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Estimation of vegetation water content 
using hyperspectral vegetation indices: 
a comparison of crop water indicators 
in response to water stress treatments 
for summer maize
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Abstract 

Background:  Vegetation water content is one of the important biophysical features of vegetation health, and its 
remote estimation can be utilized to real-timely monitor vegetation water stress. Here, we compared the responses of 
canopy water content (CWC), leaf equivalent water thickness (EWT), and live fuel moisture content (LFMC) to different 
water treatments and their estimations using spectral vegetation indices (VIs) based on water stress experiments for 
summer maize during three consecutive growing seasons 2013–2015 in North Plain China.

Results:  Results showed that CWC was sensitive to different water treatments and exhibited an obvious single-peak 
seasonal variation. EWT and LFMC were less sensitive to water variation and EWT stayed relatively stable while LFMC 
showed a decreasing trend. Among ten hyperspectral VIs, green chlorophyll index (CIgreen), red edge normalized ratio 
(NRred edge), and red-edge chlorophyll index (CIred edge) were the most sensitive VIs responding to water variation, and 
they were optimal VIs in the prediction of CWC and EWT.

Conclusions:  Compared to EWT and LFMC, CWC obtained the best predictive power of crop water status using VIs. 
This study demonstrated that CWC was an optimal indicator to monitor maize water stress using optical hyperspec-
tral remote sensing techniques.

Keywords:  Canopy water content, Hyperspectral remote sensing, Leaf equivalent water thickness, Live fuel moisture 
content, Summer maize
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Background
Drought is one of the most important impacts of global 
climate change on terrestrial ecosystems. It is also a 
major environmental abiotic stress factor that currently 
reduces crop yield worldwide [1]. Among many natural 
hazards, the effects of drought on the world’s agricultural 
production is most prominent and its influences are the 
sum of other natural hazards [2]. Agricultural drought 
mainly reflects soil water status as well as crop growth 

and morphology, which can be used to reflect the degree 
of soil water deficit to crop water demand. When a crop 
is in a water deficit status, water stress will act directly on 
crop growth and development, photosynthesis, dry mass 
production, and seed production, and ultimately, water 
stress will lead to crop production reduction [3]. There-
fore, how to accurately assess and monitor crop water 
stress is not only the key for adopting scientific coun-
termeasures to reduce adverse effects, but also essential 
research for monitoring, warning, and assessing agricul-
tural drought.

In recent years, remote sensing techniques have been 
widely utilized to monitor and assess crop drought, 
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forest and grass fire danger, land-use change, and crop 
production [4]. Usually, studies on remote monitoring 
and assessment by field spectroscopy techniques mainly 
involve crop leaf structural and biochemical component 
information such as chlorophyll, nitrogen content, dry 
mass content, and water content [5–16]. Among them, 
remote estimation of vegetation water content can pro-
vide important implications on vegetation physiologi-
cal status detection [7, 12, 17–20], agricultural irrigation 
decision [10, 12, 13], and drought assessment [21, 22]. 
Remote sensing techniques can be used to effectively 
monitor and diagnose vegetation water conditions, accu-
rately reflect physiological status of vegetation under 
water stress, rapidly recognize drought, and immediately 
adopt irrigation measures [10, 12, 13, 22, 23].

The commonly used physiological indicators to assess 
plant water conditions mainly include stomatal conduct-
ance [3], leaf water potential [3, 24], canopy water content 
(CWC) [25–28], leaf equivalent water thickness (EWT) 
[25, 29], live fuel moisture content (LFMC) [11, 13, 30], 
and relative water content (RWC) [31–33]. Leaf water 
status has been widely used as an indicator of crop water 
stress [24, 34]. LFMC, the ratio of water mass to dry mass 
contained in live plant material, is not only affected by 
leaf moisture status, but also impacted by seasonal vari-
ation of dry mass [35]. LFMC represents the magnitude 
of fuel and is an important fuel property for determining 
fire danger and modeling fire behavior [36]. RWC, the 
ratio of leaf water content at the time of measurement 
to leaf water content at a swelling pressure level, is com-
monly used to assess the water status of plants and has 
been estimated using spectral data [36]. EWT, defined as 
quantity of water per unit leaf area, is more relevant to 
the water absorption of incoming radiation. Additionally, 
EWT plays a crucial role in biogeochemical processes 
such as photosynthesis, evaporation, and primary pro-
ductivity [37, 38]. Its rapid decreases or shortage is an 
important early stress indicator [39]. CWC, expressed 
as the quantity of water per unit area of ground surface, 
is widely utilized to monitor vegetation water conditions 
[27, 28] and is determined not only by vegetation water 
status but also by crop growth and development stages 
[15]. Multi-scale and real-time monitoring of vegetation 
water status or crop water stress using remote sensing 
techniques has been conducted. However, up to now, 
there is still disagreement on which is the most suitable 
method among water content indicators for remotely 
monitoring crop water stress.

Maize is one of the most important crops in China and 
summer maize is a major food crop in North Plain China. 
This region is dominated by two main climatic proper-
ties, which are frequent drought and uneven distribu-
tion of inter-annual rainfall during the growing season 

[40]. Studies on the effects of drought on summer maize 
have been a subject of scientific interest in recent years 
[15]. However, thorough understanding of sensitive water 
indicators of summer maize in response to water stress 
and monitoring of maize water stress using hyperspec-
tral remote sensing is still lacking. Although a number 
of studies have been conducted to construct empirical 
models using spectral vegetation indices (VIs), only a 
few study, e.g. Cao et al. [23], exploited a comprehensive 
dataset including not only extreme drought values but 
also extreme moist values from laboratory experiments.

