGFR. Risk 
estimates significantly increase with higher TP1NP levels in the RCS model.

Conclusion  BTMs are closely associated with kidney disease in elderly patients with T2DM. These discoveries 
potentially assist clinicians in establishing more preventive measures and targeted treatment strategies for elderly 
patients with T2DM.

Keywords  Diabetic kidney disease, Bone turnover markers, 25-hydroxyvitamin D, β-CrossLaps, Osteocalcin, Intact 
parathyroid hormone, Total type I collagen N-terminal propeptide, Type 2 diabetes mellitus, Elderly
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Introduction
As the population ages, the proportion of elderly indi-
viduals (aged ≥ 60) in China was approximately 17.3% 
in 2017. By 2050, this percentage is projected to exceed 
30%, with more than 20% of the elderly population 
expected to suffer from diabetes, of which over 95% will 
be type 2 diabetes mellitus (T2DM) [1]. Chronic hyper-
glycemia has been observed to reduce osteoblast num-
bers, impair bone formation, slow bone mineralization, 
and enhance osteoclast activity, resulting in an imbalance 
in bone metabolism, particularly in elderly patients [2, 3]. 
Diabetic kidney disease (DKD) is a prevalent microvas-
cular complication of diabetes mellitus [4]. The presence 
of DKD significantly complicates the management of 
diabetes in elderly patients and poses a serious threat to 
their health and mortality worldwide. Research indicates 
that bone metabolism disorders may be a risk factor for 
the development of kidney complications in T2DM [5]. 
Identifying potential bone metabolism markers related 
to incident DKD is essential for screening elderly popula-
tions with diabetes mellitus who are at high risk for DKD. 
It also aids in researching the mechanisms of DKD onset 
and benefits early intervention and correction of risk 
factors.

Osteoblasts form new bone, while osteoclasts resorb 
old bone to maintain bone structure integrity. The 
metabolites produced during this process are known as 
bone turnover markers (BTMs). Commonly assessed 
BTMs include 25-hydroxyvitamin D (25-OH-D), 
β-CrossLaps (β-CTX), osteocalcin (OSTEOC), intact 
parathyroid hormone (iPTH), and total type I collagen 
N-terminal propeptide (TP1NP). Previous studies have 
suggested that these bone metabolic indicators may be 
involved in the crosstalk between bone, islet, and adi-
pose tissues [6–9] and may be associated with early renal 
damage in DKD [10, 11]. However, these findings remain 
controversial and inconclusive. Only four studies have 
reported the association between BTMs and the risk of 
DKD or eGFR and UACR [12–15]. Two studies showed 
that OSTEOC, TP1NP, and β-CTX levels negatively cor-
related with eGFR in diabetes patients (one did not dif-
ferentiate between type 1 and type 2 disease) [13, 14]. 
Another study found that UACR was positively associ-
ated with OSTEOC, TP1NP, β-CTX and 25-OH-D in 
T2DM patients [15]. In contrast, one study indicated that 
serum concentrations of BTMs were not associated with 
the risks of DKD [12]. Notably, most of these studies are 
limited by small sample sizes and did not clarify the non-
linear relationship between BTMs and DKD. Addition-
ally, there are no studies investigating the relationship 
between BTMs and DKD in the elderly T2DM popula-
tion currently.

The relationship between BTMs and the occurrence of 
kidney disease in elderly patients with T2DM remains 

unclear. Therefore, this study aims to investigate the 
association between these five common BTMs and kid-
ney disease in a large sample of elderly patients with 
T2DM. The goal is to provide a basis for early identifi-
cation of high-risk individuals for DKD among elderly 
T2DM patients from a bone metabolism perspective. 
This approach is beneficial for correcting bone metabo-
lism disorders and, concurrently, slowing the progression 
of DKD, ultimately contributing to an improved quality 
of life for elderly individuals with diabetes.

