
Liu et al. BMC Musculoskeletal Disorders          (2022) 23:490  
https://doi.org/10.1186/s12891-022-05458-8

REVIEW

The progress in quantitative evaluation 
of callus during distraction osteogenesis
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Abstract 

The manual monitoring of callus with digital radiography (X-ray) is the primary bone healing evaluation, assessing the 
number of bridged callus formations. However, this method is subjective and nonquantitative. Recently, several quan-
titative monitoring methods, which could assess the recovery of the structure and biomechanical properties of the 
callus at different stages and the process of bone healing, have been extensively investigated. These methods could 
reflect the bone mineral content (BMC), bone mineral density (BMD), stiffness, callus and bone metabolism at the 
site of bone lengthening. In this review, we comprehensively summarized the latest techniques for evaluating bone 
healing during distraction osteogenesis (DO): 1) digital radiography; 2) dual-energy X-ray scanning; 3) ultrasound; 
4) quantitative computed tomography; 5) biomechanical evaluation; and 6) biochemical markers. This evidence will 
provide novel and significant information for evaluating bone healing during DO in the future.
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Background
In the 1850s, Dr. Ilizarov put forward the theory of 
"tension-stress" and the biomechanical principle of dis-
traction osteogenesis (DO) [1]. The regeneration signal 
system of living tissue is activated with a continuous, 
stable and slow distraction force, which stimulates the 
division of cells and tissue regeneration. Under a physio-
logical stress force, bone and its attached muscles, fascia, 
blood vessels and nerves will also grow synchronously. 
This technique could repair and reconstruct severely 
damaged limb tissues through self-repair and regenera-
tion and treat complex orthopedic disorders (challeng-
ing to treat by traditional orthopedic techniques) [2]. DO 
is an effective and decent treatment for significant bone 
defects, limb shortening, bone nonunion, severe limb 
deformities, and severe neurovascular skin injuries [3].

However, the complications of DO should not be 
ignored, such as nonunion or delayed healing of bone, 
distraction injury of soft tissue, issues of force lines in 
lengthening areas and dislocation of adjacent joints [4, 5]. 
Indeed, it is not easy to complete limb lengthening and 
achieve desired clinical results. Therefore, it is imperative 
to monitor the process of bone lengthening, especially for 
the callus in the lengthening area. Monitoring bone heal-
ing can help clinicians better identify how well or poorly 
the new bone is healing to take early action (e.g., slowing 
down lengthening) to promote bone healing. One of the 
disadvantages of using an external fixator is that it is less 
comfortable and affects the quality of life. Prolonged use 
of an external fixator increases the chance of nail tract 
infection and osteoporosis. Monitoring the maturation 
of new bone can guide clinicians to remove the external 
fixator as early as possible, which is essential to prevent 
degenerative bone fractures and deformation and pro-
vide clinicians with a reference standard for removing the 
external fixator. It would be interesting to explore more 
accurate, convenient and inexpensive quantitative moni-
toring methods to facilitate proper decision-making by 
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clinicians and benefit patients; thus, monitoring the bone 
healing process would be meaningful.

Currently, a variety of evaluation methods have been 
employed to monitor bone lengthening, including 
X-ray image analysis, dual-energy X-ray absorptiom-
etry (DXA) quantitative computed tomography (QCT), 
ultrasound, biomechanical evaluation and biochemical 
markers (Fig. 1) [6, 7]. An X-ray examination is the most 
traditional and standard monitoring method [8]. It was 
always judged by the number, thickness of bone texture 
and BMD. However, it is easily affected by X-ray projec-
tion dose and image quality, and the sensitivity is poor. 
Therefore, the direct use of X-ray cannot accurately eval-
uate and predict the maturity and mechanical strength in 
distraction areas. In addition, the repeatability between 
the readers is also poor [9, 10]. However, the alteration 
of BMD or morphological structure of new bone tis-
sue will affect the repair efficacy of DO and determine 
whether the new bone tissue can meet the functional 
requirements. Therefore, the method of evaluating new 
bone tissue is fundamental. Each evaluation method has 
its advantages and disadvantages, and it is necessary to 
choose an appropriate evaluation method in experimen-
tal or clinical work. Babatunde et al. reviewed the appro-
priate evaluation methods in 2010 [7, 11]. However, they 
mainly focus on imaging evaluation, and biomechanical 
evaluation and biochemical markers were not consid-
ered. Most importantly, since many novel advances have 
been made in the field recently, it is essential to compre-
hensively summarize the evidence for bone healing eval-
uation. Therefore, this review will discuss the progress in 
quantitative evaluation of calluses during DO.

