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Abstract

Background Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and
functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin
and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-
coding RNAs (IncRNAs) are involved in the development of various diseases, but little is known about their potential
roles involved in RCT of diabetic patients.

Methods RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed INcRNAs and mRNAs
in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes
and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes
(DEGS). LncRNA-mMRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed
to elucidate the potential molecular mechanisms of DM affecting RCT.

Results In total, 505 IncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between
diabetic and nondiabetic patients. GO functional analysis indicated that related INcRNAs and mRNAs were involved
in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were
involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17
signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed
the interaction of differentially expressed RNAs, comprising 5 INcRNAs, 2 mRNAs, and 142 miRNAs. TF regulation
analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients.

Conclusions We preliminarily dissected the differential expression profile of IncRNAs and mRNAs in torn rotator cuff
tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs
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and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new
perspective on the association between DM and progression of RCT.

Keywords Rotator cuff tear, Diabetes mellitus, RNA sequencing, Long non-coding RNA

Introduction

Rotator cuff tears (RCT), usually caused by trauma and
degeneration of the tendon tissue, is the leading cause
of pain and functional disability of the shoulder [1]. The
prevalence of RCT reaches to at least 10% among people
over 60 years, which will leave a serious clinical problem
in modern society [2]. There was a suggestion that surgi-
cal rotator cuff repair (RCR) had long-term improvement
in shoulder functions for RCT [3], but not all patients’
outcomes of RCR are satisfactory [4] and re-rupture of
rotator cuff after operation is not infrequent [5], which
requires deep investigation of potential factors that may
contribute to RCT. Diabetes mellitus (DM) is a common
endocrine disease with an estimated prevalence of 9.3%
worldwide in 2019, rising to 10.2% by 2030 and 10.9% by
2045 [6]. DM has been demonstrated to be strongly asso-
ciated with increased risk of rotator cuff tendinopathy
and RCT [7]. Noticeably, biological research has intro-
duced the possible role of glucose as a risk factor for RCT
[8], and recent evidence showed that the risk of rota-
tor cuff diseases in the diabetic population is 2.11 times
more than the non-diabetic population [9]. Additionally,
patients with DM were 48% more likely to undergo RCR
surgery compared to those without diabetes [10] and
DM also impede rotator cuff healing with inferior out-
come after rotator cuff repair. Notably, diabetic patients
can achieve higher rate of healing after RCR with effec-
tive glycemic control [11]. Thus, it is critical important to
understand the influence of DM on rotator cuff disease,
which may provide deeper insight into the mechanism of
RCT and its healing process.

It has been reported more than 3000 genes were dif-
ferentially expressed between torn and RC tendon tissue
by RNA sequencing (RNA-seq) technique [12]. RNA-
seq analysis is a powerful tool to analyze the expression
levels of all transcriptomes generated in the cells [13].
After total mRNA is sequenced and quantified, RNA-seq
can describe the molecular mechanisms related to the
pathogenesis of the disease [14]. Long non-coding RNAs
(IncRNAs) are transcripts longer than 200 bp [15, 16] and
have been reported to involved in biological process of
tendon. For instance, Lu et al. [17] discovered that con-
stant overexpression of IncRNA H19 promoted tenogenic
differentiation in human tendon stem/progenitor cells
(TSPCs), and also enhanced tendon repair in a mouse
model. In addition, Ge et al. [18] profiled IncRNAs
involved in rotator cuff tendinopathy in comparison with
the normal tendon through RNA-Seq, and the results
showed that 419 IncRNAs were statistically differentially

expressed between 2 groups, which underlined the huge
potential of IncRNAs in regulating the process of rotator
cuff tendinopathy.

The purpose of this study is to profile the differently
expressed mRNAs and IncRNAs in torn rotator cuff ten-
don between diabetic and nondiabetic patients and eluci-
date the potential roles of DM affecting RCT.

Methods

Patient enrollment, selection and clinical data

All the experiments and patients enrollment protocol
were approved by Ethics Committee of Beijing Friend-
ship Hospital, Capital Medical University. All surgeries
were performed at the Beijing Friendship Hospital, and
the samples were collected from April to August 2022.
A total of 6 patients with rotator cuff tears in the supra-
spinatus who underwent arthroscopic rotator cuff repair
were enrolled.