Materials and methods
Study design and participants
A total of 2,987 individuals aged ≥ 60 years with T2DM 
admitted to the Guang’anmen Hospital from February 
2017 to February 2022 were enrolled in this study. The 
flow chart of the study is shown in Fig.  1. T2DM was 
diagnosed according to the criteria established by the 
American Diabetes Association [16]. The exclusion crite-
ria were as follows: (1)lacking BTMs results or medical 
history, (2)experiencing acute complications of diabetes, 
bone fractures, acute inflammation or infections, auto-
immune diseases, or malignancies, (3)receiving steroid 
or thyroid hormone treatment, and (4)receiving hemodi-
alysis or peritoneal dialysis treatment. Ultimately, 2,051 
participants were included in the analysis. This retro-
spective study obtained approval from the Medical Ethics 
Committee of Guang’anmen Hospital, China Academy 
of Chinese Medical Sciences (2023-187-KY), and strictly 
adhered to the principles outlined in the Declaration of 
Helsinki.

Measurements
Information on sex, age, height, weight, duration of 
diabetes, systolic blood pressure(SBP), diastolic blood 
pressure(DBP), and medication use was extracted from 
electronic medical records using standardized question-
naires by the same trained personnel. The medications 
included anti-osteoporosis drugs (calcium, vitamin D, 
bisphosphonate, or other drugs), anti-diabetic agents 
(pioglitazone, SGLT-2 inhibitors, and GLP-1 analogues), 
and ACEI/ARB. Body mass index (BMI) was calculated 
as body weight (kg) divided by the square of height 
(m2). Levels of 25-OH-D, β-CTX, OSTEOC, iPTH, and 
TP1NP were assayed using electrochemiluminescence 
assays. Fasting plasma glucose (FPG), total choles-
terol (TC), triglycerides (TG), high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein-choles-
terol (LDL-C), alanine transaminase (ALT), aspartate 
aminotransferase(AST), alkaline phosphatase (ALP), 
albumin (ALB), serum calcium, serum phosphorus, 
serum uric acid, serum creatinine, and hemoglobin were 
measured using an automated analyzer with standard 
methods. Urine albumin-to-creatinine ratio (UACR) was 
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calculated from urine albumin and urine creatinine lev-
els. The estimated glomerular filtration rate (eGFR) was 
calculated using the Chronic Kidney Disease Epidemi-
ology Collaboration equation designed for individuals 
of Asian origin. DKD was defined as persistent protein-
uria and/or progressive renal insufficiency. In patients 
without other chronic kidney diseases, those with 
UACR ≥ 30 mg/g and/or eGFR < 60 mL/min per 1.73 m2 
twice after three tests in 3 ~ 6 months were considered to 
have developed DKD, in accordance with the criteria set 
by the American Diabetes Association [17].

Statistical analysis
The current analysis was conducted using IBM SPSS Sta-
tistics (v 26), R (v 4.4.1), and Zstats (v1.0). Statistical sig-
nificance was established at a two-sided P-value < 0.05. 
Continuous variables were presented as means ± standard 
deviation (SD) or medians ± interquartile range (IQR), 
while categorical variables were expressed as percent-
ages (%). For the comparison of continuous variables, 
the nonparametric rank-sum test or Student’s t-test was 
used, and the Chi-square test was applied for categorical 
variables. BTMs levels were categorized into quartiles. 
Regression analysis was performed to identify associa-
tions between BTMs and DKD, UACR, and eGFR. The 
first quartile of BTMs was used as a reference in logistic 
regression. The associations were evaluated by a crude 
model 0 with no adjustments, a multivariable model 1 
adjusted for age, sex, BMI, and duration of diabetes, and 
a multivariable model 2 adjusted for age, sex, BMI, dura-
tion of diabetes, SBP, DBP, FPG, HbA1c, TC, TG, HDL, 

LDL, ALT, AST, ALP, Hemoglobin, Serum calcium, 
Serum phosphorus, Serum uric acid and medications.
and age and family history of diabetes. Data were sum-
marized as odds ratios or beta coefficients with 95% con-
fidence intervals (CIs). The association of BTMs with the 
incidence of DKD was further evaluated on a continuous 
scale with restrictive cubic spline (RCS) curves.