Standard radiography (X‑ray)
X‑ray evaluation of new bone formation
The X-ray imaging technique is still an essential method 
for the clinical evaluation of bone healing. Bridging callus 
at least 2  mm thick shown in three of the four cortices 
on plain anteroposterior and lateral radiographs, is one of 
the radiological standards for external fixator removal in 
limb lengthening [12, 13]. In addition, the clinical stand-
ards to remove the external fixator are listed as follows: 
1) After loosening the upper and lower nuts of the ring 
fitting fixed by the threaded bar 0.5 cm, the patient could 
bear weight without abnormal sensations. 2) The fixed 
time is generally consistent with the average extension 
index (the total fixation time of the external fixator is the 
average time of soft callus consolidation calculated from 
the date of lengthening. Each 1 cm is fixed for 1 month, 
called the average extension index). However, these 
measurements are a subjective processes with high intra- 
and interobserver variability [9, 10].

Relationship between measurement parameters and new 
bone
Some researchers have tried to study quantitative 
methods for evaluating bone healing by X-ray imag-
ing techniques. Scholars have mainly studied the related 
parameters of plain radiographs, such as the pixel value 
ratio (PVR) and gray value (GV). The pixel value evalu-
ates BMD in pixels, which can be used to assess the 
healing of regenerated bone (compare the density of 
regenerated bone with that of adjacent bone). As the den-
sity of the regenerated bone increases with the healing, 
its pixel value is close to that of the adjacent normal bone. 

Fig. 1  Different Methods for monitoring the process of bone healing
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GV is another indicator used to evaluate bone healing. 
A grayscale image is a data matrix. Its value represents 
a specific range of brightness values, where brightness 0 
means black and brightness 255 refers to white. The part 
of the grayscale image with intense luminance represents 
the object with high density or thickness; the part with 
weak light transmission represents the object with low 
density or thin thickness [14].

Related research progress
Song et  al. [15] retrospectively analyzed 40 tibial seg-
ments of 23 patients with different limb lengthening 
indications. The Ilizarov method was used for bone 
lengthening after osteotomy, and digital X-ray and DXA 
scans were used to monitor distraction and fixation. 
Pearson correlation analysis was used to compare the 
correlation between PVR and the BMDR. The results 
showed a positive correlation between BMDR and PVR, 
indicating that PVR measured by X-ray could effectively 
evaluate callus hardness (especially in the case of callus 
maturation and suspected callus hardness). Zhao et  al. 
[16] reviewed 17 patients (34 lengthenings) who under-
went bilateral tibial intramedullary nail lengthening, 
and analyzed the PVR of the lengthening area on plain 
radiographs. They suggested that PVR on plain radio-
graphs can be used as an objective parameter for callus 
measurement and guide the timing of external fixator 
removal. They also suggested that when the PVR of the 
two cortices was 1, patients could partially use crutches 
to carry weight; when the PVR of the three cortices was 
1, patients could carry weight without crutches at all. 
However, they did not give how much cortical minimum 
PVR could safely remove the external fixator. Bafor et al. 
[17] investigated the role of PVR in determining the time 
of full weight-bearing in patients undergoing intramedul-
lary limb lengthening, and they found no adverse effect 
when subjects began full weight-bearing (when the corti-
cal PVR of 3/4 was at least 0.93). Vulcano et al. [18] also 
explored the PVR assessment of bone healing and found 
that the PVR was not affected by sex, age or lengthen-
ing. A PVR value of 0.90 can be considered bone heal-
ing. Zak et  al. [19] proposed that PVR combined with 
subjective evaluation parameters (including continuity, 
signal intensity and homogeneity of regenerated tissue) 
was proposed in the X-ray Evaluation System for Distrac-
tion Osteogenesis (XESDO), which will be conducive to 
monitoring the bone healing in DO.

