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Abstract 

Background  Accurately predicting the occurrence of imminent new vertebral fractures (NVFs) in patients with 
osteoporotic vertebral compression fractures (OVCFs) undergoing vertebral augmentation (VA) is challenging with yet 
no effective approach. This study aim to examine a machine learning model based on radiomics signature and clinical 
factors in predicting imminent new vertebral fractures after vertebral augmentation.

Methods  A total of 235 eligible patients with OVCFs who underwent VA procedures were recruited from two inde-
pendent institutions and categorized into three groups, including training set (n = 138), internal validation set (n = 59), 
and external validation set (n = 38). In the training set, radiomics features were computationally retrieved from L1 or 
adjacent vertebral body (T12 or L2) on T1-w MRI images, and a radiomics signature was constructed using the least 
absolute shrinkage and selection operator algorithm (LASSO). Predictive radiomics signature and clinical factors were 
fitted into two final prediction models using the random survival forest (RSF) algorithm or COX proportional hazard 
(CPH) analysis. Independent internal and external validation sets were used to validate the prediction models.

Results  The two prediction models were integrated with radiomics signature and intravertebral cleft (IVC). The RSF 
model with C-indices of 0.763, 0.773, and 0.731 and time-dependent AUC (2 years) of 0.855, 0.907, and 0.839 (p < 0.001 
for all) was found to be better predictive than the CPH model in training, internal and external validation sets. The RSF 
model provided better calibration, larger net benefits (determined by decision curve analysis), and lower prediction 
error (time-dependent brier score of 0.156, 0.151, and 0.146, respectively) than the CPH model.

Conclusions  The integrated RSF model showed the potential to predict imminent NVFs following vertebral augmen-
tation, which will aid in postoperative follow-up and treatment.
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Background
Fractures due to osteoporosis are becoming more com-
mon in women over 55  years and men over 65  years, 
resulting in significant bone-related morbidities, 
increased mortality, and a burden on the healthcare sys-
tem [1]. Vertebral fractures (VFs) account for about 50% 
of all osteoporotic fractures annually and are the most 
prevalent complication of osteoporosis [2, 3]. Vertebral 
augmentation (VA) procedures, also known as balloon 
kyphoplasty (BKP) or vertebroplasty, are a minimally 
invasive surgery for symptomatic osteoporotic vertebral 
compression fractures (OVCFs), which can facilitate 
biomechanical stability and functional recovery in the 
shorter term and may reduce the mortality rate com-
pared to those treated non-surgically [4, 5]. However, 
the occurrence of new vertebral fractures (NVFs) within 
two years of VA, referred to as “imminent fractures”, 
was reported in about 18.4–34.8% of patients [6–8]. 
Additional VFs occurred sooner in VA patients than in 
patients with non-surgical management [9]. Moreover, 
the morbidity of new vertebral fractures was associated 
with increased mortality [10]. Predicting imminent NVFs 
after VA within two years is critical for patient prognosis 
and selection of appropriate therapy.

Magnetic resonance imaging (MRI) is the most 
appropriate imaging modality for evaluating patients 
with new OVCFs. T1-w and T2-w MRI images have 
distinct signal intensity patterns that can reflect path-
ological changes [11]. Radiomics is a non-invasive 
reproducible method for extracting high-throughput 
quantitative image features from medical diagnostic 
images using data characterization algorithms or sta-
tistical analysis, and it has demonstrated promising 
results in the diagnosis of osteoporosis and prediction 
of vertebral fracture occurrence [12–14]. The radiom-
ics features derived from T1-w imaging reflecting the 
spatial heterogeneity of vertebral bone marrow linked 
to skeletal fragility has been investigated [15]. MRI is 
integral to the routine management of patients with 
NVFs, and the additional value of radiomics based on 
MRI for predicting the risk of NVFs after VA within 
two years warrants further investigation and clinical 
application.

The traditional COX proportional hazard (CPH) 
model has been frequently utilized to identify risk fac-
tors for predicting the early prognosis of patients [16, 
17]. However, the approach is based on the assumption 
of linearity and cannot describe the nonlinear and com-
plex relationships that may occur in biological systems, 
resulting in poor predictive performance [18, 19]. The 
random survival forest (RSF) model, a novel machine 
learning-based algorithm, has been shown to accurately 

deal with potentially nonlinear variables and censored 
survival data [20, 21].