Results
The general and sociodemographic characteristics of the 
study participants are shown in Table 1. The final analy-
sis included 2,051 diabetic participants. Among them, 
1,267 participants (61.7%) were diagnosed without DKD 
(Non-DKD), while 784 participants (38.2%) were diag-
nosed with DKD. Compared to Non-DKD participants, 
those with DKD exhibited significantly higher values 
for age, the number of men, BMI, duration of diabetes, 
iPTH, FPG, HbA1c, TG, ALP, serum creatinine, serum 
uric acid, UACR, HbA1c, number of anti-diabetic agents 
and the number of ACEI/ARB (all P < 0.05). No differ-
ences were observed in DBP, β-CTX, TP1NP, TC, LDL, 
AST, serum phosphorus, or number of anti-osteoporosis 
drugs between the two groups. However, SBP, 25-OH-D, 
OSTEOC, HDL, ALT, ALB, hemoglobin, serum calcium, 
and eGFR were significantly lower in DKD patients com-
pared to those without DKD (all P < 0.05).

We developed several models to evaluate the inde-
pendent effects of BTMs on DKD, UACR, and eGFR. As 
presented in Table 2, elevated 25-OH-D levels were asso-
ciated with a decreased likelihood of DKD, and reduced 
UACR without any adjustments. After controlling for 

Fig. 1  Flow chart of the study
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various confounding variables in model 1 and model 2, 
the associations between 25-OH-D and the prevalence of 
DKD, as well as UACR, remained statistically significant. 
In these three models, β-CTX was positively associated 
with UACR, elevated OSTEOC levels were associated 
with increased UACR and reduced eGFR, and iPTH was 
positively associated with the likelihood of DKD in mod-
els 1 and 2, positively associated with UACR in all three 
models, and negatively associated with eGFR in all three 

Table 1  General characteristics of the participants by DKD
Characteristics Non-DKD DKD P value
Age, years 66 ± 6 67 ± 8 <0.001
Men, % 532(42%) 377(48.1%) 0.007
BMI, kg/m2 25.31 ± 4.10 26.70 ± 5.41 <0.001
Duration of diabetes, years 16 ± 12 18 ± 15 <0.001
SBP, mmHg 138 ± 19 137 ± 20 0.001
DBP, mmHg 78 ± 15 78 ± 15 0.924
25-OH-D, nmol/L 17.31 ± 10.46 15.40 ± 9.54 <0.001
β-CTX, ng/mL 0.35 ± 0.24 0.336 ± 0.25 0.077
OSTEOC, ng/L 11.26 ± 5.45 10.48 ± 5.40 0.017
iPTH, pg/ml 34.00 ± 17.20 34.30 ± 22.75 0.013
TP1NP, µg/L 39.25 ± 21.26 38.64 ± 24.65 0.808
FPG, mmol/L 11.12 ± 6.99 11.125 ± 7.49 <0.001
HbA1c, % 8.00 ± 2.20 8.50 ± 2.90 <0.001
TC, mmol/L 4.33 ± 1.55 4.53 ± 1.81 0.330
TG, mmol/L 1.39 ± 0.94 1.54 ± 0.87 <0.001
HDL, mmol/L 1.16 ± 0.34 1.12 ± 0.30 <0.001
LDL, mmol/L 2.69 ± 1.16 2.93 ± 1.32 0.183
ALT, U/L 18.10 ± 11.40 17.75 ± 11.32 0.002
AST, U/L 19.30 ± 8.13 18.85 ± 7.80 0.344
ALP, U/L 80.0 ± 33.00 83.50 ± 34.75 0.030
ALB, g/L 43.20 ± 3.72 41.15 ± 4.50 <0.001
Hemoglobin, g/L 138 ± 19 131 ± 21 <0.001
Serum calcium, mmol/L 2.395 ± 0.12 2.38 ± 0.14 <0.001
Serum phosphorus, mmol/L 1.15 ± 0.21 1.18 ± 0.26 0.636
Serum creatinine, umol/L 62 ± 21 77.95 ± 40.75 <0.001
Serum uric acid, umol/L 310 ± 114.5 341.5 ± 131.75 <0.001
UACR, mg/g 9.16 ± 8.74 94.84 ± 303.53 <0.001
eGFR, mL/min per 1.73 m2 95.64 ± 17.80 80.73 ± 38.38 <0.001
Medications
   ACEI/ARB, % 1061(84.2%) 718(91.6%) <0.001
   Anti-osteoporosis drugs, % 820(64.7%) 487(62.1%) 0.234
   Anti-diabetic agents, % 350(27.6%) 321(40.9%) <0.001
Diabetic retinopathy 177(14.0%) 520(66.3%) <0.001
The data are presented as means ± SD for continuous variables with a normal 
distribution, medians ± IQR for continuous variables with a skewed distribution, 
and as numerical proportions for categorical variables. For the comparison of 
continuous variables, the nonparametric rank-sum test or Student’s t-test was 
used, and the Chi-square test was applied for categorical variables

