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Abstract
Objective  To develop and evaluate a deep learning model based on chest CT that achieves favorable performance 
on opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images, and 
explore the feasibility and effectiveness of the model based on the lumbar 1 vertebral body alone.

Materials and methods  The chest CT images of 1048 health check subjects from January 2021 to June were 
retrospectively collected as the internal dataset (the segmentation model: 548 for training, 100 for tuning and 400 for 
test. The classification model: 530 for training, 100 for validation and 418 for test set). The subjects were divided into 
three categories according to the quantitative CT measurements, namely, normal, osteopenia and osteoporosis. First, 
a deep learning-based segmentation model was constructed, and the dice similarity coefficient(DSC) was used to 
compare the consistency between the model and manual labelling. Then, two classification models were established, 
namely, (i) model 1 (fusion feature construction of lumbar vertebral bodies 1 and 2) and (ii) model 2 (feature 
construction of lumbar 1 alone). Receiver operating characteristic curves were used to evaluate the diagnostic 
efficacy of the models, and the Delong test was used to compare the areas under the curve.

Results  When the number of images in the training set was 300, the DSC value was 0.951 ± 0.030 in the test set. The 
results showed that the model 1 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.990, 0.952 
and 0.980; the model 2 diagnosing normal, osteopenia and osteoporosis achieved an AUC of 0.983, 0.940 and 0.978. 
The Delong test showed that there was no significant difference in area under the curve (AUC) values between the 
osteopenia group and osteoporosis group (P = 0.210, 0.546), while the AUC value of normal model 2 was higher than 
that of model 1 (0.990 vs. 0.983, P = 0.033).

Conclusion  This study proposed a chest CT deep learning model that achieves favorable performance on 
opportunistic osteoporosis screening using the lumbar 1 + lumbar 2 vertebral bodies fusion feature images. We 
further constructed the comparable model based on the lumbar 1 vertebra alone which can shorten the scan length, 
reduce the radiation dose received by patients, and reduce the training cost of technologists.

Keywords  Osteoporosis, Quantitative CT, Deep learning, Bone mineral density, Chest CT

Effectiveness of opportunistic osteoporosis 
screening on chest CT using the DCNN model
Jing Pan1, Peng-cheng Lin2, Shen-chu Gong3, Ze Wang3, Rui Cao3, Yuan Lv3, Kun Zhang2* and Lin Wang3*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12891-024-07297-1&domain=pdf&date_stamp=2024-2-26


Page 2 of 13Pan et al. BMC Musculoskeletal Disorders          (2024) 25:176 

Introduction
Osteoporosis is a metabolic bone disease characterized 
by systemic or local bone loss and an increased risk of 
fracture [1]. Given the ageing of the large global popula-
tion, it is considered a major illness. Osteoporosis is esti-
mated to affect 13.5% of men and 29.0% of women aged 
50 and over in China [2]. Worldwide, 19.7% of men and 
40.4% of women aged 50 and over suffer from osteopo-
rosis and osteopenia, respectively [3]. Early diagnosis and 
treatment of osteoporosis can effectively slow the devel-
opment of bone resorption and reduce the risk of fragility 
fracture and the incidence of osteoporosis-related com-
plications, alleviating the degree of social burden [4]. The 
SCOOP(Screening for prevention of fractures in older 
women) study of fragility fracture prevention screen-
ing in older women in the UK confirmed a significant 
33% reduction in hip fracture incidence in the interven-
tion group compared with the control group [5]. There-
fore, early screening and monitoring are essential for the 
timely prevention and treatment of osteoporosis [1].

For the diagnosis and screening of osteoporosis, the 
measurement of vertebral bone mineral density(BMD) 
is an important indicator recommended by the World 
Health Organization [6].Currently, Dual-energy X-ray 
absorptiometry (DXA) is often used as a reference stan-
dard for bone mineral density classification to diagnose 
osteoporosis. But DXA is a two-dimensional imaging 
technology [7] that is susceptible to scoliosis, facet joint 
degeneration, soft tissue calcification, especially abdom-
inal aortic calcification and other factors, reducing 
the accuracy of bone mineral density measurement. 
Quantitative computed tomography(QCT) is a three-
dimensional imaging technology that can quantitatively 
evaluate vertebral cancellous bone mineral density, which 
is more sensitive to osteoporosis, and the measurement 
results are more stable than DXA [8, 9]. However, early 
screening of osteoporosis is difficult. Miller PD [10] 
investigated that nearly a quarter of women with high 
risk factors for osteoporosis have never undergone BMD 
measurements due to insufficient understanding of fra-
gility fractures, the need for auxiliary hardware equip-
ment to measure BMD, and additional manual operation 
costs.