Therefore, in this study, we collected canopy spectral 
reflectance from field spectrometry and its correspond-
ing biological and environmental observation datasets 
based on water stress experiments of summer maize from 
2013 to 2015. Then, we compared the responses of CWC, 
EWT, and LFMC to water stress and their estimations 
using spectral VIs. The objectives were to: (i) explore the 
differences of CWC, EWT, and LFMC in response to 
water stress treatments and their seasonal variations, (ii) 
clarify the effects of water stress treatments on canopy 
spectral VIs, and (iii) compare the predictions of CWC, 
EWT, and LFMC using spectral VIs. This study will pro-
vide important information for large-area, non-destruc-
tive, real-time monitoring and assessment of vegetation 
growth, crop drought, and crop production using optical 
remote sensing techniques.

Methods
Study area
This study was conducted at the Gucheng Ecological 
and Agricultural Research Station (39°08′N, 115°40′E, 
15.2  m  a.s.l.), Chinese Academy of Meteorological Sci-
ences, in Dingxing county, Hebei province, China. This 
region belongs to a warm temperate continental mon-
soon climate zone with a mean annual air temperature 
and precipitation of 11.7 °C and 551.5 mm, respectively. 
The selected crop type was maize hybrid Zheng Dan 
958, sown in late June and harvested in early October. A 
large water controlled experimental field was employed 
in which 2 × 4 experimental plots with natural field soil 
were used to plant maize. The rain-out shelters were 
movable, and the experimental plots except for control 
plots were sheltered when it rained. Thus, the rainfall was 
excluded by large electric rain-out shelters so that the 
water supply could be artificially controlled by standard 
irrigation [15].

Experimental design and treatments
Responses of summer maize to water stress treat-
ments were continuously monitored from 2013 to 2015 
(Table 1). The study consisted of seven water treatments 
from 1 to 7 with different water irrigation regimes (120, 
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100, 80, 60, 40, 25, and 15  mm) and the corresponding 
rainfed control plots with no irrigation and a rainfed 
field control in 2013. Seven water treatments from 1 to 
7 with water irrigation regimes (225, 150, 120, 90, 60, 30, 
and 10 mm) and the corresponding rainfed control plots 
with no irrigation were designed in 2014. In 2013, irriga-
tion treatment was completed on 24 July at the seven-leaf 
stage of maize, while irrigation treatment was finished at 
the seedling stage in 2014. Additionally, only treatments 
1 and 2 in 2013 were re-wetted with water amounts of 
80 mm and 40 mm on 26 August at the flowering stage. In 
2015, five water treatments from 1 to 5 were conducted 
with each treatment simulating different water stress gra-
dients including one adequate water supply treatment 
1, two continuous water stress treatments (slightly con-
tinuous water stress treatment 2 and moderately con-
tinuous water stress treatment 3); and two stable water 
stress treatments (slightly stable water stress treatment 
4 and seriously stable water stress treatment 5) (Table 1). 
Except for four replicates for treatment 1 in 2015, three 
replicates were performed during the experiments with 
each plot being one replicate from 2013 to 2015.

Field measurements
A total of 26 sets of field reflectance spectra measure-
ments were conducted on a nearly weekly basis between 
July to October as follows: 23 and 29 July, 8, 18, and 25 
August, 5 and 20 September, 8 October in 2013; 10 and 
18 July, 1, 7, and 19 August, 3, 16, and 27 September in 

2014; 7 and 25 July, 4, 15, and 27 August, 2, 7, 15, and 24 
September, and 9 October in 2015. An ASD FieldSpec3 
spectroradiometer (Analytical Spectral Devices, Boul-
der, CO, USA) was used to measure spectral reflectance. 
The wavelength range was 350–2500  nm with a sam-
pling interval of 1.4 nm below 1000 nm and 2 nm above 
1000  nm. The spectral resolution was 3  nm and 10  nm 
in the 350–1000 nm and 1000–2500 nm ranges, respec-
tively. Spectral measurements were made on days with 
clear skies between 11 h and 14 h. The fiber optics, with a 
field of view of 25°, were handheld approximately 1–1.3 m 
above the undisturbed maize canopy at the nadir position 
at each treatment plots and field control for every obser-
vation. In addition, 20 spectral readings were taken for 
each spectral measurement above the maize canopy per 
experimental plot. The mean value of spectral reflectance 
averaged over these 20 spectral measurements was used 
as the spectral reflectance of each experimental plot. 
During spectral measurements, a standard white spec-
tralon target assuming reflectance fixed at 0.99 was used 
as a reference against the target objects. Thus, the reflec-
tance values became dimensionless.

Fresh weight and dry weight for leaves, stems, and fruits 
for one standard maize plant per experimental plot as well 
as 3 to 4 standard plants for the field control were meas-
ured. The area-coefficient method was used to measure 
leaf area index (LAI) [14]. The same standard plant was 
used for biomass measurements. After the spectral meas-
urements, gravimetric soil moisture (θm, %) was measured 

Table 1  Experimental design and irrigation amounts (mm) in 2013–2015

“–” shows no experimental design or no treatment, “+” indicates rewetting irrigation and RSWC means relative soil water content

Year 2013 2014 2015

Control plots 0 (natural rainfall)
× 3 replicates

0 (natural rainfall)
× 3 replicates

–

Treatment 1 120 + 80
× 3 replicates

225
× 3 replicates

Adequate water supply (RSWC: 75% ± 5%)
× 4 replicates

Treatment 2 100 + 40
× 3 replicates

150
× 3 replicates

Slightly continuous water stress 
(RSWC: 75% ± 5% before the jointing 
stage + 16 mm)

× 3 replicates

Treatment 3 80
× 3 replicates

120
× 3 replicates

Moderately continuous water stress (RSWC: 
75% ± 5% before the jointing stage + 0 mm)