DKD Diabetic kidney disease, BMI Body mass index, SBP Systolic blood 
pressure, DBP Diastolic blood pressure, 25-OH-D 25-hydroxyvitamin D, β-CTX 
β-CrossLaps, OSTEOC Osteocalcin, iPTH Intact parathyroid hormone, TP1NP 
Total type I collagen N-terminal propeptide, FPG Fasting plasma glucose, HbA1c 
Hemoglobin A1C, TC Total Cholesterol, TG Triglyceride, HDL High-density 
lipoprotein, LDL Low-density lipoprotein, ALT Alanine aminotransferase, AST 
Aspartate aminotransferase, ALP Alkaline phosphatase, ALB Albumin, UACR 
Urine albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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models. TP1NP was positively associated with UACR 
in all three models and negatively associated with eGFR 
in models 1 and 2. Multifactor analysis revealed that 
25-OH-D is an independent protective factor for DKD, 
potentially contributing to a decreased UACR, while 
iPTH is an independent risk factor for DKD, potentially 
contributing to increased UACR and decreased eGFR. 
In addition, β-CTX, OSTEOC, iPTH, and TP1NP were 
independently associated with elevated UACR. OSTEOC 
and TP1NP were identified as independent risk factors 
for eGFR.

We evaluated the associations between 25-OH-D quar-
tile levels and DKD, UACR, and eGFR, as shown in Fig. 2. 
Elevated 25-OH-D quartile levels were significantly asso-
ciated with a decreased prevalence of DKD and reduced 
UACR after adjusting for potential confounders. How-
ever, no significant associations were observed between 
25-OH-D quartile levels and eGFR. Compared to par-
ticipants in the first quartile of 25-OH-D levels, those in 
the highest quartile exhibited a significant 68% decrease 
in the odds of having DKD in model 0. These associa-
tions remained significant in both model 1 and model 2. 
Notably, in modes 1 and 2, the prevalence of DKD among 
participants in the highest 25-OH-D quartile showed a 

66.8% decrease and a 53.1% decrease, respectively, com-
pared to those in the first quartile. Furthermore, our find-
ings revealed that, in these models, as 25-OH-D quartile 
levels gradually increased, UACR showed a decreasing 
trend. Compared with the lowest quartile, individuals in 
the highest quartile exhibited the lowest β for UACR in 
model 2.

We evaluated the associations between β-CTX quartile 
levels and DKD, UACR, and eGFR, as shown in Fig. 3. No 
significant associations were observed between β-CTX 
quartile levels and the prevalence of DKD or UACR. 
However, elevated β-CTX quartile levels were found 
to be significantly associated with decreased eGFR. In 
these models, as β-CTX quartile levels increased, eGFR 
showed a decreasing trend after controlling for vari-
ous confounding variables such as age, sex, BMI, dura-
tion of diabetes, SBP, DBP, FPG, HbA1c, TC, TG, HDL, 
LDL, ALT, AST, ALP, hemoglobin, serum calcium, serum 
phosphorus, serum uric acid and medications. Com-
pared with the lowest quartile, individuals in the highest 
quartile exhibited the lowest β for eGFR in both model 2 
and model 3.