Vaccaro et  al. [14] evaluated the accuracy of BMD by 
using the average gray value (MGV) of digital radiogra-
phy in 11 cattle and 2 horses in  vitro. The cattle speci-
mens were imaged using conventional radiography, while 
horse specimens were imaged using digital radiography. 
Each sample was then scanned using the same DXA 

device. The BMD values obtained by each DXA were 
matched with the MGV from conventional X-ray or digi-
tal X-ray images. They found that the MGV analysis was 
accurate for BMD evaluation (the coefficients of vari-
ation were 0.10 and 0.09, respectively), and the correla-
tion coefficients with DXA analysis were 0.910 and 0.937, 
respectively. Lucas et  al. [20] indicated a correlation 
between the GV measured in digital X-ray images and 
the BMD measured by DXA. The BMD and GV of two 
femurs of 15 dogs were measured and quantitatively ana-
lyzed by DXA and routine X-ray. It was found that there 
was a good correlation between the GV measured in the 
selected X-ray setting condition and the average BMD 
measured by DXA (r = 0.61). It was possible to use digital 
radiography to measure fundamental alterations in BMD. 
However, the soft tissue was not considered.

New directions
The advantages of PVR in evaluating bone healing are 
that it is convenient and straightforward, it is easier to 
popularize, and it requires a lower radiation dose than 
DXA and CT. However, the above research has certain 
limitations.The evaluation method also needs to be com-
pared with the effectiveness of the current standard for 
evaluating bone healing with plain radiographs, and the 
retrospective nature of the experiment, lack of a control 
group, and other potential factors affecting the calcula-
tion of PVR should also be considered in further studies.

On the other hand, evaluating BMD with GV is inex-
pensive and convenient, while its sensitivity is lower than 
DXA. More study is still needed to improve its value in 
evaluating callus healing. For example, the correlation 
between GV and callus biomechanics could be con-
sidered simultaneously. Overall, X-ray is a traditional 
method for monitoring bone healing, which is relatively 
simple, rapid and convenient (the first choice for clini-
cians). GV and PVR can provide an objective value for 
evaluating new bone. However, the potential information 
for callus formation and bone healing is limited [21]. It 
converts a three-dimensional object into a two-dimen-
sional image and finally into a one-dimensional number, 
so it may miss a small cortical space, which may lead to 
fracture after the removal of the fixator. Therefore, X-ray 
and other imaging indicators may be a more accurate 
evaluation method in callus formation during DO.

Dual‑energy X‑ray scanning
DXA evaluation of new bone formation
DXA uses X-ray radiation sources to emit two differ-
ent radiation energies. By measuring their absorption 
through bones and soft tissues separately, the equal 
absorption part of bone tissue is calculated, thus, the 
influence of soft tissue is eliminated. Then, the BMC, and 
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aBMD (area bone mineral density) of bones in all body 
parts can be measured and the changes in bone trabecu-
lae can be observed [22], which is the most widely used 
and mature measurement technique of BMD. It is consid-
ered the gold standard for measuring BMD and diagnos-
ing and treating osteoporosis [23]. BMD measurement 
can provide the basis for the Fracture Risk Assessment 
Tool (FRAX), a computer evaluation software estab-
lished to evaluate fracture risk based on the measured 
BMD combined with fracture risk factors [24]. DXA can 
guide clinical work, helping doctors monitor bone miner-
alization and predict fracture risk. Clinically, Eyres et al. 
[11, 25] first described the use of DXA to quantify and 
monitor regenerative bone formation in leg lengthen-
ing and detected regenerative bone within 2 weeks after 
traction, in contrast to 6  weeks on plain radiographs. 
They suggested that DXA could monitor the number and 
rate of new bone growth. Therefore, DXA can be used to 
evaluate and monitor new bone formation during cal-
lus lengthening [11, 25], and it is an effective and reliable 
method for quantifying BMC of regenerated bone [26].