This study aimed to develop and validate an MRI-based 
radiomics RSF model and compare the performance of 
the RSF model with the CPH model in predicting immi-
nent NVFs for patients after VA.

Methods
Study participants
The current multi-institutional study using anonymous 
data was approved by the institutional review board of 
each participating institution, and the requirement for 
written informed consent was waived. A total of 235 
eligible patients from the Fourth Affiliated Hospital 
of Guangzhou Medical University and Huizhou Cen-
tral People’s Hospital were enrolled. Patients treated 
at the Fourth Affiliated Hospital of Guangzhou Medi-
cal University between July 2013 and March 2020 were 
assigned in a 7:3 ratio to the training and internal vali-
dation sets, while 38 patients treated at Huizhou Central 
People’s Hospital between October 2014 and September 
2020 were assigned to the external validation set. Inclu-
sion criteria included: i) female patients aged > 50  years 
and male patients aged > 60 years, ii) patients diagnosed 
as acute OVCFs based on the presence of bone marrow 
edema on preoperative spinal MRI and then received VA 
procedures. The exclusion criteria included: (1) patients 
with fractures caused by infection, tumor, or high-energy 
trauma; (2) patients who declined to follow-ups or died 
during the follow-up period.

Baseline clinical data (age and sex) and information on 
VA procedures (number of treated vertebrae, location 
of treated vertebrae, and surgical procedures) were col-
lected from the medical records of both the hospitals. 
After analyzing all the MRI scans, two radiologists (radi-
ologists 1 and 2 with 25 and 15  years of experience in 
musculoskeletal MRI interpretation, respectively) docu-
mented MRI findings, such as the presence of previous 
VF, previous multiple VFs, and intravertebral cleft (IVC). 
An IVC is a cavity within the vertebral body typically 
filled with gas or liquid [22]. The flowchart of this study is 
depicted in Fig. 1(a).

Image acquisition
All enrolled patients underwent preoperative spinal MRI 
with a 1.5  T MR scanner within a week before surgery. 
The detailed MR scan protocols are presented in Supple-
mentary Table 1. All enrolled patients were followed up 
every three months postoperatively until NVFs occurred 
or the two-year follow-up period ended, whichever came 
first. During the follow-up period, patients who suffered 
from recurrent low back pain or difficulty walking were 
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recalled to the hospital for a spinal MRI at any time. The 
postoperative spinal MRI was done at the last follow-up 
visit to determine whether NVFs occurred. Furthermore, 
based on the results of the postoperative spinal MRI, the 
patients were divided into the NVFs and without NVFs 
groups.

Volumes‑of‑interest segmentation and radiomics feature 
extraction
The regions of interest (ROIs) of the L1 vertebral body 
were segmented slice-by-slice using the free and open-
source 3D Slicer software (Harvard Medical School, 
version 4.13.0) by two radiologists who were blinded to 
the patient’s outcomes to reduce the operator’s biases. If 
previous VFs existed or were treated in the L1 vertebral 
body, an adjacent vertebral body (T12 or L2) was chosen. 
Chronic fractured vertebrae, characterized by a 25%  or 
more reduction in vertebral height but no abnormal sig-
nals  in spinal  MRI, were also excluded [23]. Moreover, 
the volumes of interest (VOIs) of selected vertebral bod-
ies were constructed by stacking up the corresponding 
ROIs. Figure 1(b) depicts the radiomics workflow.

We followed a two-step procedure to account for the 
impact of image preprocessing methods. All images 
were resampled to a voxel size of 1 × 1 × 1 mm to stand-
ardize the voxel spacing, and z-score normalization was 
performed to validate the repeatability of the feature 
extraction. A total of 1158 radiomics features, including 
first-order features, textural features, shape-based fea-
tures, and wavelet features, were extracted from every 
VOI using the pyradiomics platform (version 3.0.1) 
implanted in Python software.