We evaluated the associations between OSTEOC 
quartile levels and DKD, UACR, and eGFR, as shown in 

Fig. 2  The associations between 25-OH-D quartile levels and DKD, UACR, and eGFR. 0 The model was not adjusted. 1 The model was adjusted for age, 
sex, BMI, and duration of diabetes. 2 The model was adjusted for model 1and SBP, DBP, FPG, HbA1c, TC, TG, HDL, LDL, ALT, AST, ALP, Hemoglobin, Serum 
calcium, Serum phosphorus, Serum uric acid and medications, and the medications included anti-osteoporosis drugs (calcium, vitamin D, bisphospho-
nate, or other drugs), anti-diabetic agents (pioglitazone, SGLT-2 inhibitors, and GLP-1 analogues), and ACEI/ARB. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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Fig. 4. No significant associations were observed between 
OSTEOC quartile levels and the prevalence of DKD. 
However, elevated OSTEOC quartile levels were found 
to be significantly associated with increased UACR in 
models 0 and 1, and decreased eGFR in all three models. 
In these models, as OSTEOC quartile levels increased, 
UACR showed an increasing trend, while eGFR showed a 
decreasing trend. Compared to the lowest quartile, indi-
viduals in the highest quartile exhibited the highest β for 
UACR and lowest β for eGFR in all three models.

We evaluated the associations between iPTH quartile 
levels and DKD, UACR, and eGFR, as shown in Fig.  5. 
Compared to participants in the first quartile of iPTH 
levels, those in the highest quartile exhibited a significant 
81.5% increase in the odds of having DKD in model 0. 
However, after adjusting for various varibles, the associa-
tion between iPTH and the prevalence of DKD was not 
significant. Furthermore, elevated iPTH quartile levels 
were found to be significantly associated with a reduced 
eGFR after adjusting for potential confounders in all 
three models. Our findings revealed that, as iPTH quar-
tile levels increased, eGFR showed a decreasing trend in 
all models. Compared to the lowest quartile, individuals 

in the highest quartile exhibited the lowest β for eGFR in 
all three models.

We evaluated the associations between TP1NP quartile 
levels and DKD, UACR, and eGFR, as shown in Fig. 6. No 
significant associations were observed between TP1NP 
quartile levels and the prevalence of DKD. However, 
elevated TP1NP quartile levels were found to be signifi-
cantly associated with increased UACR and decreased 
eGFR in all three models. In these models, as TP1NP 
quartile levels increased, UACR showed an increasing 
trend, while eGFR showed a decreasing trend. Compared 
to the lowest quartile, individuals in the highest quartile 
exhibited the highest β for UACR and the lowest β for 
eGFR in all models.

Figure 7 shows that the associations between 25-OH-D 
and TP1NP levels and the prevalence of DKD were lin-
ear in the adjusted RCS model. The risk estimates sig-
nificantly decreased with increasing 25-OH-D levels, 
and the association approached the L-shape, while they 
significantly increased with rising TP1NP levels. β-CTX 
did not exhibit any independent effects on DKD in the 
multivariable model. Moreover, the RCS curves showed a 
non-linear association of OSTEOC and iPTH and DKD, 
approaching the J-shape, and the point of inflection 

Fig. 3  The associations between β-CTX quartile levels and DKD, UACR, and eGFR. 0 The model was not adjusted. 1 The model was adjusted for age, sex, 
BMI, and duration of diabetes. 2 The model was adjusted for model 1and SBP, DBP, FPG, HbA1c, TC, TG, HDL, LDL, ALT, AST, ALP, Hemoglobin, Serum cal-
cium, Serum phosphorus, Serum uric acid and medications, and the medications included anti-osteoporosis drugs (calcium, vitamin D, bisphosphonate, 
or other drugs), anti-diabetic agents (pioglitazone, SGLT−2 inhibitors, and GLP−1 analogues), and ACEI/ARB. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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is 10.875 ng/L and 34.15 pg/mL respectively. The risk 
estimates markedly increased when OSTEOC levels 
exceeded 10.875 ng/L and iPTH levels surpassed 34.15 
pg/mL.