× 3 replicates

Treatment 4 60
× 3 replicates

90
× 3 replicates

Slightly stable water stress (RSWC: 55% ± 5%)
× 3 replicates

Treatment 5 40
× 3 replicates

60
× 3 replicates

Seriously stable water stress (RSWC: 35% ± 5%)
× 3 replicates

Treatment 6 25
× 3 replicates

30
× 3 replicates

–

Treatment 7 15
× 3 replicates

10
× 3 replicates

–

Field control 0 (natural rainfall)
× 4 replicates

– –
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by oven-drying soil samples in 2013 and 2014 while the 
volumetric soil moisture (θv) for every 10 cm soil layer and 
0–100  cm soil profiles were measured using the Diviner 
2000 (Sentek Pty. Ltd., South Australia) in 2015. In 2013 
and 2014, RSWC (%) was the ratio of θm and field capac-
ity (Fc): RSWC = (θm/Fc) × 100%. In 2015, RSWC = [θv/
(Fc·BD)] × 100%, where BD is bulk density. Observation 
dates of biomass, LAI, and soil water content were the 
same as the spectral reflectance measurements.

Water content indicators
Crop water indicators are calculated by leaf fresh weight 
(FW, g m−2), dry weight (DW, g m−2), and leaf area index 
(LAI) datasets. In 2013, 72 observations were conducted, 
64 observations in 2014, 50 observations in 2015, and 186 
datasets in total.

Canopy water content (CWC, g  m−2), defined as the 
quantity of water per unit area of ground surface [26], is 
obtained by measuring product of the quantity of water per 
unit leaf area in g cm−2 and LAI [25], or calculated by the 
difference of FW and DW. In this study, CWC is the quan-
tity of leaf water content in maize per unit area of ground 
surface calculated by Eq. (1) [27, 28].

Leaf equivalent water thickness (EWT, g  cm−2) at the 
leaf level usually equals the leaf water content per unit leaf 
area [25]. Here, at the canopy level, EWT is defined as the 
ratio between the quantity of water and the area, otherwise 
known as crop water content per unit leaf area (Eq.  (2)) 
[25].

Live fuel moisture content (LFMC, %) is the ratio of 
water mass to dry mass contained in live plant material. 

(1)CWC = FW−DW

(2)EWT = (FW−DW)/LAI

LFMC is determined by leaf moisture status, and closely 
correlated with seasonal changes of dry mass, which rep-
resents the quantity of available fuel [30, 36]. LFMC is 
calculated by Eq. (3) [41]:

where, dry matter content (DMC, g cm−2) = DW/LAI.

Spectral vegetation indices
In this study, we utilized four spectral vegetation indi-
ces (VIs), which are indirectly related with canopy water, 
NDVI, NRred edge, CIgreen, and CIred edge, and six water-
sensitive spectral VIs including WI, MSI, SRWI, NDWI, 
NDWI1640, and NDWI2130 (Table  2). The goal of this 
study was to examine the spectral VIs’ potentials for esti-
mating CWC, EWT, and LFMC.

Data analysis
We used one-way ANOVA to analyze differences 
between crop water indicators, CWC, EWT, LFMC, and 
ten spectral VIs, NDVI, NRred edge, CIgreen, CIred edge, WI, 
MSI, SRWI, NDWI, NDWI1640, and NDWI2130, among 
treatment plots and control plots and field control. The 
relationships between ten spectral VIs and CWC, EWT, 
LFMC were also analyzed, respectively. All statistical 
analyses were performed with SPSS 17.0 software (SPSS, 
Chicago, IL, USA), and SigmaPlot 10.0 software (Systat, 
San Jose, CA, USA) was used to draw the figures.

Results
Responses of CWC, EWT, and LFMC to water stress
Taking the data from the experiment in 2013 as an exam-
ple, CWC, EWT, LFMC, and RSWC in response to dif-
ferent water treatments and their seasonal variation 

(3)
LFMC = [(FW−DW)/DW]× 100 = EWT/DMC× 100

Table 2  Vegetation indices (VIs) used in the study and related source references

Rnir and Rred are the averaged reflectance among the waveband range to match MODIS data in the near-infrared (841–876 nm) and red (620–670 nm) wavelengths, 
respectively

Index Formula References

Indirect water-sensitive spectral VIs

 Normalized difference vegetation index (NDVI) (Rnir − Rred)/(Rnir+ Rred) [42]

 Red edge normalized ratio (NRred edge) (R750 − R710)/(R750 + R710) [43]

 Green chlorophyll index (CIgreen) (R750/R550) − 1 [44]

 Red edge chlorophyll index (CIred edge) (R750/R710) − 1 [44]

Direct water-sensitive spetral VIs

 Water index (WI) R900/R970 [45]

 Moisture stress index (MSI) R1600/R820 [46]

 Simple ratio water index (SRWI) R860/R1240 [47]

 Normalized difference water index (NDWI) (R860 − R1240)/(R860 + R1240) [48]

 Normalized difference water index centered at 1640 nm (NDWI1640) (R858 − R1640)/(R858 + R1640) [49]

 Normalized difference water index centered at 2130 nm (NDWI2130) (R858 − R2130)/(R858 + R2130) [49]
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characteristics are shown in Fig. 1. The RSWC began to 
show clear changes from day 5 (29 July) after water irriga-
tion controlling. Except for differences (p < 0.05) between 
field control and control plots as well as treatments 1 
and 2 in the late periods in RSWC, differences (p < 0.05) 
among water treatments would gradually diminish with 
crop growth and development processes progressing, and 
ultimately approach (Fig.  1a). On 26 August, rewetting 
treatments with 40 and 80 mm made only for treatments 
1 and 2 induced a slight increase of RSWC. Overall, dif-
ferences (p < 0.05) in RSWC under different water treat-
ments were the easiest to observe.