Patient information

Patients were enrolled in this study as a study group, who
have diagnosed of type 2 DM (T2DM) after the age of
30 years without a history of ketosis. These non-diabetic
patients were served as control group. The inclusion cri-
teria for this study included: (1) full-thickness rotator
cuff tear (1-3 cm); (2) arthroscopic rotator cuff repair was
performed; (3) signed informed consent and voluntarily
participated in the study. Exclusion criteria included:
(1) previous history of systemic immunological diseases
such as rheumatoid arthritis; (2) previous history of
shoulder surgery and severe trauma; (3) In addition to
rotator cuff repair, other procedures such as joint cap-
sule repair and labrum repair were also performed on the
ipsilateral shoulder. (4) patients unable to undergo mag-
netic resonance imaging (MRI) due to metal implants
or claustrophobia; (5) irreparable rotator cuff tear larger
than 5 cm; (6) severe cardiopulmonary dysfunction, his-
tory of peripheral nerve disease, peripheral vascular
disease, renal insufficiency, and poorly controlled medi-
cal diseases; (7) The patient refused to participate in the
study. In the end, a total of 6 patients who had rotator
cuff tears in the supraspinatus underwent arthroscopic
rotator cuff repair. All patients underwent preoperative
MRI to be diagnosed with unilateral supraspinatus tears
(Fig. 1A, B). All patients were arthroscopically operated
by one experienced orthopedic surgeon (L.E.M.). A total
of 12 patients were included in this study (6 diabetic RCT
vs. 6 non-diabetic RCT), Among them, 6 RCT samples
(n=3 of each group) were used for RNA-seq; the other 6
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samples (n=3 of each group) were used for qPCR valida-
tion experiments. The detailed patient’s information was
listed in supplementary Table S1.

Tendon tissue harvesting

Rotator cuff tendon samples with a size of 3X3 mm were
harvested from the edge of torn rotator cuff arthroscopi-
cally during operation (Fig. 1C—E). Samples were treated
with RNAlater (Qiagen) immediately, froze in liquid
nitrogen, and stored at —80 °C for further RNA-Seq
experiments.

RNA isolation, library construction, sequencing, and qPCR
validation
Total RNA was extracted using the Trizol reagent (Tian-
gen, Beijing, China) according to the manufacturer’s
instructions. RNA concentration and purity was mea-
sured using the NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE). RNA integ-
rity was assessed using the RNA Nano 6000 Assay Kit of
the Agilent Bioanalyzer 2100 System (Agilent Technolo-
gies, CA, USA).

As for the library construction, the Ribo-Zero rRNA
Removal Kit (Epicentre, Madison, W1, USA) was used for
rRNA removal. Sequencing libraries were constructed

Fig. 1 MRl images and arthroscopic view of torn rotator cuff in nondia-
betic (A, C) and diabetic patients (B, D). E Macroscopic view of harvested
tendon sample
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using NEBNextR Ultra™ Directional RNA Library Prep
Kit for IlluminaR (NEB, USA) following manufactur-
er’s recommendations, and index codes were added to
attribute sequences to each sample. Fragmentation was
carried out using divalent cations under elevated temper-
ature in NEBNext First Strand Synthesis Reaction Buffer
(5X). The all RNA was transcribed into double-stranded
c¢DNA. Remaining overhangs were converted into blunt
ends via exonuclease/polymerase activities. After adenyl-
ation of 3’ ends of DNA fragments, NEBNext Adaptor
with hairpin loop structure were ligated to prepare for
hybridization. The library fragments were purified with
AMPure XP Beads (Beckman Coulter, Beverly, USA),
to select insert fragments of preferentially 150~200 bp
in length. Then 3 ul USER™ Enzyme (NEB, USA) was
used with size-selected, adaptor-ligated cDNA at 37° C
for 15 min before PCR. Then PCR was performed with
Phusion HighFidelity DNA polymerase, Universal PCR
primers and Index(X) Primer. At last, PCR products were
purified with AMPure XP Beads (Beckman Coulter, Brea,
CA, USA), and library quality was assessed on the Agi-
lent Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA, USA) and qPCR. The clustering of the index-coded
samples was performed on acBot Cluster Generation
System using TruSeq PE Cluster Kitv3-cBot-HS(Illumia)
according to the manufacturer’s instructions. After clus-
ter generation, the library preparations were sequenced
by BioMarker Technologies (Beijing, China) on an Illu-
mina platform (NovaSeq 6000) and reads were generated.