Discussion
We observed that 25-OH-D levels were significantly 
lower in patients with DKD compared to those without 
DKD. Elevated 25-OH-D levels were independently asso-
ciated with a reduced incidence of DKD and a decrease 
in UACR. As 25-OH-D levels increased across quar-
tiles, there was a trend of decreasing DKD incidence and 
UACR. After adjusting for confounding factors, the high-
est quartile of 25-OH-D demonstrated a significant 53.1% 
reduction in the prevalence of DKD compared to the 
first quartile. In the adjusted RCS model, the relationship 
between 25-OH-D levels and DKD prevalence was linear, 
approaching the L-shape, with risk estimates markedly 
decreasing as 25-OH-D levels increased. This suggests 
that higher levels of 25-OH-D may act as a protective 
factor against kidney complications in elderly patients 
with T2DM. These findings are consistent with previous 
findings [18–37], although some studies have reported 
inconsistent conclusions [38–45]. The discrepancies in 

these findings may be attributed to differences in the 
populations studied, methodologies used, and the con-
founding factors controlled for. By dividing patients into 
pathological subgroups, it was found that up to 91.5% of 
patients with DKD were affected by vitamin D deficiency 
and insufficiency [18]. Vitamin D, a fat-soluble vitamin 
essential for human health, is catalyzed by the liver into 
25-OH-D, which is further converted in the kidneys into 
biologically active 1,25-dihydroxyvitamin D3. This active 
form binds to receptors in target tissues, participating in 
the regulation of calcium and phosphorus metabolism 
[46–50]. Nakai et al. [52] demonstrated that 25-OH-D 
partially antagonizes nuclear factor κB activation induced 
by advanced glycation end products in mouse podo-
cytes [53]. Additionally, the vitamin D analog masalone 
has been shown to reduce oxidative stress through the 
Nrf2-Keap1 pathway, thereby delaying the progression of 
diabetic nephropathy in rats. Vitamin D acts as a potent 
inhibitor of the renin-angiotensin aldosterone system 
[54], potentially mitigating glomerulosclerosis and fibro-
sis [55], regulating apoptosis and autophagy, ameliorat-
ing podocyte injury, and maintaining the structure of 
the glomerular filtration barrier [55, 56]. Lower levels 
of 25-OH-D are particularly detrimental in the context 

Fig. 4  The associations between OSTEOC quartile levels and DKD, UACR, and eGFR. 0 The model was not adjusted. 1 The model was adjusted for age, sex, 
BMI, and duration of diabetes. 2 The model was adjusted for model 1and SBP, DBP, FPG, HbA1c, TC, TG, HDL, LDL, ALT, AST, ALP, Hemoglobin, Serum cal-
cium, Serum phosphorus, Serum uric acid and medications, and the medications included anti-osteoporosis drugs (calcium, vitamin D, bisphosphonate, 
or other drugs), anti-diabetic agents (pioglitazone, SGLT−2 inhibitors, and GLP−1 analogues), and ACEI/ARB. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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of renin-angiotensin-aldosterone system activation and 
hyperfiltration in diabetic mice [57]. Moreover, vitamin 
D may reduce the expression of transforming growth 
factor-β and inflammation, maintain vascular homeosta-
sis, improve glucose and lipid metabolism, and enhance 
antioxidant defense and immune function [57–59]. Ani-
mal studies have suggested that vitamin D insufficiency 
may contribute to the pathogenesis of albuminuria [19]. 
25-OH-D can decrease proteinuria by suppressing the 
renin-angiotensin system and TGF-β in mesangial and 
juxtaglomerular cells, consistent with the findings of this 
study.

The findings of this study demonstrate that β-CTX is 
independently and positively correlated with UACR. 
As quartiles of β-CTX levels increase, there is a trend 
towards decreasing eGFR. However, β-CTX did not 
exhibit any independent effects on DKD in the multi-
variable model using RCS. β-CTX serves as a degrada-
tion product of type I collagen, reflecting the biological 
activity of osteoclasts and indicating the extent of bone 
resorption [61]. Previous research has highlighted a 
negative correlation between β-CTX and eGFR in dia-
betic patients [13, 14], and a positive correlation with 
UACR [15], which is consistent with the current findings. 