Feature selection and radiomics signature construction
The intraclass correlation coefficient (ICC) was used to 
determine the inter-observer variability. First, 70 ver-
tebrae were randomly selected to evaluate the inter-
observer reliability of radiomics features. Second, the 
radiomics characteristics with ICCs > 0.9 were consid-
ered reliable and included in the subsequent analysis. 
Furthermore, the Mann–Whitney U tests were per-
formed to determine whether the two groups had sta-
tistical differences in radiomics features. The features 
with p-value > 0.05 were excluded. The optimal features 

Fig. 1  The study flowchart and the workflow of radiomics. a The flow chart for the three data sets in the study. b The 3-step radiomics workflow 
presents the procedure of radiomics analysis: image acquisition, volume of interest (VOI) segmentation, and radiomics feature extraction
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subset was determined in the training set using the 
most extensively used least absolute shrinkage and 
selection operator (LASSO) regression algorithm [24]. 
The penalty parameter (λ) was tuned using fivefold 
cross-validation. A radiomics signature was developed 
based on the radiomics score, which was calculated 
for each patient using a linear combination of included 
features weighted by their respective LASSO coeffi-
cients. Furthermore, a stratified analysis of all enrolled 
patients within NVFs and without NVFs groups was 
also performed.

Construction and performance assessment 
of the prediction models
The discriminatory power of individual variables, includ-
ing radiomics signature, MRI findings, and clinical varia-
bles, was first assessed before constructing the prediction 
models, using time-dependent areas under the receiver 
operating characteristic curve (AUC). Two widely used 
methods were conducted in the training set to identify 
final risk-associated variables: RSF algorithm determined 
from ensemble learning of decision trees and CPH clus-
tering analysis based on the p-value ranking. The selected 
variables were then fused into a single prediction model 
using the RSF algorithm or CPH analysis. Moreover, the 
reliable predictive performance of models was trained 
with fivefold cross-validation.

We used five consensus methods to assess model per-
formance in different data sets. Model discrimination 
was evaluated using Harrell’s C-index and time-depend-
ent AUC, and the dynamic time-dependent measure 
was measured to be two years. Furthermore, calibration 
curves of two models were constructed in all sets, dis-
playing the estimated vs. actual 2-year risk probability 
of imminent NVFs. Decision curve analysis (DCA) was 
used to assess clinical usefulness, which was demon-
strated by calculating the net benefits at different thresh-
old probabilities. Overall prediction performance was 
evaluated using time-dependent Brier scores.

Statistical analysis
All statistical analyses were performed using free Python 
software (version 3.7.1) and SPSS (version 26.0). The 
mean (standard deviation, SD) was used to describe nor-
mally distributed continuous variables and was compared 
using the Student t-test, whereas the median was used for 
non-normally distributed continuous variables and was 
compared using the Mann–Whitney U test. Categori-
cal variables were represented by number (%). Detailed 
information about the LASSO logistic regression algo-
rithm was provided in the “LassoCV” package. Models 

were constructed using the “COXPHSurvivalAnalysis” 
and “RandomSurvivalForest” modules. Statistical signifi-
cance was determined by a two-sided p-value < 0.05.

Results
Patient characteristics
Table  1 summarises the details of NVFs-associated risk 
factors of the patients. Among all 235 patients, NVFs 
were present in 51.9% of patients (122 of 235). The 
median duration of follow-up was 17  months for the 
training set, 15 months for the internal validation set, and 
18 months for the external validation set. The occurrence 
of NVFs was similar across the three data sets (P = 0.166, 
log-rank test).

Feature selection and radiomics signature construction
A total of 1158 radiomics features were extracted from 
each VOI of the selected vertebral body on T1-w MRI 
images. The stability of the 1158 features was first ranked 
using ICCs, and 677 reliable features were then selected 
for subsequent analyses. Following the Mann–Whitney 
U test, 514 features were found to be significantly dif-
ferent between the NVFs and without NVFs groups. 
Among 514 features in the training set, ten key radi-
omics features with nonzero coefficients were selected 
using the LASSO logistic regression algorithm (Supple-
mentary Fig. 1(a) and (b)). Finally, these ten independent 
radiomics features were used to generate the radiomics 
signature, and their corresponding coefficients are pre-
sented in Supplementary Table 2.

According to the maximum Youden index in all sets, 
0.527 was selected as the optimal radiomics score cut-off 
value. All patients were categorized into low- or high-risk 
groups based on the optimal cut-off value. The waterfall 
plot (Supplementary Fig.  1(c)) demonstrated the distri-
bution of radiomics scores among all enrolled patients 
divided into different groups, with the dividing line 
drawn at the cut-off value.