In addition to bone mineral density, the geometric fea-
tures, bone microstructure and density structure changes 
can also reflect the degree of osteoporosis to a certain 
extent [11, 12], which manifests as changes in local image 
characteristics in CT images. There has been a grow-
ing interest and utilization of artificial intelligence, spe-
cifically deep learning and machine learning, in the field 
of medical imaging in recent years. A Convolutional 
neural network(CNN) [13] is a representation learn-
ing method that improves the accuracy of osteoporosis 
diagnosis by constructing a multi-hidden layer model 

and using a large amount of training set data to identify, 
extract and learn effective features, including bone min-
eral density and bone microstructure in such images. 
In a study based on lumbar CT images of 808 post-
menopausal women, Zhang [14] et al. used DXA as the 
bone mass classification standard to construct a DCNN 
model for the diagnosis of osteoporosis, with a sensitiv-
ity of 68.4%, a specificity of 67.8%, and an AUC of 0.726. 
Fang [15] et al. used a DenseNet-121 convolutional neu-
ral network to accurately identify bone mineral density 
status(osteoporosis, osteopenia, normal) in lumbar CT 
images. Jang M [16] et al. used 13,026 chest radiographs 
and DXA to train a OsPor-screen model. Osteoporosis 
screening with OsPor-screen model achieved an AUC of 
0.91 [95% confidence interval(CI): 0.90–0.92]. Mao L [17] 
et al. proposed to construct a convolutional neural net-
work model for screening primary osteopenia and osteo-
porosis based on the lumbar radiographs. The models 
with images alone achieved moderate sensitivity in clas-
sifying osteopenia, in which the highest AUC achieved 
0.785. These results suggest that deep learning network 
could have the potential to be used opportunistic auto-
mated screening of patients with osteoporosis in clini-
cal settings. Therefore we plan to draw on the classical 
encoding and decoding structures and then optimize the 
model based on these traditional model.

In this study, we aimed to develop and evaluate a chest 
CT deep learning model that achieves favorable perfor-
mance on opportunistic osteoporosis screening using 
the lumbar 1 + lumbar 2 vertebral bodies fusion feature 
images, and explore whether the model based on the 
lumbar 1 vertebra alone achieves comparable perfor-
mance. The establishment of this model can help clinical 
screening of large sample population, find out the cases 
that really need clinical intervention, and can also be 
used for diagnosis and treatment evaluation and follow-
up work.

Materials and methods
This study was a retrospective study. It was approved by 
the Ethics Committee of Nantong First People’s Hospi-
tal (No.2021KT028), who waived the need for informed 
consent. The study protocol was implemented according 
to the Good Clinical Practice guidelines defined by the 
Helsinki Declaration and the International Conference 
on Harmonization (ICH).

Study design and patient population
In this study, all images were from Ingenuity Core 128 
CT (Philips Health Care, Holland). Data from a total of 
1913 health check subjects in our hospital from Janu-
ary 2021 to October 2021 were consecutively collected. 
The inclusion criteria were as follows: (1) age 18 years or 
older and (2) tube voltage of 120 kVp [7] and availability 
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of QCT bone mineral density measurements. The exclu-
sion criteria [18] were as follows: (1) a field of view (FOV) 
that did not include the entire lumbar 2 vertebral body; 
(2) implants, hardware, devices, or other foreign material 
in lumbar 1 or lumbar 2 vertebra, and (3) Patients with 
severe degenerative changes or fracture deformity.

A total of 1048 subjects were included in the dataset 
with 865 subjects ruled out. A pipeline depicting patient 
selection is displayed in Fig. 1.

CT image acquisition
BMD measurement and model construction were per-
formed on the mediastinal window images of the centre 
levels of the lumbar 1(L1) and lumbar 2(L2) vertebrae 
of each subject. We used 2D axial CT slices with a layer 
thickness of 2 mm.