Among three crop water indicators, variations in 
CWC influenced by RSWC were the most prominent. 
CWC greatly differed among various irrigation levels 
and showed an obvious single-peak seasonal trend with 
a higher coefficient of variation (CV) value of 0.58. A 
maximum CWC value of 761.41  g  m−2 was recorded 

on 8 August in well-watered plots while the peak val-
ues of CWC in drought-treated plots occurred later 
and a maximum lagging time might be about 1 month 
(Fig. 1b). EWT remained at a relatively stable level over 
the growth season with a lower CV value of 0.13 and a 
minimum peak value of 0.026 g cm−2, which occurred 
consistently with CWC (Fig.  1c). Differences (p < 0.05) 
in EWT between treatments and controls were not 
notable except for differences (p < 0.05) between field 
control and all other experimental plots at the initial 
stage of water controlling, which were no longer clear. 
Although there existed some fluctuations, EWT was 
still relatively consistent. Thus, EWT was not a valid 
indicator of maize water stress. Finally, LFMC showed a 
clearly decreasing trend over the whole season with an 
abrupt drop in mid-August and, after that, a weak peak 
value occurring around 5 September (Fig.  1d). LFMC 
had no remarkable treatment differences, which meant 

Fig. 1  Variations in a relative soil water content (RSWC, %), b canopy water content (CWC, g m−2), c leaf equivalent water thickness (EWT, g cm−2), 
and d live fuel moisture content (LFMC, g cm−2) under different water treatments during the growing season of 2013 for maize agroecosystem. 
Treatments 1–7 indicate seven different irrigation amounts, 120 + 80, 100 + 40, 80, 60, 40, 25, and 15 mm as well as a rainfed control plots with no 
irrigation (Control) and a rainfed field control (Field)
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that water treatments had no effects on LFMC varia-
tion. Similarly, this made it difficult to monitor maize 
water stress.

Responses of spectral VIs to water stress
Taking the observation datasets in 2013 as an exam-
ple, Fig. 2 illustrates the effects of different water treat-
ments on four indirect spectral VIs (NDVI, NRred edge, 
CIgreen, and CIred edge) and six direct water-sensitive 
spectral VIs (WI, MSI, RSWI, NDWI, NDWI1640, and 
NDWI2130), respectively. Except for MSI, other nine 
VIs to different degrees exhibited a single-peak sea-
sonal trend (Fig.  2). If water conditions were drier, 
these nine VIs values would be relatively lower while 
MSI was higher, and the magnitudes of VIs increas-
ing (or decreasing) during the whole season would be 
lower as well as the single peak seasonal trend would be 
weakened. Compared to crop water indicators (CWC, 
EWT, and LFMC), differences of VIs in response to dif-
ferent water treatments were more sensitive, especially 
NRred edge, CIgreen, and CIred edge as well as NDWI1640 and 
NDWI2130. During the crop vegetative and reproductive 
stages, differences (p < 0.05) in crop growth recognized 
by NRred edge, CIgreen, and CIred edge were stronger than 
NDWI1640 and NDWI2130.

During the initial stage of irrigation control, although 
the differences between water treatment plots were 
slight, ten VIs could recognize them between field con-
trol with control plots and treatment plots. With crop 
growth processes progressing, the differences were 
gradually amplified. During the peak growing season, 
such as on 8 August or 18 August, the effects of differ-
ent water treatments on VIs were the most prominent. 
When crop entered into the reproductive stage, differ-
ences among every gradient plots recognized by VIs 
decreased. At the beginning of October (i.e., during the 
end of growing period), most VIs continued to decrease 
and there were no significant differences (p < 0.05) 
among control and treatment plots except for field 
control, or differences were no longer related to the 
irrigation treatments. Overall, among the ten spectral 
VI including six water-sensitive VIs (WI, MSI, RSWI, 

NDWI, NDWI1640, and NDWI2130), indirect spectral 
VIs (NRred edge, CIgreen, and CIred edge) were still the most 
sensitive to different water treatments.

Estimations of crop water indicators by spectral VIs
Ten VIs including indirect spectral VIs (NDVI, NRred 

edge, CIgreen, and CIred edge) and direct water-sensitive 
spectral VIs (WI, MSI, SRWI, NDWI, NDWI1640, and 
NDWI2130) were used to estimate crop water indica-
tors, LFMC, EWT, and CWC, separately (Figs.  3 and 
4). Results showed that CIgreen, NRred edge, and CIred edge 
in four indirect VIs showed better correlated relation-
ships with CWC (R2 = 0.745–0.791, p < 0.001) and EWT 
(R2 = 0.218–0.246, p < 0.001) than NDVI (Fig.  3); While 
among six direct water-sensitive spectral VIs, NDWI1640 
and NDWI2130 presented the highest sensitivity to CWC 
(R2 = 0.727–0.732, p < 0.001) and EWT (R2 = 0.140–0.161, 
p < 0.001) (Fig.  4). Overall, indirect spectral VIs, CIgreen, 
NRred edge, and CIred edge, which are closely related with 
crop growth, presented better prediction of crop water 
content than other six water-sensitive spectral VIs. 
Results also showed that LFMC obtained the poorest 
estimation and EWT was moderately estimated, while 
CWC had the best predictive power of water status 
(Figs. 3 and 4). So, compared to EWT and LFMC, CWC 
is the most ideal crop water indicator for monitoring 
crop water stress using field spectroscopy techniques.