Relationship between measurement parameters and new 
bone
DXA measurements (including BMD, BMC, and vBMD) 
are well represented in terms of the strength of new 
bone, and many scholars hope to quantitatively moni-
tor bone healing in patients with osteotomy lengthen-
ing with measurements obtained by dual-energy X-ray 
absorptiometry. Reiter et  al. [27] studied 20 patients 
with a unilateral fixator’s limb extension of the femur 
or tibia. They monitored the BMD of callus during and 
after extension,and they found that the maximum BMD 
occurred 4–6  weeks after the beginning of distraction. 
Futhermore, from the curing period of the callus to the 
removal of the fixator, the BMD of the distraction space 
increased continuously. Their results provide a basis for 
monitoring bone healing using DXA. Saran et  al. [28] 
proposed that DXA could be used as a prediction tool 
to remove external fixators. They performed BMD anal-
ysis on a DXA scan once a month in 26 patients with 
limb extension. The external fixator was removed once 
the BMD was stable below 10%, and the plain radiogra-
phy showed no apparent defects.Using a DXA scan to 
monitor bone healing during the extended consolida-
tion phase, fractures after external fixator removal were 
very low (3.6%) while maintaining an acceptable bone 
healing index without excessively increasing the fixation 
time. Song et  al. [15] studied the bone mineral density 
ratio (BMDR). BMDR is the ratio of the BMD value of the 
regeneration area to the average BMD value of the proxi-
mal and distal normal bone. They retrospectively ana-
lyzed 23 patients with 40 tibial segments undergoing limb 

lengthening. They concluded that it is safe to remove the 
fixator when the BMD of the regenerated bone reaches 
51.1% of the reference cortical BMD. Recent studies have 
shown that DXA scanning is helpful to evaluate bone 
healing after DO, but more research is needed to monitor 
the unified standard of bone healing.

Related research progress
The BMD value adequately reflects the amount of bone 
mineral content, but it does not necessarily represent 
the level of bone strength and stiffness. Therefore, some 
scholars have researched the correlation between DXA 
scan measurements and bone biomechanical properties 
after DO in recent years, but such research results are 
still controversial. Tselentakis et al. [29] studied the BMD 
measured by DXA and the bending stiffness of distrac-
tion bone segments. They observed 9 patients with DO. 
Six weeks after distraction, the patients underwent regu-
lar DXA scans to monitor BMD and measure the bending 
stiffness of the distraction segments. They found a highly 
significant correlation (R2 = 0.77, P < 0.001) between 
the bending stiffness of the callus and the square of the 
total mineral content at the minimum BMD. Therefore, 
they concluded that DXA scan could be effectively used 
to determine the bending stiffness of the callus, and is 
valuable in determining the removal time of the exter-
nal fixator and the delay in bone healing. Monsell et  al. 
[30] explored the relationship between DXA assessment 
of regenerative bone and structural mechanical proper-
ties in an animal model of DO. They found significant 
correlations between vBMD and the elastic modulus, 
yield stress, and failure stress of bone, while no correla-
tions were seen between BMC, BMD, vBMR, and other 
mechanical parameters. They concluded that DXA was 
a promising tool for assessing regenerative bone formed 
by DO during limb lengthening that required further 
investigation. Floerkemeier et al. [31] found that stiffness 
measurement was a better quantitative index of bone 
bearing capacity than BMD and BMC measured by DXA.
They did not find a significant correlation between BMD 
and bone strength.

New directions
In conclusion, DXA can quantitatively monitor the dis-
traction process and can also be used to decide when to 
remove the fixator. However, DXA scanning costs are 
high, and there are limitations in measuring the mass 
distribution of cortical bone and bone trabeculae and 
evaluating bone geometry and microstructure. The meas-
urement effect is poor in the presence of artifacts, so it 
is not routinely used [32, 15]. More exploration and evi-
dence are needed to support the correlation between 
DXA measurements and bone strength. It is believed 
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that DXA will hopefully be used in more fields to exert its 
value in the future.

Ultrasound
Ultrasound evaluation of new bone formation
Ultrasound is a non-invasive, effective and inexpensive 
method for evaluating bone healing [33]. The princi-
ple is that wide-band ultrasonic attenuation signals are 
employed to evaluate BMD alteration. When ultrasound 
passes through body tissue, attenuation occurs, and the 
amount of attenuation is related to the characteristics 
of the tissue. Using the speed of ultrasonic waves and 
amplitude attenuation passing through the bone can 
calculate the amount of BMC, bone structure and bone 
strength[34]. The evaluation of normal mature bone 
by ultrasound is limited by the inability of ultrasound 
to penetrate the bone cortex. However, new bone with 
incomplete remodeling and calcification can be well 
evaluated by high-resolution linear ultrasound [35]. Con-
trast-enhanced ultrasound (CEUS) can provide an early 
indication of neovascularization and provide a diagnos-
tic basis for poor bone regeneration [36]. Ultrasound can 
also predict bone callus formation by observing changes 
in blood flow around the new bone [37], which can com-
pensate for the poor early visualization of the callus on 
X-ray.