Bone mineral density measurement
QCT pro4 software (Mindways, CA, USA) was used to 
set similarly sized ROIs in the central cancellous bone 
region of lumbar 1 and lumbar 2, avoiding the corti-
cal bone and the visible blood vessel area. The software 
automatically calculated the BMD values of the lumbar 
1 and lumbar 2 vertebra and used their mean values as 
the BMD values of the individual subjects (BMD individual). 
According to the criteria recommended by the guidelines 
[7], BMD individual > 120 mg/cm3 was considered normal, 
80 mg/cm3 ≤ BMD individual ≤ 120 mg/cm3 was considered 
osteopenia, and BMD individual < 80 mg/cm3 was consid-
ered osteoporosis.

Fig. 1  Flowchart for selecting the study population
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Model construction
All deep convolution models were completed by Python 
3.6.12 software based on the PyTorch framework. The 
labels of the segmentation model are annotated using 
Qupath software (https://www.nature.com/articles/
s41598-017-17204-5). All experiments were conducted 
under an Ubuntu 20.04.02 operating system with an 
NVIDIA GeForce RTX 3090 GPU and 128 GB RAM.

In the data set partitioning section, due to the imbal-
ance of categories in the data set (among the 1048 sub-
jects, the number of individuals with normal BMD status, 
osteopenia, and osteoporosis were 621, 296, and 131, 
respectively, and compared to subjects with normal bone 
mass, the number of subjects with osteopenia and osteo-
porosis was relatively small), we tried to divide the data 
set using the traditional 7:1:2 method, but the result is 
not satisfactory, which affects the confidence of the test 
results. Therefore, we chose a more balanced dataset par-
titioning ratio to improve the stability and reliability of 
the results (the ratio is 5:1:4).

Image segmentation module
First, a deep convolutional neural network (DCNN) 
segmentation model (Fig.  2) was constructed to auto-
matically segment the vertebral bodies in CT images 
for subsequent classification. The model adopts a cod-
ing-decoding architecture, with a total of seven layers. 
By adding network layers, the model can learn richer 
and higher-level feature representations, which helps to 
improve the model’s understanding and representation 
of input data. In the first five layers of the coding layer, 
the convolution of 1 × 1 is first used to increase the non-
linearity. Although the convolution of 1 × 1 has a small 
sensitivity field in space, it can introduce nonlinearity 
and increase the expressiveness of the model by com-
bining and interacting the features between channels. 
Then 3 × 3 convolutional residual structure is used to 
improve the training depth of the network and enhance 
the feature transmission. In the sixth layer, 2 × 2 convo-
lution is used instead of 1 × 1 convolution to add recep-
tive fields, which are used to capture local features and 
structures, such as textures, edges, etc. Only 2 × 2 con-
volution is used in the seventh layer to reduce resolu-
tion and extract higher level features. In the decoding 
layer, the lowest layer of the decoding layer first uses 2 × 2 
transposed convolution to expand the low-resolution 
feature map, and then adds the channel attention mecha-
nism in the sixth layer to selectively fuse the high-level 
features of the jump connection layer with the underly-
ing features of the expanded feature map. First, fusion is 
performed at the channel level through Concat. Then, 
the feature map dimension is reduced by global average 
pooling, and the local edge information is highlighted by 
two 1 × 1 convolution layers. Finally, the weight of each 

channel obtained is multiplied with the lower-level fea-
ture map to obtain the attention vector, and the weight 
is added with the higher-level feature map to obtain the 
attention feature map, thus further improving the model 
segmentation performance. Then 2 × 2 transposed convo-
lution is used to expand the low-resolution feature map, 
the expanded feature map and the feature map obtained 
from the skip connection layer are combined by Concat, 
the local structure and features of the image are extracted 
by 3 × 3 convolution, and the low-resolution feature map 
is expanded by 2 × 2 transposed convolution, and so on to 
the top level. Finally, the convolution of 1 × 1 is used to 
change the dimension of the model to match the num-
ber of model output channels. Here we add a comparison 
with the segmentation effect of the classical u-net model. 
First, the depth of the model is improved, which means 
that there is better nonlinear representation, and more 
complex variants can be learned to fit more complex fea-
ture inputs. Secondly, the channel attention mechanism 
is introduced to calculate the importance of each chan-
nel in the input image through the network, improve the 
feature representation ability, and be more accurate in 
the classification area. In addition, the model will obtain 
higher accuracy and higher AUC values.