Discussion
Responses of different crop growth stages to water 
variation
At different stages of crop growth and development, 
crop water demand is different [10, 50]. Moreover, the 
relationships between spectral water indices and plant 
water traitors were greatly affected by water stress, 
plant species, growing conditions and phenological 
stages [23, 51]. During crop growth and development 
processes, self-regulatory mechanisms exist for the 
crop itself [10, 52]. As such, more sensitivities of crop 
to water stress are reflected on crop growth and devel-
opment rather than only on crop leaf structure or water 
status [15]. Many aspects of plant physiological pro-
cesses are directly associated with plant tissue water 
instead of soil water supply capacity, and RSWC is 

(See figure on next page.)
Fig. 2  Variations in four indirect spectral vegetation indices, normalized difference vegetation index (NDVI), red edge normalized ratio (NRred 

edge), green chlorophyll index (CIgreen), red edge chlorophyll index (CIred edge), and six water-sensitive spectral vegetation indices, water index (WI), 
moisture stress index (MSI), simple ratio water index (SRWI), normalized difference water index (NDWI), normalized difference water index centered 
at 1640 nm (NDWI1640), and normalized difference water index centered at 2130 nm (NDWI2130) under different water treatments during the 
growing season of 2013 for maize agroecosystem. Treatments 1–7 indicate seven different irrigation amounts, 120 + 80, 100 + 40, 80, 60, 40, 25, and 
15 mm as well as a rainfed control plots with no irrigation (Control) and a rainfed field control (Field)
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Fig. 3  Correlation analysis of hyperspectral vegetation indices, normalized difference vegetation index (NDVI), red edge normalized ratio (NRred 

edge), green chlorophyll index (CIgreen), and red edge chlorophyll index (CIred edge) vs. canopy water content (CWC, g m−2), leaf equivalent water 
thickness (EWT, g cm−2), and live fuel moisture content (LFMC, g cm−2) for maize during the growing seasons from 2013 to 2015

(See figure on next page.)
Fig. 4  Correlation analysis of spectral vegetation indices, water index (WI), moisture stress index (MSI), simple ratio water index (SRWI), normalized 
difference water index (NDWI), normalized difference water index centered at 1640 nm (NDWI1640), and normalized difference water index centered 
at 2130 nm (NDWI2130) vs. canopy water content (CWC, g m−2), leaf equivalent water thickness (EWT, g cm−2), and live fuel moisture content (LFMC, 
g cm−2) for maize during the growing seasons from 2013 to 2015
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evidently an indirect variable for crop growth [24, 53]. 
In this study, different water stress treatments resulted 
in different crop growth and development. These dif-
ferences not only included differences in leaf water 
information, but also implied variance in leaf structural 
properties (e.g., LAI).

Responses of spectral VIs to water variation
Visible signs of the plants responding to water stress are 
commonly curling, shrinking, and de-coloring of leaves 
as well as opening up of plant canopy and more [34]. For 
short-time water stress, plants may use photo-protection 
strategies to prevent damage, i.e. photosynthesis pro-
cesses to decrease while heat emission and chlorophyll 
fluorescence processes increase [54]. And then, longer-
time water stress will cause damages to chlorophyll 
pigments and changes for the leaf absorbance and reflec-
tance [34]. Studies show that VIs are generally prone to 
reflect vegetation growth status, which commonly some-
what cancel spectral water information [15]. Actually, 
studies also demonstrate that there are some water-sen-
sitive VIs which are only sensitive to water information 
but not vegetation growth status [11]. In this study, ten 
spectral VIs including four indirect water-sensitive spec-
tral VIs, which are closely related with crop growth, 
and six direct water-sensitive spectral VIs, were utilized 
to estimate LFMC, EWT, and CWC, respectively. We 
found that indirect water-sensitive spectral VIs (CIgreen, 
NRred edge, and CIred edge) showed better sensitivity to crop 
water indicators than any other water-sensitive spectral 
VIs. This study demonstrates that CWC considering 
crop growth and development information has the best 
predictive power of crop water status. Furthermore, this 
study illustrates that it will be very limited for accurately 
monitoring crop water status unless crop water indica-
tors not only include water information but also contain 
biomass or LAI knowledge.

Relationships of crop water indicators
CWC, EWT, LFMC, and RWC are different variables 
for describing vegetation water status [25, 27, 28, 32, 
33, 35, 41]. LFMC is considered to an optimum indica-
tor for detecting vegetation water information especially 
for fire danger assessment [33]. Nevertheless, it is diffi-
cult to directly estimate LFMC using optical remote sens-
ing [4]. RWC could sufficiently reflect crop water stress, 
but it is also difficult to obtain leaf spectral information 
at turgor. Thereby, RWC could not be estimated directly 
utilizing optical remote sensing techniques. Many stud-
ies have been performed based on multi-species, multi-
functional types, multi-regional or leaf dehydration 
experiments to remotely estimate EWT [23, 52, 55–57]. 
However, few studies have been conducted based on a 

single species with a wide range of plant water content 
spanning well-watered to water-stressed conditions. In 
this study, a wide range of water content with the EWT 
value of 0.014 g cm−2–0.026 g cm−2 in 2013 and the low-
est value reaching 0.008  g  cm−2 after 3  years of data-
sets (2013–1015) were considered, which has not been 
reported before. This study includes not only extreme 
drought values under water-stressed conditions, but also 
extreme moist values under well-watered conditions.

Moreover, LFMC is relatively stable for a single species. 
As such, it is not suitable for detecting water stress status 
for the same species. Similarly, less EWT variation was 
observed and EWT also stayed relatively stable over the 
whole season in this study. To maintain a level compat-
ible with its basic functions, leaf water content per unit 
leaf area actually does not vary much due to moderate 
water stress, at the same time, leaf structure and dry mass 
also affects remote estimation of leaf water content [52]. 
Although both LFMC and EWT could sufficiently reflect 
crop water content when photosynthesis occurs under 
the condition of water stress, they are stress-adapted 
state variables responding to water stress and could not 
accurately describe the accumulated effects of water 
stress.