Relationship between measurement parameters and new 
bone
The beam penetration depth (BPD) measured by ultra-
sound monitors the filling of the bone extension sec-
tion, with a lower BPD indicating better bone filling, 
which can provide helpful information for monitoring 
bone healing and when to remove the external fixation 
frame [39]. Researchers have found that various ultra-
sound parameters can be used to quantitatively evaluate 
new bone quality, which is very sensitive to the dynam-
ics of bone growth [40–42]. Mesquita et al. [43] studied 
the ultrasonic propagation velocity and BMD before and 
after demineralization of sheep backbone cortical bone. 
They found a good correlation between ultrasonic veloc-
ity and BMD (r = 0.75956). Sorriento et  al. [44] further 
investigated the quantitative measurement method of 
BMC by B-ultrasound. They prepared bone-like models 
with different concentrations of hydroxyapatite (HA) and 
calcium carbonate (CaCO3) evaluated by ultrasound, and 
utilized phase entropy calculated based on backscatter-
ing data, ultrasonic amplitude information, and absorp-
tion scattering phenomena to detect changes in BMC. 
Therefore, ultrasound seems possible to quantitatively 
evaluate BMD. However, the study did not use samples 
of natural tissues, including skin and blood vessels, which 
need to be further reinforced. Tang et  al. [45] achieved 

good results in quantifying novel bone in a sheep tibial 
mass defect model using three morphological parameters 
of ultrasound (new-bone bulk, new-bone surface and 
new-bone contact).

Related research progress
Troulis et  al. [46] estimated bone formation on X-ray 
and ultrasound using a semiquantitative bone fill score. 
They found that plain radiographs underestimated bone 
formation compared with ultrasound. Andrade et al. [39] 
conducted further research and found that the correla-
tion between the ultrasound bone fill score and intra-
operative bone fill score was higher than that of plain 
radiographs. Hence, they concluded that ultrasound 
is a technique that can accurately evaluate new callus 
formation.

Ultrasound can detect novel bone formation 4–6 weeks 
earlier than X-ray [47]. Neretin et  al. [48] compared 
X-rays and ultrasound to evaluate the process of human 
metatarsal regeneration during distraction and fixa-
tion. Ultrasound presented an average of 9.0 ± 0.08 mm 
echo-positive regeneration space and the heterogeneous 
structure of regenerated bone on the 10th day of distrac-
tion. Slight echo-positive inclusions correspond to new 
bone formation, whereas X-ray could not reflect apparent 
regeneration. Notably, the formation of new callus in the 
early stage of distraction often predicts the trend of DO. 
Therefore, ultrasonic monitoring can provide early infor-
mation on bone lengthening. Clinical doctors can accel-
erate or slow down the speed of distraction to acquire 
a decent clinical outcome (to prevent the occurrence 
of bone nonunion or delayed healing). Since sufficient 
blood vessels are one of the pillars of bone regeneration, 
local and systematic analysis of microperfusion of new 
bone provides a new and promising diagnostic method 
[49]. CEUS can show the microperfusion of local tissue 
at the capillary level. Through the study of patients with 
tibial nonunion, Haubruck et al. [36] found a relationship 
between the expression of different angiogenic cytokines 
in serum and the change in local microperfusion. They 
believe that the combined detection of CEUS and 
cytokine expression analysis (CEA) is a promising new 
tool for the early prediction of tibial nonunion. Augat 
et al. [37] used color Doppler ultrasound to continuously 
monitor the blood flow at the fracture site in fracture 
patients. They found that the callus was well-formed with 
abundant blood flow signals around the callus; however, 
if there was no blood flow signal around the callus, the 
callus did not form well. He et al. [50] used ultrasound to 
monitor patients after tibial transfer. They found that the 
size of the hematoma was linearly and negatively corre-
lated with the bone healing time at the end of the osteot-
omy (r =—0.819, P < 0.01). They believed that ultrasound 
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could detect the changing trend of hematoma, blood flow 
signal and callus around the osteotomy end earlier to pro-
vide timely and effective feedback. Young et al. [51] used 
ultrasound to monitor 12 patients treated with DO, of 
which 2 cases found liquid cysts in the traction area dur-
ing traction, which would affect the formation of callus 
and delay the mineralization time of callus. Ultrasound 
monitoring was used to detect and extract light yellow 
liquid in time. Therefore, ultrasound monitoring of DO 
can significantly reduce the risk of complications such as 
poor osteogenesis and secondary fracture. Ultrasound 
has been widely popular for its low price, portability,lack 
of ionizing radiation and ease of operation [52].