Construction of the prediction models
Table 2 depicts the time-dependent AUC (2 years) of dif-
ferent factors. The time-dependent AUC (2 years) of the 
radiomics signature was 0.805 (p < 0.001), which was con-
siderably higher than other variables in predicting immi-
nent NVFs after VA. Two MRI findings, including the 
presence of IVC and previous vertebral fracture, and age 
also demonstrated a moderate predictive performance 
(time-dependent AUC (2 years) = 0.651, 0.636, and 0.665, 
respectively).

The radiomics signature and the presence of IVC were 
the two factors most strongly correlated with the risk of 
imminent NVFs of the CPH analysis (Table 3). Further-
more, the two most critical variables of the RSF algorithm 



Page 5 of 10Jiang et al. BMC Musculoskeletal Disorders          (2023) 24:472 	

(Fig. 2) were the same as those of the CPH model. Radi-
omics signature and the presence of IVC were identified 
as independent risk factors in our study using the RSF 
algorithm or CPH analysis in the training set, and two 
models incorporating these two independent risk factors 
were constructed.

Assessing and comparing models’ performance
Harrell’s C-index and time-dependent AUC (2  years) 
were used to compare the model discrimination. In train-
ing, internal, and external validation sets, the RSF model 
was found to be more discriminational with C-index of 
0.763, 0.773, and 0.731, respectively, compared to the 
CPH model (0.711, 0.711, and 0.707, respectively) when 
cross-validation was performed. As shown in Fig. 3, the 
time-dependent AUC (2  years) of the RSF model were 
0.855, 0.907, and 0.839 (p < 0.001 for all) in three data 
sets, which were greater than the CPH model (time-
dependent AUC (2  years) = 0.816, 0.885, 0.832, respec-
tively, p < 0.001 for all).

Table 1  Patient characteristics

Except where indicated, data are numbers of patients, with percentages in parentheses

NVF new vertebral fracture, VF vertebral fracture, VP vertebroplasty, BKP Balloon Kyphoplasty, TL-Junction The treated vertebrae located at the level of T12-L2, IVC 
intravertebral cleft

Training set (n = 138) Internal validation set (n = 59) External validation set (n = 38)

Characteristic without NVFs NVFs without NVFs NVFs without NVFs NVFs

Age, yr

  Mean (± SD) 70.9 (± 8.6) 75.8 (± 8.3) 72.4 (± 10.2) 75.3 (± 7.8) 74.8 (± 6.8) 78.1 (± 7.4)

Sex

  Male 16 (25.0) 14 (18.9) 7 (25.9) 9 (28.1) 4 (17.4) 3 (20.0)

  Female 48 (75.0) 60 (81.1) 20 (74.1) 23 (71.9) 19 (82.6) 12 (80.0)

Surgical procedure

  VP 32 (50.0) 49 (66.2) 20 (74.1) 23 (71.9) 17 (73.9) 10 (66.7)

  BKP 32 (50.0) 25 (33.8) 7 (25.9) 9 (28.1) 6 (26.1) 5 (33.3)

Number of treated vertebra(e)

  1 55 (85.9) 63 (85.1) 21 (77.8) 22 (68.8) 21 (91.3) 12 (80.0)

   ≥ 2 9(14.1) 11 (14.9) 6 (8.1) 10 (31.2) 2 (8.7) 3 (20.0)

Location of treated vertebra(e)

  non-TL-Junction 19 (29.7) 35 (47.3) 5 (18.5) 14 (43.8) 7 (30.4) 5 (33.3)

  TL-Junction 45 (70.3) 39 (52.7) 22 (81.5) 18 (56.2) 16 (69.6) 10 (66.7)

IVC

  Negative 60 (93.8) 47 (63.5) 25 (92.6) 25 (78.1) 19 (82.6) 9 (60.0)

  Positive 4(6.2) 27 (36.5) 2 (7.4) 7 (21.9) 4 (17.4) 6 (40.0)

Previous VF

  Negative 46 (71.9) 33 (44.6) 22 (81.5) 12 (37.5) 19 (82.6) 9 (60.0)

  Positive 18(28.1) 41 (55.4) 5 (18.5) 20 (62.5) 4 (17.4) 6 (40.0)