However, greatly differing from EWT and LFMC, 
CWC not only includes canopy water content informa-
tion, but also is closely correlated with LAI, which means 
that CWC itself not only contains crop growth and 
development information reflecting crop water content, 
but also maintains accumulation effects of water stress 
[15]. Furthermore, CWC to some degrees could reflect 
an instantaneous status of crop water at a particular 
moment. Studies showed that LAI is essential for assess-
ing vegetation water status [33]. In addition, de Jong et al. 
[34] also found that LAI could be important for esti-
mating leaf water content using hyperspectral remote 
sensing. Therefore, for the same kind of crop, CWC is 
an important water content parameter at canopy scale 
obtained by upscaling leaf water content via LAI, which 
can effectively present crop growth and water condition. 
This study confirms that CWC is an optimal indicator of 
crop water stress status and remote monitoring.

Conclusions
In the present study, we compared the responses of 
CWC, EWT, and LFMC to water stress treatments 
and their estimations using ten spectral VIs based on 
canopy reflectance and its corresponding biological and 
environmental observation datasets in summer maize 
for 2013–2015 consecutively 3  years. The following 
conclusions can be drawn: (i) Compared to EWT and 
LFMC, CWC is more sensitive to different water treat-
ments, and is a valid indicator of crop water stress. (ii) 
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Indirect water-sensitive spectral VIs, CIgreen, NRred edge, 
and CIred edge were the best predictive VIs for CWC. (iii) 
CWC considering crop growth and development infor-
mation had the best predictive power of crop water 
status using hyperspectral VIs. (iv) CWC is a compre-
hensive indicator reflecting the health and vigor of crop 
growth, thus, CWC is the most promising for indicat-
ing crop water content and monitoring crop water 
stress using field spectroscopy techniques. In future 
study, consideration of the inherent mechanism of crop 
water stress as well as crop morphological and struc-
tural properties, coupled with hyperspectral methods, 
will be used to monitor crop water status. In addition, 
this study was conducted only based on a single site 
and crop and consecutively limited 3  years of data-
sets, thus, studies on multi-species, larger regions, and 
longer periods should be assessed, which is of signifi-
cant importance in determining useful information for 
drought assessment and agriculture decisions regarding 
irrigation in order to reduce the effects of drought on 
crop growth.

Abbreviations
BD: bulk density; CIgreen: green chlorophyll index; CIred edge: red-edge chlo-
rophyll index; CWC​: canopy water content; DMC: dry matter content; DW: 
dry weight; EWT: leaf equivalent water thickness; Fc: field capacity; FW: fresh 
weight; θm: gravimetric soil moisture; LAI: leaf area index; LFMC: live fuel 
moisture content; MSI: moisture stress index; NDVI: normalized difference veg-
etation index; NDWI: normalized difference water index; NDWI1640: normalized 
difference water index centered at 1640 nm; NDWI2130: normalized difference 
water index centered at 2130 nm; NRred edge: red edge normalized ratio; RSWC: 
relative soil water content; RWC​: relative water content; SRWI: simple ratio 
water index; VIs: vegetation indices; θv: volumetric soil moisture; WI: water 
index.

Authors’ contributions
GZ and FZ conceived and designed the study. FZ performed the experiments 
and analyzed the data. FZ and GZ wrote the manuscript. Both authors read 
and approved the final manuscript.

Author details
1 Chinese Academy of Meteorological Sciences, Beijing 100081, China. 2 State 
Key Laboratory of Vegetation and Environmental Change, Institute of Botany, 
Chinese Academy of Sciences, Beijing 100093, China. 

Acknowledgements
We acknowledge Gucheng Ecological and Agricultural Meteorology Station, 
Chinese Academy of Meteorological Sciences, for providing convenient 
experiment facilities. We thank Prof. Zhenzhu Xu and Prof. Jintun Zhang for 
their helpful comments and Dr. Linna Ma for her fruitful discussion. We also 
thank Huailin Zhou, Xiaoyu Feng, Mingzhen Wang, Yaohui Shi, Xueyan Ma, and 
Qiuling Wang for their help during field work.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets used and analyzed in this study are available from the corre-
sponding author on reasonable request.

Consent to publish
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This research was supported by the National Natural Science Foundation of 
China (31661143028, 41330531) and the China Postdoctoral Science Founda-
tion (2017M620983).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 11 November 2018   Accepted: 16 April 2019

References
	1.	 IPCC. IPCC fourth assessment report: climate change 2007. Cambridge: 

Cambridge University Press; 2007.
	2.	 Yuan W, Zhou G. Theoretical study and research prospect on drought 

indices. Adv Earth Sci. 2004;19(6):982–91.
	3.	 Zhou S, Duursma RA, Medlyn BE, Kelly JWG, Prentice IC. How should 

we model plant responses to drought? An analysis of stomatal 
and non-stomatal responses to water stress. Agric For Meteorol. 
2013;182–183:204–14.

	4.	 Zhang J, Xu Y, Yao F, Wang P, Guo W, Li L, Yang L. Advances in estimation 
methods of vegetation water content based on optical remote sensing 
techniques. Sci China Tech Sci. 2010;53:1159–67.

	5.	 Mutanga O, Skidmore AK, van Wieren S. Discriminating tropical grass 
(Cenchrus ciliaris) canopies grown under different nitrogen treatments 
using spectroradiometry. ISPRS J Photogramm. 2003;57:263–72.

	6.	 Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C, Cho MA. LAI and 
chlorophyll estimation for a heterogeneous grassland using hyperspec-
tral measurements. ISPRS J Photogramm. 2008;63:409–26.

	7.	 Sridhar BBM, Vincent RK, Roberts SJ, Czajkowski K. Remote sensing of 
soybean stress as an indicator of chemical concentration of biosolid 
amended surface soils. Int J Appl Earth Obs. 2011;13:676–81.