New directions
Ultrasound monitoring of the bone lengthening process 
has its advantages, especially in the hematoma organiza-
tion period in the early stage of distraction lengthening. 
Ultrasound can identifyphenomena that X-ray cannot 
detect. Simultaneously, ultrasound can monitor the new 
callus earlier, and evaluate the number of calli, which 
enables medical workers to adjust the speed of traction 
lengthening earlier according to the monitoring results 
(to prevent complications such as delayed healing and 
nonunion). Other complications, including vascular and 
nerve stretch injury and liquid cysts in the elongated 
area, can also be detected by ultrasound. Meanwhile, 
ultrasound is noninvasive, quick, convenient, inexpensive 
and does not require radiation. However, ultrasound has 
some limitations in monitoring bone mineralization in 
the late stage of distraction, which makes it challenging 
to guide the removal of the external fixator. In addition, 
the performance of the limb force line is not intuitive 
enough to measure the end gap of osteotomy in the latter 
stage. Although it is difficult to determine the generally 
applicable normal value of the quantitative ultrasound 
index and the diagnostic criteria, ultrasound has a broad 
application prospects in monitoring bone healing with 
the improvement of technology and the accumulation of 
clinical experience.

QCT
QCT evaluation of new bone formation
QCT is a method to measure the human body’s BMD, 
bone shape, and body composition by adding a QCT 
special phantom and analysis software based on a CT 
machine. This method has high accuracy and small error 
directly related to histological specimens. It is an excel-
lent method to measure the alteration of long BMD. The 
principle is based on different tissues’ different absorp-
tion of ionizing radiation. Doctors can compare attenu-
ation measurements to standard reference values ​​using 
a standard computed tomography scanner ​​to calculate 

information such as BMC and BMD [53]. QCT can 
use three-dimensional imaging to evaluate calluses. It 
can also perform finite element analysis to predict the 
strength of calluses, which helps clinicians to fully under-
stand the structure and growth of callus. With the devel-
opment of CT technology, researchers have applied QCT 
in musculoskeletal research.

Relationship between measurement parameters and new 
bone
QCT can overcome the shortcomings of DXA, which 
cannot measure cortical bone and trabecular bone sepa-
rately, and can measure BMC by whole-body thin-section 
tomography. Modern QCT can measure axial bone BMD 
and peripheral bone (pQCT), which is the only method 
for measuring actual BMD in three dimensions [32]. 
BMD in QCT is measured as volumetric bone mineral 
density [vBMD] in grams per cubic centimeter, whereas 
DXA measures area bone mineral density (aBMD) in 
grams per square centimeter [53]. QCT also measures 
the strength-strain index (SSI), which is calculated from 
the geometric and material properties of the bone and 
is a prediction of the mechanical strength of the bone 
[54]. Harp et  al. [55] demonstrated a strong correlation 
between the apparent density of canine tibial specimens 
and QCT BMD measurements. The authors derived an 
equation that accurately predicted the hardness of tubu-
lar bone using measurements collected by QCT. Engelke 
et  al. [56] reported the correlation between BMD and 
BMC measured by QCT and DXA through spiral CT 
scanning of the forearm. They proposed that the whole-
body spiral CT scanner can conduct a high-precision 
density evaluation of the distal radius. The bone mineral 
density measured by QCT and DXA is positively corre-
lated with BMC (r = 0.55 ~ 0.80).