Previous Multi-VF

  Negative 57 (89.1) 52 (70.3) 26 (96.3) 25 (78.1) 22 (95.7) 13 (86.7)

  Positive 7 (10.9) 22 (29.7) 1 (3.7) 7 (21.9) 1 (4.3) 2 (13.3)

Table 2  The time-dependent AUC (2  years) of different factors 
associated with NVFs

CI confidence interval, IVC intravertebral cleft, VF vertebral fracture, AUC​ areas 
under the receiver operating characteristic curve
a P < 0.05

factors time-
dependent 
AUC (2 years)

95% CI P

Radiomics signature 0.805 0.729, 0.867  < 0.0001a

Age 0.665 0.580, 0.743 0.0004a

Sex 0.530 0.444, 0.616 0.7324

Surgical procedure 0.581 0.494, 0.664 0.0532

Number of treated 
vertebra(e)

0.504 0.418, 0.590 0.8944

Location of treated 
vertebra(e)

0.588 0.501, 0.671 0.0318a

IVC 0.651 0.565, 0.730  < 0.0001a

Previous VF 0.636 0.559, 0.726 0.0008a

Previous Multi-VF 0.594 0.507, 0.677 0.0046a
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In the three data sets, the calibration curves of the RSF 
model showed better overall agreement with the actual 
outcome in the probability of imminent NVFs than the 
CPH model (Fig. 4). In the DCA, the RSF model demon-
strated a higher net benefit over CPH model for a wide 
range of threshold probability in the training set, indicat-
ing its better clinical usefulness. Moreover, comparable 
results were observed when DCA was performed in two 
validation sets (Fig.  5). In terms of overall performance, 
the time-dependent Brier score (2 years) of the RSF model 
(0.156, 0.151, and 0.146, respectively) was lower than the 
CPH model (0.191, 0.179, and 0.156, respectively).

Discussion
A machine learning-based risk prediction model incor-
porating radiomics signature and IVC was developed 
and validated in the current study. According to our 

knowledge, this is the first study to develop a machine 
learning model using radiomics features extracted from 
MRI for individualized risk prediction of NVFs after 
VA within two years. The RSF model is an innovative 
machine learning model specifically designed for risk 
analysis. The survival tree, which is the foundation of the 
RSF model, enables the modification of Gini impurities 
of node partitioning, resulting in improved model per-
formance. In contrast, the CPH model relies on certain 
assumptions. Compared to the traditional risk prediction 
CPH model, the machine learning-based RSF model pre-
sented a better fit to predict individual risk of imminent 
NVFs after VA in terms of discrimination, calibration, 
and clinical usefulness.

The risk of a subsequent fracture is particularly high 
following an acute OVCF and wanes progressively with 
time [25–27]. To facilitate the individualized treatment 
of OVCF patients after VA procedures, identification of 

Table 3  Uni-variate and Multi-variable COX Analysis of NVFs-associated factors in the training set

CI confidence interval, VF vertebral fracture, IVC intravertebral cleft
a P < 0.05

Uni-variate analysis Multi-variate analysis

factors Hazard Ratio (95% CI) P Hazard Ratio (95% CI) P

Radiomics signature 13.682 (7.678, 25.802)  < 0.001a 8.753 (2.746, 17.735) 0.001a

Age 1.040 (1.012, 1.069) 0.005a 1.002 (0.971, 1.034) 0.893

Sex 0.980 (0.548, 1.754) 0.946 - -

Surgical procedure 1.534 (0.947, 2.485) 0.082 - -

Number of treated vertebra(e) 0.780 (0.410, 1.482) 0.448 - -

Location of treated vertebra(e) 1.631 (1.032, 2.576) 0.036a 1.348 (0.821, 2.212) 0.238

IVC 0.318 (0.197, 0.516)  < 0.001a 0.422 (0.255, 0.698) 0.001a

Previous VF 0.488 (0.308, 0.774) 0.002a 0.834 (0.453, 1.534) 0.560

Previous Multi-VF 0.498 (0.302, 0.821) 0.006a 1.065 (0.567, 2.000) 0.845

Fig. 2  The variable importance plot based on RSF algorithm. RSF = random survival forest, IVC = intravertebral cleft, VF = vertebral fracture
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imminent NVFs occurrence should be performed, and 
effective anti-osteoporotic agents should be considered 
to prevent these imminent fragility fractures [28]. MRI 
is the gold standard imaging modality for evaluating 
patients with new OVCFs, which is routinely performed 
before VA procedures [29]. Clinicians may be able to 
treat and manage patients at risk more effectively if they 
use preoperative MRI data to predict the onset of immi-
nent NVFs [30].