	8.	 Viña A, Gitelson AA. New developments in the remote estimation of 
the fraction of absorbed photosynthetically active radiation in crops. 
Geophys Res Lett. 2005. https​://doi.org/10.1029/2005g​l0236​47.

	9.	 Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y. Comparison of different 
vegetation indices for the remote assessment of green leaf area index of 
crops. Remote Sens Environ. 2011;115:3468–78.

	10.	 Zhang L, Zhou Z, Zhang G, Meng Y, Chen B, Wang Y. Monitoring the 
leaf water content and specific leaf weight of cotton (Gossypium 
hirsutum L.) in saline soil using leaf spectral reflectance. Europ J Agron. 
2012;41:103–17.

	11.	 Wang L, Hunt ER Jr, Qu JJ, Hao X, Daughtry CST. Remote sensing of fuel 
moisture content from ratios of narrow-band vegetation water and dry-
matter indices. Remote Sens Environ. 2013;129:103–10.

	12.	 Yi Q, Bao A, Wang Q, Zhao J. Estimation of leaf water content in cotton by 
means of hyperspectral indices. Comput Electron Agr. 2013;90:144–51.

	13.	 Yi Q, Wang F, Bao A, Jiapaer G. Leaf and canopy water content estimation 
in cotton using hyperspectral indices and radiative transfer models. Int J 
Appl Earth Obs. 2014;33:67–75.

	14.	 Zhang F, Zhou G, Christer N. Remote estimation of the fraction of 
absorbed photosynthetically active radiation for a maize canopy in 
Northeast China. J Plant Ecol. 2015;8(4):429–35.

	15.	 Zhang F, Zhou G. Estimation of canopy water content by means of hyper-
spectral indices based on drought stress gradient experiments of maize 
in the North Plain China. Remote Sens. 2015;7:15203–23.

	16.	 Zhang F, Zhou G. Deriving a light use efficiency estimation algorithm 
using in situ hyperspectral and eddy covariance measurements for a 
maize canopy in Northeast China. Ecol Evol. 2017;7:4735–44.

	17.	 Carter GA. Responses of leaf spectral reflectance to plant stress. Am J Bot. 
1993;80:239–43.

	18.	 Peñuelas J, Filella I, Biel C, Serrano L, Save R. The reflectance at the 
950–970 nm region as an indicator of plant water status. Int J Remote 
Sens. 1993;14:1887–905.

https://doi.org/10.1029/2005gl023647


Page 12 of 12Zhang and Zhou ﻿BMC Ecol           (2019) 19:18 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	19.	 Peñuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. Reflectance indices 
associated with physiological changes in nitrogen and water limited 
sunflower leaves. Remote Sens Environ. 1994;48:135–46.

	20.	 Stimson HC, Breshears DD, Ustin SL, Kefauver SC. Spectral sensing of foliar 
water conditions in two co-occurring conifer species: Pinus edulis and 
Juniperus monosperma. Remote Sens Environ. 2005;96:108–18.

	21.	 Cohen WB. Temporal versus spatial variation in leaf reflectance under 
changing water stress conditions. Int J Remote Sens. 1991;12(9):1856–76.

	22.	 Mirzaie M, Darvishzadeh R, Shakiba A, Matkan AA, Atzberger C, Skidmore 
A. Comparative analysis of different uni- and multi-variate methods for 
estimation of vegetation water content using hyper-spectral measure-
ments. Int J Appl Earth Obs. 2014;26:1–11.

	23.	 Cao Z, Wang Q, Zheng C. Best hyperspectral indices for tracing leaf water 
status as determined from leaf dehydration experiments. Ecol Indic. 
2015;54:96–107.

	24.	 Dzikiti S, Verreynne JS, Stuckens J, Strever A, Verstraeten WW, Swennen R, 
Coppin P. Determining the water status of Satsuma mandarin trees [Citrus 
Unshiu Marcovitch] using spectral indices and by combining hyperspec-
tral and physiological data. Agric For Meteorol. 2010;150(3):369–79.

	25.	 Danson FM, Steven MD, Malthus TJ, Clark JA. High-spectral resolu-
tion data for determining leaf water content. Int J Remote Sens. 
1992;13:461–70.

	26.	 Ceccato P, Gobron N, Flasse S, Pinty B, Tarantola S. Designing a spectral 
index to estimate vegetation water content from remote sensing data: 
part 1—theoretical approach. Remote Sens Environ. 2002;82:188–97.

	27.	 Clevers JGPW, Kooistra L, Schaepman ME. Using spectral information 
from the NIR water absorption features for the retrieval of canopy water 
content. Int J Appl Earth Obs. 2008;10:388–97.

	28.	 Clevers JGPW, Kooistra L, Schaepman ME. Estimating canopy water 
content using hyperspectral remote sensing data. Int J Appl Earth Obs. 
2010;12:119–25.

	29.	 Jacquemoud S, Ustin S, Verdebout J, Schmuck G, Andreoli G, Hosgood B. 
Estimating leaf biochemistry using the PROSPECT leaf optical properties 
model. Remote Sens Environ. 1996;56:194–202.

	30.	 Burgan RE. Use of remotely sensed data for fire danger estimation. EAR-
SeL Adv Remote Sens. 1996;4(4):1–8.

	31.	 Hunt ER Jr, Rock BN, Nobel PS. Measurement of leaf relative water content 
by infrared reflectance. Remote Sens Environ. 1987;22:429–35.

	32.	 Inoue Y, Morinaga S, Shibayama M. Non-destructive estimation of water 
status of intact crop leaves based on spectral reflectance measurements. 
Jpn J Crop Sci. 1993;62(3):462–9.

	33.	 Maki M, Ishiahra M, Tamura M. Estimation of leaf water status to monitor 
the risk of forest fires by using remotely sensed data. Remote Sens Envi-
ron. 2004;90:441–50.