Nonetheless, the specific mechanism by which β-CTX 
influences the progression from T2DM to DKD remains 
unclear and warrants further investigation.

Furthermore, our research reveals an independent pos-
itive correlation between OSTEOC and UACR, while it is 
independently negatively correlated with eGFR. As quar-
tile levels of OSTEOC increase, there is a trend towards 
increasing UACR and decreasing eGFR. Moreover, the 
associations between OSTEOC and DKD were non-lin-
ear, approaching the J-shape, with risk estimates mark-
edly increasing when OSTEOC levels exceeded 10.875 
ng/L. OSTEOC, a specific protein secreted by osteoblasts 
and composed of 49 amino acids, plays crucial roles in 
various physiological processes including bone metabo-
lism, energy metabolism, reproduction, and cognition 
[62]. It reflects the activity status of osteoblasts. OSTEOC 
has also been implicated in stimulating islet beta cells 
to release insulin and prompting adipocytes to release 
adiponectin, thereby enhancing insulin sensitivity [63]. 
Studies investigating the relationship between OSTEOC 
and glucose-lipid metabolism have yielded conflicting 
results, and the underlying mechanisms remain unclear 
[7, 63–67]. Zhao et al. found a significant positive corre-
lation between UACR and OSTEOC in a cross-sectional 

Fig. 5  The associations between iPTH quartile levels and DKD, UACR, and eGFR. 0 The model was not adjusted. 1 The model was adjusted for age, sex, 
BMI, and duration of diabetes. 2 The model was adjusted for model 1and SBP, DBP, FPG, HbA1c, TC, TG, HDL, LDL, ALT, AST, ALP, Hemoglobin, Serum cal-
cium, Serum phosphorus, Serum uric acid and medications, and the medications included anti-osteoporosis drugs (calcium, vitamin D, bisphosphonate, 
or other drugs), anti-diabetic agents (pioglitazone, SGLT−2 inhibitors, and GLP−1 analogues), and ACEI/ARB. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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Fig. 7  Adjusted RCS for BTMs and the prevalence of DKD. Adjusted for age, sex, BMI, and duration of diabetes. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate, 25-OH-D 25-hydroxyvitamin D, β-CTX β-CrossLaps, OSTEOC Osteocalcin, iPTH 
Intact parathyroid hormone, TP1NP Total type I collagen N-terminal propeptide

 

Fig. 6  The associations between TP1NP quartile levels and DKD, UACR, and eGFR. 0 The model was not adjusted. 1 The model was adjusted for age, sex, 
BMI, and duration of diabetes. 2 The model was adjusted for model 1and SBP, DBP, FPG, HbA1c, TC, TG, HDL, LDL, ALT, AST, ALP, Hemoglobin, Serum cal-
cium, Serum phosphorus, Serum uric acid and medications, and the medications included anti-osteoporosis drugs (calcium, vitamin D, bisphosphonate, 
or other drugs), anti-diabetic agents (pioglitazone, SGLT−2 inhibitors, and GLP−1 analogues), and ACEI/ARB. DKD Diabetic kidney disease, UACR Urine 
albumin to creatinine ratio, eGFR Estimated glomerular infiltration rate
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study involving 297 T2DM patients [12], consistent with 
our findings. However, caution is warranted regarding 
the potential for reverse causality. A prospective cohort 
study demonstrated that even after adjusting for base-
line eGFR and UACR, serum OSTEOC maintains an 
independent and robust negative correlation with DKD 
events [69]. In cross-sectional studies, reduced renal 
function may lead to decreased OSTEOC excretion and 
consequently higher circulating OSTEOC levels, poten-
tially distorting the exposure-disease relationship.