The 2096 images were randomly divided into a training 
set (n = 1096), tuning set (n = 200) and test set (n = 800) 
at a 5:1:4 ratio.The input data were 512 × 512 images 
and annotations, and the output data were the results 
predicted by the model. Image augmentation methods 
included random flipping, random rotation, left and right 
mirroring, and random cropping. An experienced radiol-
ogist with 3 years of experience in musculoskeletal imag-
ing diagnosis manually drew the ROIs along the inner 
edge of the cortical bone at the central level of the lumbar 
1 and lumbar 2 vertebra with Qupath software to extract 
lumbar vertebral images. The dice similarity coefficient 
(DSC) was automatically calculated by the software to 
compare the consistency between the automatic segmen-
tation of the DCNN and manual labelling. The number of 
training rounds was 500, and the batch size was 64. The 
stochastic gradient descent(SGD) optimizer was selected 
as the optimizer, and the learning rate parameter was 
0.001.

DCNN classification model construction
ResNet-101 residual DCNN classification model (Fig. 3) 
for input segmentation ROI (pixel size 512 × 512) as 
model input. The initial layer of the model consists of one 
7 × 7 convolutional layer responsible for extracting basic 
features from the input image. Subsequently, downsam-
pling is performed through one 3 × 3 max-pooling layer 
to reduce the image size. Following this, there are four 
residual block layers. The first residual block layer com-
prises three Block residual units. Each Block residual 

https://www.nature.com/articles/s41598-017-17204-5
https://www.nature.com/articles/s41598-017-17204-5
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unit consists of two 3 × 3 convolutional layers for downs-
ampling, reducing the image size, one 1 × 1 convolu-
tional layer to introduce non-linearity, and a residual 
connection. The residual connection facilitates stable 
gradient propagation, addressing the issue of gradient 
disappearance. The second residual block layer includes 
one DBlock residual unit and three Block residual units. 
The DBlock differs in that its convolutional operations in 
the skip structure can transform or dimensionally reduce 
the features in the skip connection. This ensures that the 

features in the skip connection have the same dimen-
sions as the subsequent layers, enabling them to be added 
or concatenated together. The third residual block layer 
consists of one DBlock residual unit and five Block resid-
ual units. The fourth residual block layer comprises one 
DBlock residual unit and two Block residual units. The 
purpose of these residual block layers is to learn hierar-
chical feature representations in the image. Following the 
output of the last residual block, global average pooling 
is applied to convert the entire feature map into a vector, 

Fig. 2  DCNN segmentation structure diagram
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capturing global image information. The final fully con-
nected layer is utilized to map high-level features to the 
number of categories relevant to the osteoporosis clas-
sification task, resulting in a three-class deep learning 
model.

Model 1 was constructed by using the lumbar 1 + lum-
bar 2 vertebral bodies fusion feature images (by adding 
feature channels) through the above process. Lumbar 1 
image alone were used to construct model 2. The main 
dataset was constructed from the CT images of 630 sub-
jects from January 2021 to July 2021 (randomly divided 
into a training dataset and validation dataset with a ratio 
of 5:1). The remaining 418 patients comprised the test 
dataset.

Statistical analyses
All statistical analyses were performed using Python 
3.6.12 and SPSS 27. The receiver operating characteris-
tic (ROC) curve was used to analyse the evaluation effi-
cacy of each model on bone mass. The AUC and 95% 
confidence interval (CI), sensitivity (Se), specificity (Sp), 
positive predictive value (PPV), negative predictive value 
(NPV) and accuracy (Ac) were calculated from ROC 
analysis. The Delong test was used to compare the differ-
ence in bone mass evaluation efficiency for the test sets. 
Numerical data are expressed as the mean ± standard 
deviation (−

x ±s), and comparisons between groups were 
performed with variance analysis or the t test. Classifica-
tion data are expressed as the frequency and percentage 

(n, %), and the chi-square test was used for comparisons 
between groups. P < 0.05 was considered statistically 
significant.