	34.	 de Jong SM, Addink EA, Hoogenboom P, Nijland W. The spectral response 
of Buxus sempervirens to different types of environmental stress—a labo-
ratory experiment. ISPRS J Photogramm Remote Sens. 2012;74:56–65.

	35.	 Yebra M, Dennison PE, Chuvieco E, Riaño D, Zylstra P, Hunt ER Jr, Danson 
FM, Qi Y, Jurdao S. A global review of remote sensing of live fuel moisture 
content for fire danger assessment: moving towards operational prod-
ucts. Remote Sens Environ. 2013;136:455–68.

	36.	 Qi Y, Dennison P, Jolly W, Kropp R, Brewer S. Spectroscopic analysis of 
seasonal changes in live fuel moisture content and leaf dry mass. Remote 
Sens Environ. 2014;150:198–206.

	37.	 Running SW, Gower ST. Forest-BGC, a general model of forest ecosystem 
processes for regional applications II. Dynamic carbon allocation and 
nitrogen budgets. Tree Physiol. 1991;9:147–60.

	38.	 Running SW, Nemani RR. Regional hydrologic and carbon balance 
responses of forests resulting from potential climate change. Clim 
Change. 1991;19:349–68.

	39.	 de Jong SM, Addink EA, Doelman JC. Detecting leaf-water content in 
Mediterranean trees using high-resolution spectrometry. Int J Appl Earth 
Obs. 2014;27:128–36.

	40.	 Liu G, Guo A, Ren S, An S, Zhao H. Compensatory effects of re-watering 
on summer maize threatened by water stress at seedling period. Chin J 
Ecol. 2004;23(3):24–9.

	41.	 Bowyer P, Danson FM. Sensitivity of spectral reflectance to variation in 
live fuel moisture content at leaf and canopy level. Remote Sens Environ. 
2004;92:297–308.

	42.	 Rouse JW, Haas Jr RH, Schell JA, Deering DW. Monitoring the Vernal 
Advancement and Retrogradation (Green Wave Effect) of Natural Vegeta-
tion; Progress Report RSC 1978-1; Remote Sensing Center, Texas A&M 
University: College Station, TX, USA, 1973.

	43.	 Gitelson AA, Merzlyak MN. Signature analysis of leaf reflectance 
spectra: algorithm development for remote sensing. J Plant Physiol. 
1996;148:493–500.

	44.	 Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ. Remote esti-
mation of canopy chlorophyll content in crops. Geophys Res Lett. 2005. 
https​://doi.org/10.1029/2005g​l0226​88.

	45.	 Peñuelas J, Pinol J, Ogaya R, Filella I. Estimation of plant water concentra-
tion by the reflectance Water Indices WI (R900/R970). Int J Remote Sens. 
1997;18:2869–75.

	46.	 Hunt ER Jr, Rock BN. Detection of changes in leaf water content 
using near- and middle-infrared reflectances. Remote Sens Environ. 
1989;30:43–54.

	47.	 Zarco-Tejada PJ, Ustin SL. Modeling canopy water content for carbon 
estimates from MODIS data at land EOS validation sites. In: International 
geoscience and remote sensing symposium, 2001. IGARSS’01, vol. 1; 
2001. p. 342–4.

	48.	 Gao BC. NDWI—A normalized difference water index for remote 
sensing of vegetation liquid water from space. Remote Sens Environ. 
1996;58:257–66.

	49.	 Chen D, Huang J, Jackson TJ. Vegetation water content estimation for 
corn and soybeans using spectral indices derived from MODIS near- and 
short-wave infrared bands. Remote Sens Environ. 2005;98:225–36.

	50.	 Chattaraj S, Chakraborty D, Garg RN, Singh GP, Gupta VK, Singh S, Singh 
R. Hyperspectral remote sensing for growth-stage-specific water use in 
wheat. Field Crop Res. 2013;144:179–91.

	51.	 Wang Q, Li P. Identification of robust hyperspectral indices on forest leaf 
water content using PROSPECT simulated dataset and field reflectance 
measurements. Hydrol Process. 2012;26:1230–41.

	52.	 Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire J. Detecting 
vegetation leaf water content using reflectance in the optical domain. 
Remote Sens Environ. 2001;77:22–33.

	53.	 Jones HG. Irrigation scheduling: advantages and pitfalls of plant-based 
methods. J Exp Bot. 2004;55:2427–36.

	54.	 Lichtenthaler HK. Vegetation stress: an introduction to the stress concept 
in plants. J Plant Physiol. 1996;148(5):4–14.

	55.	 Sims DA, Gamon JA. Estimation of vegetation water content and photo-
synthetic tissue area from spectral reflectance: a comparison of indices 
based on liquid water and chlorophyll absorption features. Remote Sens 
Environ. 2003;84:526–37.

	56.	 Colombo R, Meroni M, Marchesi A, Busetto L, Rossini M, Giardino C, 
Panigada C. Estimation of leaf and canopy water content in poplar plan-
tations by means of hyperspectral indices and inverse modeling. Remote 
Sens Environ. 2008;112:1820–34.

	57.	 Foley S, Rivard B, Sanchez-Azofeifa GA, Calvo J. Foliar spectral properties 
following leaf clipping and implications for handling techniques. Remote 
Sens Environ. 2006;103:265–75.

https://doi.org/10.1029/2005gl022688

	Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Study area
	Experimental design and treatments
	Field measurements
	Water content indicators
	Spectral vegetation indices
	Data analysis

	Results
	Responses of CWC, EWT, and LFMC to water stress
	Responses of spectral VIs to water stress
	Estimations of crop water indicators by spectral VIs

	Discussion
	Responses of different crop growth stages to water variation
	Responses of spectral VIs to water variation
	Relationships of crop water indicators

	Conclusions
	Authors’ contributions
	References