Quantitative PCR (qPCR) validation of four mRNAs
(COL5, MMP2, EGR1, and EGR2) was using the iCycler
iQTM Real-Time PCR Detection System (Bio-Rad). The
relative gene expression was normalized to the glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) expres-
sion and is presented as the foldchange using the AA Ct
method. The primers designed for qPCR was listed in
supplementary Table S2.

Data acquisition and bioinformatics analysis

Clean data (clean reads) were obtained by removing reads
containing adapter, reads containing over 10% ploy-N
and low-quality reads from raw data (raw reads). At the
same time, Q20, Q30, GC-content and sequence duplica-
tion level of the clean data were calculated, to ensure the
downstream analyses were based on clean data with high
quality. Consequently, paired-end sequence files were
mapped with reference genome hg38 using Hisat2 soft-
ware. Gene abundance was visualized according to the
fragments per kilobase of exon per million (FPKM) read.
LncRNAs and mRNAs with FDR<0.05 and |log2 (Fold
Change) | > 1 were assigned as differentially expressed.
RT-qPCR validation was not used since RNA-seq meth-
ods are too robust to require validation by any other
approaches [19].
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Additionally, Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genome (KEGG) analysis
were used to determine the potential functions among
these differentially expressed mRNAs [20].

LncRNA-mRNA co-expression network analysis

Functional roles of the differentially expressed IncRNAs
were predicted using the co-expression analysis. Bas-
ing on the standardized signal intensity of specifically
IncRNAs and mRNAs, the co-expression network was
established. LncRNA-mRNA with Pearson correlation
coefficient value>0.9 along with P<0.05 were included.
The IncRNAs-mRNA interaction network was visualized
using Cytoscape software.

LncRNA-miRNA-mRNA (ceRNA) network analysis

To identify interactions between differentially expressed
mRNAs and IncRNAs, IncRNA-miRNA-mRNA net-
works were constructed and were visualized using Cyto-
scape software.

Cis- and trans-regulation of IncRNAs

Based on the results of co-expression, differentially
expressed IncRNAs were selected for cis- and trans-
target gene prediction. Herewith, Cytoscape software
(v3.9.0) was used to construct IncRNA-gene interac-
tion networks, according to the results of differentially
expressed IncRNAs and their corresponding differentially
expressed cis- and trans-target genes.

Potential transcription factors target of IncRNA

According to the gene co-expression results, the tran-
scription factors (TFs) were searched for these associated
with IncRNAs to explore their potential roles in RCT.
Predict TF and Predict TFBS software were used to pre-
dict TFs via AnimalTFDB database.

Results

Expression profiles of mRNAs and IncRNAs

Based on the whole expression profile, we identi-
fied 29,610 IncRNAs and 505 differentially expressed
IncRNAs, including 306 upregulated IncRNAs
(such as HAGLR-207, MSTRG.157426.1 and oth-
ers) and 199 down-regulated ones (MSTRG.166890.1,
MSTRG.12914.1 and others) in Fig. 2A. 186 down-reg-
ulated mRNAs (MMP11, ADAM19 and others) and 202
up-regulated mRNAs (such as TSPOAP1, HS3ST1 and
others) were detected from 388 differentially expressed
mRNAs (Fig. 2B). Heatmaps of the differentially
expressed IncRNAs and mRNAs are presented in Fig. 2C,
D. The differentially expressed mRNAs and IncRNAs
have been listed in supplementary Tables S3 and S4.
Among those differentiation expressed mRNAs, several
thoroughly studied molecules including COL5, MMP2,
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EGR1, and EGR2 were downregulated in the diabetic
RCT samples. We further performed qPCR validation of
these mRNAs, and the results were consistent with RNA-
seq (Supplementary Fig. S1).

Gene ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) enrichment analysis

The function of DEGs was described by GO analysis to
gain deeper insights with terms involved in biological
process, cellular component and molecular function.
The DEGs involved in the biological process were mainly
related to metabolic process (annotated by 84 DEGs) and
immune system process (annotated by 35 DEGs). The
DEGs involved in the cellular component were mainly
related to cell and cell part (both annotated by 154
DEGs). The DEGs involved in molecular function were
mainly related to binding (annotated by 187 DEGs) and
catalytic activity (annotated by 76 DEGs) (Fig. 3).