The findings of this study indicate that iPTH levels are 
significantly higher in DKD patients compared to those 
without DKD. iPTH is independently and positively cor-
related with the incidence of DKD and UACR, while 
being independently negatively correlated with eGFR. 
As quartile levels of iPTH increase, there is a downward 
trend in eGFR. iPTH, a peptide hormone, exerts biologi-
cal effects by regulating calcium and phosphorus metab-
olism through actions on target tissues such as bones and 
kidneys, and it is ultimately cleared by the kidneys. PTH 
strengthens osteolysis, enhances renal tubular reabsorp-
tion of calcium, mobilizes calcium into the bloodstream, 
and increases blood calcium levels. Previous research has 
suggested that elevated iPTH levels can act as a uremic 
toxin, influencing mitochondrial function and contribut-
ing to cell death and organ damage [69–71]. Our obser-
vations reveal a non-linear association between iPTH 
and DKD, approaching the J-shape, with risk estimates 
significantly increasing when iPTH levels exceed 34.15 
pg/mL. This reflects the dual nature of iPTH, where 
within a physiological range it exerts beneficial effects, 
while beyond this range it may have detrimental effects, 
consistent with previous findings.

Furthermore, our study reveals an independent posi-
tive correlation between TP1NP and the incidence of 
UACR, while being independently negatively correlated 
with eGFR. As quartile levels of TP1NP increase, there 
is a trend of increasing UACR and decreasing eGFR. 
Additionally, the risk estimates markedly increase with 
rising TP1NP levels. TP1NP is an extension peptide of 
type I procollagen [72, 73], synthesized and released into 
circulation by osteoblasts [74, 75]. It serves as a sensi-
tive marker of bone formation [76]. Previous research 
supports our findings, indicating a negative correlation 
between TP1NP levels and eGFR in diabetes patients, 
and a positive association between TP1NP and UACR in 
T2DM patients. We propose two potential explanations 
for this association. First, TP1NP may accumulate in the 
body as eGFR declines, leading to elevated circulating 
levels [77]. Second, given that bone remodeling is meta-
bolically demanding, disturbances in energy metabolism 
and microcirculation in T2DM patients may contribute 
to observed decreases in bone formation markers [78].

The findings suggest BTMs homeostasis may be related 
to the etiology and pathogenesis of DKD in elder patients 
with T2DM. These results highlight the potential utility 
of BTMs as biomarkers for kidney disease, aiding in the 
identification of individuals at increased risk for T2DM-
related renal complications. This has significant clinical 
implications for managing bone metabolism disorders 
and kidney complications in elderly patients with dia-
betes. Therefore, in clinical practice, attention should 
be given to the dynamic monitoring of BTMs in elderly 
T2DM patients. Additionally, maintaining optimal BTM 
levels from an early age may be associated with a reduced 
future risk of DKD development.

Our study possesses several strengths. Firstly, we con-
ducted a large-scale population study involving hospi-
talized elderly T2DM patients, ensuring a substantial 
sample size and comprehensive data collection, which 
allowed us to assess common confounders. This is the 
first study to report the association between BTMs and 
the prevalence of DKD in an elderly cohort. Secondly, we 
emphasized the nonlinearity in the study, better illustrat-
ing the dose-response relationship. Thirdly, we exam-
ined BTMs as both continuous and categorical variables 
to reduce data analysis contingency and enhance the 
robustness of our results. Nevertheless, this study has 
certain limitations. Firstly, selection bias could not be 
avoided in this single-center, hospital-based study. Sec-
ondly, detecting BTMs at a single time point only pro-
vides a snapshot and does not allow for an understanding 
of the dynamic changes in BTMs and their association 
with DKD. Thirdly, all participants were of Han Chi-
nese ethnicity, which may limit the generalizability of the 
results to other ethnic groups, as bone metabolism and 
osteoporosis vary among different races. Fourthly, poten-
tial confounding factors affecting BTMs levels, such as 
sun exposure, outdoor exercise, nutritional status, dietary 
habits, and seasonal variations, were not included in this 
analysis.

Conclustions
BTMs are closely associated with kidney disease in 
elderly patients with T2DM. These discoveries potentially 
assist clinicians in establishing more preventive measures 
and targeted treatment strategies for elderly patients with 
T2DM.
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