Results
Baseline and clinical characteristics of the collected data
Among 1048 participants (mean age 51 ± 14.5 
years, range 20–92 years), 605 participants were 
male, and 443 participants were female. There were 
621 patients with normal BMD status (the mean 
BMD was 168.33 ± 23.12  mg/cm3 and ranged from 
120.30 mg/cm3 to 295.10 mg/cm3), 296 with osteopenia 
(the mean BMD was 99.35 ± 10.91 mg/cm3, ranging from 
80.00  mg/cm3 to 120.00  mg/cm3) and 131 with osteo-
porosis (the mean BMD was 60.32 ± 16.48  mg/cm3 and 
ranged from 5.70 mg/cm3 to 79.90 mg/cm3).

The distribution of BMD in all age groups is shown in 
Table 1; Fig. 4. There were significant differences in gen-
der distribution among different age groups (χ2 = 22.91, 
P = 0.002). There were significant differences in the aver-
age BMD of different age groups and BMD of males and 
females (F = 157.79, 54.85, 141.94, respectively, P < 0.05).

Figure 4a shows the incidence of osteopenia and osteo-
porosis in men and women aged 30 years and above 
in each decade of age. The incidence of osteoporosis 
increased with age. The incidence of osteoporosis in 
males aged 50–59, 60–69, 70–79 and over 80 years old 
was 5.80%, 24.56%, 21.95% and 73.68%, respectively. The 
incidence of osteoporosis in women of the same age 

Fig. 3  Workflow of the classification model

 



Page 7 of 13Pan et al. BMC Musculoskeletal Disorders          (2024) 25:176 

group was 6.96%, 35.00%, 71.11% and 78.26%, respec-
tively. Compared with osteoporosis, osteopenia appeared 
earlier. The incidence of osteopenia was 34.12% in men 
and 6.06% in women aged 40 to 49 years. 46.86% and 
44.35% in the 50- to 59-year-old group, respectively. The 
BMD of the lumbar spine in women was higher than 
that in men (P < 0.010) and then gradually decreased 
with increasing age. The BMD gradually decreased from 
162.76 mg/cm3 to 38.7 mg/cm3. Women had lower BMD than 
men after 70 years of age (BMDmale=92.18 ± 34.54mg/cm3, 
BMDfemale=65.07 ± 25.43mg/cm3, t = 5.916, P < 0.001).

The distribution of subjects and baseline characteris-
tics of each dataset are shown in Table 2. There was no 
significant difference in the sex distribution of the sub-
jects in each dataset (x2 = 0.862, P = 0.650). There was no 
significant difference between age and BMD (F = 0.255, 
0.084, P = 0.775, 0.919). The ratio of normal, osteopenia 
and osteoporosis cases was close to 6:3:1.

The overall diagnostic efficiency of the DCNN model
As shown in Fig.  5, when the number of images in the 
training set was greater than 300, the DSC value tended 
to be stable and when the number of images in the train-
ing set was 300–1096, the DSC value was 0.95 ± 0.004. 
When the number of images in the training set was 300, 
the DSC value was 0.951 ± 0.03 in the test set. This is suf-
ficient to ensure the performance of vertebral image seg-
mentation. The segmentation effect of some CT images is 
shown in Fig. 6. The efficacy evaluation of the two models 
on bone mass in each dataset is shown in Table 3; Fig. 7.

In the test dataset, the diagnostic efficiency of model 
1 for normal was better than that of model 2, and the 
difference between the two was statistically significant 
(P = 0.033). There was no significant difference between 
Model 1 and Model 2 in the diagnostic efficacy of osteo-
penia and osteoporosis (P = 0.21 and 0.546, respectively) 
(Table 4).