As for the KEGG analysis, which was conducted to
predict the pathways of DEGs, the KEGG pathways com-
prised cellular processes, environmental information
processing, genetic information processing, human dis-
eases, metabolism, and organismal systems. The differen-
tially expressed mRNAs were enriched in the ferroptosis
(about 8 DEGs, such as CP and TFRC), PI3K-Akt signal-
ing pathway (about 21 DEGs, such as COMP and IL-6),
Wnt signaling pathway (about 8 DEGs, such as NFATC1
and MYC), JAK-STAT signaling pathway (about 7 DEGs,
such as MCL1 and IL-7R) and IL-17 signaling pathway
(about 9 DEGs, such as MMP9 and IL-6) (Fig. 4A, B).

Co-expression network of IncRNA-mRNA

To identify potential functions of the identified IncRNAs
and mRNAs, we structured the IncRNA-mRNA co-
expression network (Fig. 5). 15,221 IncRNA-mRNA pairs
with significant Pearson correlation coefficient values
(p<0.05) were selected. In addition, the top 50 asso-
ciations (ranking with p value) were contributed to the
network diagram containing 47 remarkable expressed
IncRNAs and 38 remarkable expressed mRNAs such as
MMP11 and TSPOAPI. This network showed the overall
prospect of the complex regulatory relationship among
IncRNA and mRNA in RCT patients with DM. In this
network, different IncRNAs can regulate one mRNA,
and meanwhile specific IncRNA can regulate various of
mRNAs, which constructed a complicated regulatory
mechanism.

ceRNA network analysis

Based on the competing endogenous RNA (ceRNA)
hypothesis, IncRNAs can regulate the expression of
mRNAs through acting as molecular sponges of miRNAs
[1]. A series of studies have explored the IncRNAs-miR-
NAs-mRNAs interactions in RCT [1, 18]. In this study,
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Fig. 2 Volcano plots (A, B) and heat maps (C, D) showing expression profiles of INcRNAs and mRNAs between diabetic and nondiabetic patients. A Vol-
cano plot of the differentially expressed IncRNAs. Red points denote up-regulated mRNAs, and blue points denote down-regulated mRNAs. B Volcano
plot of the differentially expressed mRNAs. C Heatmap depicting expression levels of the INcRNAs. The red stand for the up-regulated DEGs and the blue
stand for down-regulated DEGs. D Heatmap depicting expression levels of the differentially expressed mRNAs

a ceRNA network was constructed to investigate poten-
tial interactions among IncRNAs, mRNAs, and miRNAs
(Fig. 6). Basically, we selected top 5 IncRNAs (ranking
with FDR), 2 mRNAs and 142 miRNAs. The most-linked
IncRNA was AC068987.4-201 and had 74 edges, the
most-linked mRNA was TSPOAP1 with 89 edges, and
the most-linked miRNA, hsa-miR-5787, had 7 edges.

Cis and trans targets of IncRNAs

As shown in Fig. 7, the prediction of the potential cis-
and trans- targets of IncRNAs was to dig the functions of
Top 5 differentially expressed IncRNAs with the largest
number of targets. As a result, 5 IncRNAs had 11 cis-reg-
ulatory mRNAs, and 5 IncRNAs had 407 trans-regulatory
mRNAs, respectively. Interestingly, the interactive net-
works are quite complicated since one IncRNA (such as
MSTRG.11738.7) can target many mRNAs (FCGR2A
and HSPAG6). These results provide valuable clues to the

potential regulatory mechanisms of these differentially
expressed IncRNAs in RCT.

TFs role of IncRNAs

We predicted the potential TF targets of Top 200 dif-
ferentially expressed IncRNAs, according to the Pearson
correlation coefficient, to dig their functions in RCT.
Hence, a total of 200 IncRNA-TF pairs were found, cor-
responding to 200 TFs (Fig. 8A). Besides, based on our
fundings in KEGG analysis, we selected STAT, enriched
by differentially expressed IncRNAs, to draw the column
chart and to do further analysis (Fig. 8B).