Related research progress
In recent years, several scholars have proposed new 
methods for assessing bone healing by QCT. Swen-
nen et  al. [57] improved the evaluation of bone healing 
by QCT and proposed a new method. They distracted 
the skulls of 16 sheep and evaluated the regenerated 
bone by three-dimensional quantitative computed 
tomography(3D-QCT) and conventional QCT. They 
found that 3D-QCT correlates with conventional QCT, 
and the measurement of BMD based on 3D-QCT is 
effective and reliable for evaluating bone healing dur-
ing DO. QCT can measure the BMD of trabecular and 
cortical bone (close to the quantitative measurement of 
volume BMD in the real sense) [32]. Bone healing par-
ticipates in recovering both original tissue structure 
and biomechanical function. QCT has been utilized in 
the evaluation of biomechanical properties and bone 
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strength [58–61]. Kokoroghiannis et  al. [54] studied the 
correlation between pQCT bone strength index and 
mechanical tests in DO. They found that a significant 
positive correlation between the bone strength index 
and the maximum load during bone destruction, and the 
correlation coefficient was 0.846 (P < 0.001). This shows 
that the bone strength index measured by pQCT can be 
used as a sensitive index for the complete solidification 
of regenerated bone. Bone strength can be determined by 
mechanically testing the ultimate load of bone fracture. 
However, this method can only be employed in  vitro. 
On the other hand, by using the density-modulus equa-
tion derived from experiments, finite element analysis 
could predict bone strength in vivo [62]. Dailey et al. [63] 
scanned a group of patients with tibial shaft fracture by 
three-dimensional CT reconstruction. They performed 
virtual mechanical tests by finite element method to eval-
uate the torsional stiffness of fractured limbs, indicating 
that virtual mechanical testing with low-dose CT scan-
ning could provide quantitative and objective evaluation 
of callus structure. To compare the accuracy of mechani-
cal properties predicted by density-modulus equations 
of different finite element analyses, Vijayakumar et  al. 
[64] measured the mechanical properties of bone by an 
indentation test on the tibia of 5 cadavers. The predicted 
bone strength varied with different anatomical areas, 
whereas the Goulet density-modulus equation was the 
best method.

New direction
Overall, QCT is a decent and reliable method for detect-
ing bone healing. It reflects volumetric BMD, can meas-
ure the growth of regenerated bone relatively accurately, 
and can monitor changes in bone mass early. It also pro-
vides high-resolution three-dimensional imaging of the 
callus and a quantitative analysis of the area to help cli-
nicians objectively assess whether the bone has healed 
enough to remove the external fixator. The measured 
value of QCT can also reflect the change in bone biome-
chanical strength. Nevertheless, its high cost and large 
radiation dose should also be considered, and the range 
of its application is not wide enough at present. More 
studies are still needed to address the issues above. With 
the development of technology, QCT assessment of bone 
healing will provide more valuable information, such as 
monitoring bone healing with high-resolution pQCT and 
predicting the strength of new bone by finite element 
analysis.

Biomechanical evaluation
Biomechanical evaluation of new bone formation
Measuring the changes in the mechanical properties of 
bone is the most direct method to evaluate the process of 

bone healing. Bone biomechanics is based on the theory 
of engineering mechanics, which evaluates bone qual-
ity by the mechanical properties of bone tissue under 
external action and the biological effect of bone after 
stress [65]. The bending, torsion, tension, and compres-
sion tests are commonly used to evaluate the mechani-
cal properties of distraction osteogenic new bone tissue 
[66, 67]. Mechanical parameters of bone such as bend-
ing stiffness and torsional stiffness are helpful to under-
stand the consolidation of new bone. They are essential 
parameters reflecting the strength and elasticity of bone 
and directly reflect the quality and quantity of new bone 
in bone healing. Understanding the mechanical proper-
ties of new bone can help prevent new bone fractures 
and guide clinicians on when to remove external fixators. 
In the clinic, the biomechanical properties of new bone 
can be measured using relevant instruments for stiff-
ness measurement [68, 69]. Dwyer et al. [69] studied 30 
lengthened calves and found that when the tibia reached 
15 Nm/ or the femur reached 20 Nm/, there was no fur-
ther fracture. This shows that the mechanical detection 
of newborn bone can provide valuable information for 
clinical workers.