Discussion
In this study, we used QCT as the classification standard 
for bone mass assessment and proposed a deep learn-
ing model for osteoporosis screening based on chest CT 
with L1 + L2 vertebral bodies fusion feature images. Ulti-
mately, considering that the CT images are all chest scan 
images, we further constructed the model 2 based on the 
L1 alone. The results confirmed that the diagnostic effi-
ciency of model 2 constructed with only L1 alone was 
inferior to model 1 constructed with two vertebral bod-
ies when the bone mass was normal. Even it was inferior 
to model 1, model 2 achieves favorable performance. The 
model 2 diagnosing normal, osteopenia and osteoporosis 
achieved an AUC of 0.983, 0.940 and 0.978. The benefits 
of model 2 which based on the lumbar 1 vertebra alone 
are obvious: firstly, moving up the lower limit of the CT 
scanning range from the level of the L2 to the level of the 
L1 shortens the scanning length of the z-axis, reduces the 
patient’s radiation exposure. Although the reduction of 
radiation dose may be limited for a single individual, con-
sidering the huge number of annual health check popula-
tion, this change is quite significant in terms of reducing 
the overall radiation dose of the population. Secondly, 
according to the guidelines for the use of QCT [18], BMD 
is generally measured using L1 and L2, which requires 
that the scanning range should include L2, and in general, 
the lower boundary of both lungs is located at the level of 
thoracic 12 vertebra [19]. Since there is no need to inten-
tionally expand the scanning range and require additional 
requirements or training for medical imaging technolo-
gists, they can perform chest CT scanning according to 
usual habits, thereby avoiding additional training costs. 
Finally, using a single image based DCNN model for 
opportunistic osteoporosis screening has the potential to 
reduce the data collection costs and alleviate the storage 
pressure on the post-processing workstation.

In this study, the prevalence of osteoporosis was 15.4% 
in men and 32.7% in women over 50 years old. The preva-
lence of osteopenia was 39% in men and 49% in women 

Table 1  Distribution of BMD in different age groups
Age(yr) Data set BMD individual (mg/cm3) t P

Overal Male Female Average Male Female
< 30 60 40 20 175.96 ± 28.27 173.85 ± 31.38 180.18 ± 20.80 0.814 0.419
30 ~ 39 165 85 80 168.42 ± 28.26 160.27 ± 28.37 177.08 ± 23.22 4.174 < 0.001
40 ~ 49 256 157 99 148.27 ± 27.58 139.14 ± 25.06 162.76 ± 25.18 6.899 < 0.001
50 ~ 59 322 207 115 121.83 ± 32.53 120.48 ± 33.20 124.25 ± 31.30 0.470 0.639
60 ~ 69 117 57 60 94.46 ± 28.42 96.66 ± 29.52 92.36 ± 27.41 -0.704 0.483
70 ~ 79 86 41 45 83.83 ± 33.16 102.64 ± 31.91 66.7 ± 23.85 -6.141 < 0.001
80 ~ 89 40 17 23 66.49 ± 31.20 71.88 ± 33.45 62.51 ± 29.54 -1.018 0.315
≥ 90 2 1 1 38.78 ± 20.80 38.85 ± 0.00 38.7 ± 0.00
F 22.91* 157.79 54.85 141.94
P 0.002 0.002 < 0.001 0.038
Note BMD-Bone mineral density. F-Variance analysis of bone mineral density differences in subjects of different ages. *-chi-square test. t-test of bone mineral density 
difference between different sexes in the same age group
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over 50 years old. This result is similar to the results of 
Cheng [2] et al. who evaluated the bone mass distribu-
tion of Chinese men and women by QCT in a large sam-
ple study. In the study by Cheng et al., the prevalence of 
osteoporosis in Chinese men and women over 50 years 
old was approximately 14% and 29%, respectively, and 
the prevalence of osteopenia was 42% for both. The 

population distribution of this study is consistent with 
the distribution of populations at high risk of osteopenia 
and osteoporosis in China currently, making the results 
of the study more reliable.

At present, DXA is often used as a reference stan-
dard for bone density classification in clinic to diagnose 
osteoporosis. In a study based on lumbar CT images 

Fig. 4  BMD distribution of subjects of all ages. a Osteopenia and osteoporosis incidence histogram of different sexes and ages. b Different sex and age 
groups of bone mineral density mean and standard deviation distribution
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of 808 postmenopausal women, Zhang [14] et al. used 
DXA as the bone mass classification standard to con-
struct a DCNN model for the diagnosis of osteoporosis, 
with a sensitivity of 68.4%, specificity of 67.8%, and AUC 
of 0.726. In this study, QCT was used as the classification 
standard for bone mass assessment, and the diagnostic 
performance of the model was better than the results of 
Zhang et al. DXA is a two-dimensional imaging tech-
nique, which is susceptible to scoliosis, facet joint degen-
eration, soft tissue calcification, especially abdominal 
aorta calcification and other factors, which reduces the 
accuracy of bone density measurement. QCT is a three-
dimensional imaging technique that can quantitatively 
evaluate the bone density of the vertebral cancellous bone 

that is more sensitive to OP, and the measured results are 
more stable than DXA [8, 9].