Discussion

Rotator cuff, consisted of the supraspinatus, infraspina-
tus, teres minor and subscapularis muscles, is recognized
as pivotal role in providing dynamic stabilization of the
glenohumeral joint as well as contributing to shoulder
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Fig. 3 Gene Ontology (GO) enrichment analysis for the differentially expressed mRNAs, in terms of biological process (red), cellular component (green)

and molecular function (blue)

movement [21]. And RCT, especially degenerative tears
are far more frequent and multifactorial in etiology [22].
A series of factors have been evaluated to be risk for pro-
gression of RCT, including smoking, location and age
[23]. Correspondingly, it has been reported that RCT is
most prevalent in the middle-aged and older adults and
becomes the primary reason for shoulder surgery [24].
Recently, there is a growing awareness that rotator cuff
tendinopathy is highly prevalent in diabetic patients [25,
26], and the absence of DM was found to be associated
with better successful recovery after arthroscopic repair
of RCT [27]. Bedi et al. [28] showed that diabetic rats had
significantly less fibrocartilage after repair of RCT in con-
trast with nondiabetic animals. Besides, less organized
collagen at the tendon-bone interface, as well as greater
advanced glycosylation end products, was obviously
observed in the diabetic group, which demonstrated
sustained hyperglycemia impaired tendon-bone heal-
ing postoperatively. Similarly, Chung believed that infe-
rior outcome of rotator cuff healing in patients with DM
might be explained by impaired collagen production and
collagen matrix formation, accumulation of advanced
glycation end products [29]. Besides, the hyperglycemic
condition potentially promoted poor healing of rotator

cuff because of inadequate production of several impor-
tant cytokines or growth factors [29]. As for the gene
expression profiling of patients with RCT, Ren et al. [30]
identified the differentially expressed IncRNAs in inflam-
matory long head of biceps tendon (LHBT), which may
cause chronic RCT. Based on their results, they found
that IncRNA-COL6A4P2, A2MP1 and LOC100996671
may act as a regulator in the process of the inflammation
of LHBT in RCT patients through NFKB2/NF-kappa B
signaling pathway. Furthermore, Zhang et al. [1] com-
prehensively dissected the dysregulated transcriptome
of RCT, including mRNAs, miRNAs, IncRNAs, and cir-
cRNAs. They constructed the IncRNA/circRNA-asso-
ciated dysregulated ceRNA networks and identified
several important ncRNAs among it (hsa_circ_0000722,
hsa-miR-129-5p and hsa-miR-30c-5p). However, there
haven't been such a study to explore the role of DM in
RCT by using RNA-Seq. To our knowledge, this is the
first study to present a systematic dissection of the differ-
ential expression profile of mRNAs and IncRNAs in RCT
between diabetic and non-patients and revealed some
important functional enrichment pathways which may
contribute to the development of diabetic RCT.
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Fig. 4 Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis scores of up-and down regulated INncRNAs and mRNAs. A KEGG
classification of the differentially expressed mRNAs. X-axis label represented annotated genes; Y-axis label represented pathway. B KEGG enrichment of

the differentially expressed mRNAs. The x-axis called gene ratio represented the enrichment degree and the y-axis represented pathway

In the current study, we successfully obtained the
transcripts that were dysregulated in diabetic patients
with RCT through identifying differentially expressed
IncRNAs and mRNAs, compared with nondiabetic
patients. The GO and KEGG pathway enrichment anal-
yses indicated that several pathways were potentially
associated with DM in RCT. GO analysis was applied to
annotate the biological processes of DEGs, the results
showed that they were related to metabolic process and

immune system process. It is unsurprising that enrich-
ment analysis of these dysregulated IncRNAs and
mRNAs was associated with metabolic process in dia-
betic patients. Correspondingly, PI3K/AKT pathway has
been reported to be identified as therapeutic targets of
obesity and T2DM [31].

Collagen is the main components in the native tendon
matrix. Our results demonstrated that the mRNA expres-
sion of collagen V and collagen X were downregulated in
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Fig.5 The INcRNA-mRNA co-expression network suggested an inter-regulation of INncRNAs and mRNAs. The rhombuses denote IncRNAs and the ellipses

denote mRNAs (green: downregulated genes; red: upregulated genes)
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the diabetic RC tendon tissue. Collagen V is expressed in
native tendon tissue and plays a critical regulatory role in
maintaining normal tendon structure and function [32].
It was reported that collagen V knockdown impacted col-
lagen fibril size and shape during tendon healing [33].
In addition, the expression of collagen X is found in the
fibrocartilage of tendon-to-bone interface and persists
through maturity and plays a role in the tissue mineral-
ization [34]. Taken together, the down regulation of colla-
gen V and collagen X in the diabetic RC tendon supports

the in vivo histological results of significantly less fibro-
cartilage and organized collagen at the tendon-bone
interface within the healing enthesis of diabetic animals
[28].