By converting medical images into mineable high-
dimensional data, radiomics features have been dem-
onstrated to reflect the intrinsic characteristics of 
osteoporosis and vertebral fractures [31–33]. In the 
present study, T1-w MRI images were analyzed to 
identify the most significant predictive radiomics fea-
tures, and a radiomics signature was developed from 
these radiomics features. According to time-dependent 
AUC (2  years), radiomics signature exhibited the best 

Fig. 3  Comparison of time-dependent AUC (2 years) between the RSF model and CPH model. a training set, b internal validation set, c external 
validation set. AUC = areas under the receiver operating characteristic curve

Fig. 4  Calibration curves of two models in the training set (a), internal validation set (b) and external validation set (c). The x axis and y axis show 
the predicted probabilities and actual probabilities of having NVFs, respectively. The diagonal gray dotted line represents perfect prediction, and the 
solid line represents the performance of the model. The solid line has a closer fit to the dotted line, which represents a better calibration

Fig. 5  Decision curve analyses of two models in the training set (a), internal validation set (b) and external validation set (c). The net benefit was 
plotted versus the threshold probability. The black and gray lines represent the hypothesis that all patients and no patients suffered NVFs after VA, 
respectively
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predictive performance, providing new insights into 
predicting imminent NVFs after VA. Moreover, the 
predictive performance of the radiomics signature was 
found to be superior to other factors in the RSF algo-
rithm. The CPH analysis also showed that the radiom-
ics signature was an independent predictive factor for 
imminent NVFs after VA. Indeed, when patients were 
categorized into low- or high-risk groups according 
to their optimal radiomics score cut-off value (0.527) 
based on the radiomics signature, the high-risk group 
(radiomics score > 0.527) had a higher probability of 
experiencing NVFs, identifying 77.9% (95/122) of the 
patients with NVFs. This categorization enables iden-
tification of patients that may require additional treat-
ment after VA. It was reported that the presence of IVC 
was an important risk factor for subsequent fracture 
[34, 35]. IVC was identified as an independent pre-
dictor of imminent NVFs after VA, in addition to the 
radiomics signature. Furthermore, the radiomics sig-
nature and the presence of IVC in our RSF model can 
be determined from routine MRI examinations. There-
fore, the prediction model is easy to use without adding 
additional cost or burden to the patients.

In a recent radiomics study, radiomics features were 
extracted from T11-L5 segments on MRI images and 
fused to a radiomics signature that can predict NVFs 
after VA [14]. However, the shape and fracture incidence 
of vertebrae at different segments differ, which may affect 
the accuracy of model predictions when all are included 
in the study [36, 37]. The L1 vertebral body was primar-
ily selected because it is  included on all standard spinal 
MRI examinations, substantially broadening its potential 
applications in clinical practice. And the imaging fea-
tures of L1 vertebrae has been proved that it can differ-
entiated osteoporosis/osteopenia from normal BMD, and 
can predict the risk of fragility vertebral fracture [38, 39]. 
Our model was based only on the L1 or adjacent verte-
bral body (T12 or L2) segmentation, which is more con-
venient than the T11-L5 segmentation. The study also 
had the advantage of approaching progression predic-
tion through time-to-event data sets, which allowed us to 
obtain precise risk estimates.

There are certain limitations in the present study. 
First, the external validation set was relatively small, 
and a larger set is required to confirm the performance 
of the present RSF model. Second, the radiomics signa-
ture was constructed only based on T1-w MRI images. 
More MRI-based studies, such as short-time inversion 
recovery and chemical shift sequences, are needed in the 
future to accrue high-level evidence for clinical applica-
tion. Third, our VOIs were manually outlined, which may 
have resulted in observer bias and increased workload. 

Convenient automatic segmentation of vertebrae will be 
investigated in the future.

Conclusion
In conclusion, we developed and validated a robust RSF 
model to predict imminent NVFs after VA. This novel 
tool could help clinicians with postoperative follow-up 
and individualized treatment.
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