This study confirmed the feasibility of opportunistic 
osteoporosis screening based on chest CT images. Based 
on U-Net [15], we designed a new segmentation model. 
First, the model depth improved, meaning a better non-
linear expression ability, and it can learn more complex 
transformations to fit more complex feature inputs. Sec-
ond, the channel attention mechanism is introduced to 
calculate the importance of each channel of the input 
image through the network to improve the feature rep-
resentation ability making the regions used for classifica-
tion more accurate. Additionally, the model will obtain 
higher accuracy and higher AUC values. Next, we used 
ResNet-101 residual DCNN classification model to 

Table 2  Subject distribution and baseline characteristics of each dataset
 Overall Training dataset Validation dataset Test

dataset
F P

n = 1048 n = 530 n = 100 n = 418

Gender, n, % Male
Female

605, 57.73% 305, 57.55% 62, 62.00% 238, 56.94% 0.862* 0.650
443, 42.27% 225, 42.45% 38, 38.00% 180, 43.06%

Age(yr.),
mean ± SD

51.19 ± 14.35 51.04 ± 14.4 51.11 ± 12.73 51.70 ± 14.97 0.255 0.775

BMD (mg/cm3), mean ± SD 130.28 ± 42.76 129.92 ± 42.78 131.30 ± 39.29 130.90 ± 42.96 0.084 0.919
BMD categories, n (%) Normal 621, 27.96% 310, 58.49% 60, 60.00% 251, 60.05%

Osteopenia 296, 59.64% 150, 28.30% 30, 30.00% 116, 27.75% 0.994* 0.911
OP 131, 12.40% 70, 13.21% 10, 10.00% 51, 12.20%

Note BMD-Bone mineral density. F-Variance analysis of bone mineral density differences in subjects of different ages. *- chi-square test

Fig. 5  The relation curve between segmentation model performance and the sample numbers of training set
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classify the segmentation images, which achieved achieve 
satisfactory results.

Tang [20] et al. have reported that the opportunistic 
osteoporosis screening using L1 trabecular attenuation 
with an accuracy of 76.65% and an AUC of 0.917. Com-
pared with the data, our results are higher than the results 
in that paper. The reason may be that they used 2D axial 
CT slices with a layer thickness of 5 mm, while we used 

original axial CT slices, and the classification model we 
used was ResNet. Compared with the DenseNet convo-
lutional neural network model with dense connections, 
the ResNet model introduces a residual network struc-
ture, which can effectively avoid the gradient disappear-
ance and gradient explosion problems with increasing 
depth in network training so that the model can be bet-
ter fitted. The ResNet-101 residual DCNN model may be 

Table 3  The performance metrics of the two models
Model 1 Model 2

Training dataset Validation dataset Test
dataset

Training dataset Validation dataset Test
dataset

normal AUC 0.999 0.972 0.989 0.999 0.966 0.983
(95%CI) (0.998, 1.000) (0.939, 1.000) (0.983, 0.996) (0.998, 1.000) (0.924, 1.000) (0.974, 0.992)
Se 0.990 0.917 0.964 1.000 1.000 0.976
Sp 0.972 0.900 0.916 0.927 0.850 0.838
PPV 0.981 0.932 0.945 0.951 0.909 0.901
NPV 0.986 0.878 0.944 1.000 1.000 0.959
Ac 0.983 0.910 0.945 0.969 0.940 0.921

osteopenia AUC 0.996 0.942 0.952 0.996 0.929 0.940
(95%CI) (0.994,0.999) (0.890,0.994) (0.932,0.971) (0.992, 0.999) (0.971, 0.987) (0.919, 0.962)
Se 0.940 0.833 0.716 0.893 0.767 0.638
Sp 0.984 0.886 0.960 0.995 0.957 0.954
PPV 0.959 0.758 0.874 0.985 0.885 0.841
NPV 0.977 0.242 0.898 0.959 0.905 0.873
Ac 0.972 0.870 0.892 0.967 0.900 0.866

osteoporosis AUC 0.999 0.989 0.980 1.000 0.981 0.978
(95%CI) (0.997,1.000) (0.972,1.000) (0.967,0.994) (0.999, 1.000) (0.957, 1.000) (0.965, 0.990)
Se 0.957 0.700 0.941 0.971 0.700 0.843
Sp 0.993 0.989 0.948 1.000 0.989 0.959
PPV 0.957 0.875 0.716 1.000 0.875 0.741
NPV 0.993 0.967 0.991 0.996 0.967 0.978
Ac 0.989 0.960 0.947 0.996 0.960 0.945