Early growth response 1 and 2 (Egrl/2) are important
transcription factors act as molecular sensors for guid-
ing the final steps of tendon maturation and production
of collagens and proteoglycans [35]. It has been proved
that Egrl and?2 play a critical role in directing tenogenic
differentiation and promoting tendon repair [36]. Tao ta
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al. reported that Egr-1 induced tenogenic differentiation
of tendon-derived stem cells and enhanced rotator cuff
repair after injury in a rabbit model [37]. In the current
study, both Egrl and Egr2 were down-regulated in the
diabetic RCT samples. This finding is consistent with the
results reported by Wu et al. [38]. In their study, results
indicated that high glucose alters tendon homeostasis
through downregulation of the AMPK/Egrl pathway.
The role of immune inflammatory response in RCT
should also be paid attention. Based on Chung et al.
[29] study, increased glucose level could lead to induce
inflammatory cytokines in torn rotator cuff tendon tissue
of diabetic patients, especially MMP9 and IL-6. However,
Lewandowsk et al. [39]reported that the concentrations
of MMP-2 and MMP-9 were lower in subjects with type
2 DM than in non-diabetic controls. In the current study,
MMP-2 and MMP-11 were found to be down-regulated
in the diabetic RC tendon. Based on the IncRNA-mRNA
co-expression network analysis, MMP11, which highly
correlated with LINC01561-201, has been reported to
strikingly protect against T2DM, while MMP11 deficient
mice presented hallmarks of metabolic syndrome [40].
It was relevant to our data since MMP11 was apparently
downregulated in diabetic patients. Viewed from above,
regulation of MMPs appears to be complex in diabetic
conditions, further deeper researches need to be carried

out to decipher the role of MMPs in the pathological pro-
cess of diabetic rotator cuff tear. In addition, our results
indicated an up-regulation of IL-16, which is a pro-
inflammatory pleiotropic cytokine in the diabetic group.
Refer to literature, IL-16 gene polymorphism was corre-
lated with type 2 DM [41].

The KEGG pathway analysis showed that DEGs were
highly enriched IL-17 signaling pathway. In fact, IL-17 A
is a pro-inflammatory cytokine and has been shown to
be upregulated in early human tendinopathy. Mimpen et
al. [42] demonstrated that IL-17 A and its receptors were
present in torn supraspinatus tendon tissue. Besides, they
treated tendon-derived fibroblasts with IL-17 cytokines
and confirmed that they induced a direct response and
activated diverse pro-inflammatory signaling pathways,
which indicated the IL-17 acted as amplifiers of tendon
inflammation and should be target as potential therapeu-
tic role in tendinopathy. Millar et al. [43] found that the
expression of IL-17 A was increased in early tendinopa-
thy. Tenocytes treated with IL-17 A presented a series of
changes including increased type III collagen. It has been
reported that the proportion of type III collagen would
be increased in RCT [44], and the increasing expression
ratio of type-III to type-I collagen can affect the biome-
chanical properties of rotator cuff tendons [45]. These
findings indicate that IL-17 signaling pathway may be
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a feature in diabetic RCT and can be conducive to the
occurrence of RCT. Furthermore, the role of ferroptosis,
which was enriched in this study, in tendon injury has
been investigated, since Wu et al. [46] used its inducer
RSL3 to inhibit the tenogenesis in vitro and in vivo. As
for Wnt signaling pathway, Chen et al. [47] found that
enhanced expression of Wnt5a in aged TSPCs caused
canonical to noncanonical Wnt signaling shift, and they
demonstrated that Wnt5a regulated TSPCs senescence
via JAK-STAT signaling pathway, which was also involved
in KEGG analysis. Conversely, genetic knockdown of
JAK2 or STAT3 strongly alleviated TSPCs senescence of
aged TSPCs [48]. Therefore, we screened these, enriched
pathways that were involved in complicated process
related to tendon disorders or inferior properties of ten-
don. Taken together, these bioinformatically predicted

signal pathways interfered by these IncRNAs could serve
as a reference for future studies of diabetic RCT and
should be validated in further experiments.

TSPOAP1 was strongly linked with HAGLR-207 and
was also the most-linked mRNA in ceRNA network. In
fact, it mediates the inflammatory feedback through
TNFR1 and downstream NF-kB, a transcription factor
that promotes inflammation [49] and has been reported
to involve in tendinopathic and ruptured Achilles tendon
[50]. Furthermore, it plays a central role in inflammation
by modulating the response of NLRP3 inflammasome,
which is induced by TLR ligands, such as lipopolysaccha-
ride via NF-kB signaling [49]. Since it was upregulated in
diabetic RCT patients, investigating the role of TSPOAP1
mediated inflammation could provide new directions for
in-depth studies of DM affecting RCT.
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Zhang et al. [1] has reported that several miRNAs, such
as hsa-miR-129-5p and hsa-miR-30c-5p which were dys-
regulated in inflammation-related diseases, may involve
in inflammatory response in RCT. In our study, hsa-
miR-5787 was one of the miRNAs identified in ceRNA
network. And it was reported to involve in the process
of glucose metabolism [51]. Meanwhile, it can attenuate
LPS/TLR4-mediated inflammatory response via NF-kB
in ischemic cerebral infarction [52]. We also found that
one of its target mRNAs, HS3ST1, was reported to regu-
late Glucose-induced insulin secretion [53], and HS3ST1-
/- mice presented a strong proinflammatory phenotype
that was unresponsive to anti-inflammatory activity of
plasma antithrombin [54], which indicated that hsa-
miR-5787 play an important role in regulating inflamma-
tory responses in diabetic RCT patients.

We also predicted cis- and trans- targets of Top 5 differ-
entially expressed IncRNAs and found that the function
of IncRNAs was complicated, since one IncRNA (such as
MSTRG.204593.24) can target many mRNAs, and some
mRNAs (such as KLHL29) can be regulated by various
IncRNAs. In fact, different regions of human rotator cuff
tendon specimens have variable balance between apop-
totic and inflammatory processes, which is controlled by
pro-and anti-apoptotic mechanisms and signals [55]. As
for TFs, we found that the STAT protein family mem-
bers may play important roles in RCT development,
trans-regulated by differentially expressed IncRNA in
diabetic patients. Importantly, STAT proteins can medi-
ate apoptosis through a variety of pathways, mainly due
to transcriptional activation of genes that mediate or
trigger the cell death process (such as Bcl-xL, caspases,
Fas and TRAIL) [56]. Significantly, high glucose has been
demonstrated to induce cell apoptosis and suppress the
tendon-related markers expression of tendon-derived
stem cells in vitro [57]. And the high level of apoptosis in
diabetic patients might impede tendon repair after injury
[58]. Furthermore, the impact of apoptosis in rotator cuff
disease has also been investigated. Yuan et al. [59] found
that the number of cells undergoing apoptosis, which are
mainly fibroblast-like cells, in the torn edges of rotator
cuff tendons is twice more than that of normal tendons.
Interestingly, the formation of advanced glycation end
products, caused by DM, may promote cellular apopto-
sis in tendons via the expression of pro-apoptotic cyto-
kine [60]. In conclusion, differentially expressed IncRNAs
trans-regulate STAT in diabetic patients, thereby medi-
ating apoptosis pathway and affecting the progression
of RCT. Crucially, each member of STAT protein family
has a unique role in apoptosis, since STAT1 activation
is pro-apoptotic, but conversely, STAT 5 promotes cell
survival, whereas STAT3 activation can have positively
or negatively regulates cell survival, which depends on
the stimulus and cell type [56]. Hence, the specific role
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of STAT proteins in regulating the apoptosis pathway
and thus affecting the progression of RCT needs further
investigation.

Albeit we first systematically profile the differentially
expressed IncRNA and mRNA in RCT between diabetic
and nondiabetic patients and identified some signaling
pathways as well as the potential mechanism, this study
still has several limitations. First, this study is based on a
relatively small sample size of three pairs of torn supra-
spinatus tendon samples from patients with/without
DM, which may have limited generalizability and cause
the possibility of presenting false negative results in some
genes. Addition to this, the precise mechanism of how
DM affecting RCT is not deciphered. Future trials with
larger sample size and in-depth molecular experiments
are needed to be carried out to reveal the precise molec-
ular association between DM and RCT.

Conclusion

In summary, we first constructed and analyzed the dif-
ferential expression patterns of IncRNAs and mRNAs in
diabetic and nondiabetic RCT patients. Bioinformatic
analysis suggested some signaling pathways regarding
inflammation and apoptosis were involved in diabetic
RCT. Our findings offer a new perspective on the asso-
ciation between DM and progression of RCT. Further
in-depth molecular experiments are still demanded to
validate our findings decipher the underlying precise
molecular mechanism.
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