Fig. 6  Partial segmentation results. a-e: The female was 34 years old, who was diagnosed as normal bone mass with BMD individual=196.6 mg/cm3. Fig. 
f-j: The male was 43 years old, who was diagnosed as osteopenia with BMD individual=118.3 mg/cm3. a, e: Axial CT images of the central slice of the lum-
bar 1 vertebra. b, g: Heatmap of predicted probabilities during training. c, h: manual segmentation label map; d, i: DCNN segmented image; e, j: U-net 
segmented image
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more suitable for screening opportunistic osteoporosis or 
osteopenia in a large-scale annual health check popula-
tion and provide the possibility for early clinical diagnosis 
and intervention.

We only used 2D axial CT slices with a layer thickness 
of 2  mm to initially explore whether 2D CT slices can 
provide relevant reference value. From the perspective of 
research design, many previous studies [21, 22] evaluated 
sagittal images. Leonhardt Y [21] et al. used 58 patients’ 
sagittal CT scans to assess whether BMD measured with 
QCT can predict osteoporotic fracture occurrence in a 
prospective clinical cohort, ROC showed an AUC of 0.76 
and a Youden’s Index of J = 0.48. Lee SJ [22] et al. used 571 
consecutive adults’ sagittal reconstruction abdominal CT 
scans obtained for other purposes for vertebral fracture 
assessment. The difference lies in the fact that we use the 
axial original images, which does not need to be recon-
structed. When the sample size is large, it saves time and 
storage space compared with the reconstructed sagittal 
images. And, there may be imprecise for not using origi-
nal images and it’s not practical in clinics using sagittal 
images.

Although the proposed method achieved convincing 
results, some limitations should be mentioned. First, this 
was a single-center retrospective study, and external vali-
dation was limited by hardware constraints. Second, in 
this study, the DCNN model was constructed only for 2D 
axial CT images with a slice thickness of 2 mm, and all 
3D image features of the target vertebral body were not 
included. However, the DCNN model has the advantages 
of a simple structure, small data demand, low computa-
tional complexity, and short training time. Moreover, 
the annotation of segmentation was provided by one 
radiologist with 3 years of experience, which might be 
subjected to observer variability. Since the cases were 
collected consecutively, the sample contain fewer female 
participants than male. The individual anatomical varia-
tion should be considered as a potential element that 
affecting the selection of the optimal site, it is evitable 
to some extent. Collecting more data for training may 
enhance the robustness. Further study is needed to vali-
date our findings in multi-center data. Finally, the model 
construction in this study was based only on CT image 
features, and other clinical information, such as age, sex, 
and body mass index, were not considered. The above 
shortcomings need to be considered in subsequent clini-
cal research and application.

In conclusion, this study proposed a deep learn-
ing model based on chest CT that achieves favorable 

Table 4  Comparison of the efficacy of different DCNN models 
for bone mass assessment in the test dataset

AUC1 AUC2 Z P
normal 0.990 0.983 2.139 0.033
osteopenia 0.952 0.940 1.247 0.21
osteoporosis 0.980 0.978 0.603 0.546
Note AUC1 Area under the curve for the model 1 test set; AUC2 Area under the 
curve for the model 2 test set

Fig. 7  ROC curve for the two models. a-c: Comparison of the evaluation 
efficacy of model 1 and model 2 in the test set for normal, osteopenia, and 
osteoporosis
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performance on opportunistic osteoporosis screening 
using the lumbar 1 + lumbar 2 vertebral bodies fusion 
feature images, then further constructed the compa-
rable model based on the lumbar 1 vertebra alone. The 
method can shorten the scan length, reduce the radiation 
dose received by patients, and reduce the training cost of 
technologists. Our method may improve the diagnosis of 
osteoporosis and help health check subjects to prevent 
bone mass loss. The establishment of this model can help 
clinical screening of large sample population, find out the 
cases that really need clinical intervention, and can also 
be used for diagnosis and treatment evaluation and fol-
low-up work.
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