Relationship between measurement parameters and new 
bone
The mechanical strength and stiffness of callus as a heal-
ing index have been generally accepted. Strength is the 
maximum bearing capacity of an object at the moment 
before it is damaged by the loading force, which can only 
be measured in the laboratory. Stiffness is a structural 
mechanical property of matter expressed by the ratio of 
the loading force on the object to the deformation dis-
placement produced by the structure. Floerkemeier et al. 
[31] studied sheep bone specimens after DO. They found 
that the biomechanical parameters of regenerated bone 
obtained from torsion, compression, bending tests were 
better quantitative indicators of bone-bearing capacity 
than BMD and BMC measured by DXA.

The bending is used to determine the bending stiffness 
and the ultimate strength (the maximum bearing capac-
ity of a body at the moment before its failure by the load-
ing force) of the new bone tissue by measuring the load /
deflection, which can objectively and indirectly reflect the 
maturity of the new bone tissue. This evaluation should be 
compared with normal bone under the same conditions 
to avoid excessive bias, which is commonly employed to 
evaluate the biomechanics of calluses in the laboratory. 
Chotel et al. [70] evaluated the bending test of 11 children 
who underwent leg lengthening surgery. They obtained the 
reference value of bone bending stiffness in limb length-
ening healing through statistical analysis. The torsion test 
involves clamping the two ends of the tested sample in the 
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torsion test machine, driving the machine to apply torque 
to the sample, recording the maximum load of damage 
after the sample is destroyed, and simultaneously record-
ing the load and bone deformation in the instrument. 
Thus, bone tissue’s ultimate strength and torsional stiffness 
can be determined [71, 72]. This assessment could provide 
a better biomechanical index of bone. Floerkemeier et al. 
[73] studied 26 sheep with tibial distraction osteogenesis. 
Their studies showed that torsion, bending, and compres-
sion stiffness measurements were suitable for predicting 
callus healing load-bearing capacity. However, the meas-
urement of torsion stiffness was slightly better than that of 
compression stiffness and bending stiffness. The tension 
and compression experiment involved placing the sample 
in the experimental machine, and stretching the sample 
at a constant speed or applying compressive stress to the 
sample until the sample was destroyed. The system will 
automatically output the maximum load, stress, strain, and 
elastic modulus data [74], and it can be used as an index 
for the biomechanical evaluation of bone.

Related research progress
Recently, some novel techniques have been reported to 
evaluate the biomechanical properties of bone, such as 
micron indentation and nanoindentation technology. 
These technologies can be utilized to evaluate the hard-
ness of regenerated bone [75]. By placing a tapered dia-
mond probe hardness tester on a smooth bone surface 
with a preset time and load, the hardness value changes 
with the dynamics of the indentation depth. After the load 
is removed, the diagonal indentation or width is recorded. 
The hardness of the bone can be calculated according to 
the geometric calculation of the diamond probe [76, 77]. 
Researchers are trying to develop a noninvasive biome-
chanical detection method for its clinical application [78, 
79]. Recently, in vivo monitoring technology has emerged, 
mainly focusing on the changes in mechanical parameters 
with time during the mineralization of new tissues [80–
83]. Liu and Aarnes et al. [84, 85] proposed that the axial 
load sharing ratio can be used to indirectly evaluate the 
hardness of calluses as the basis for safe removal of exter-
nal fixators. Mora Macias et al. [82] also proposed a new 
distractor that can detect the axial stiffness of calluses.

New directions
Measuring the mechanical properties of bone is the 
most direct method to evaluate the process of bone heal-
ing, and accurate data for bone biomechanics can be 
obtained. It can also provide a basis for finite element 
analysis and quantitative evaluation of the effectiveness 
of callus healing. Combining bone mechanical property 
test data with imaging parameters will be conducive 
to assessing callus healing. However, the damage to the 

bone in the process of measurement is a severe limita-
tion. Currently, these methods are only used in labo-
ratory research. The application of in  vivo mechanical 
monitoring technology expands the understanding of 
DO. It provides information for developing anumeri-
cal model for the mechanical characterization of callus 
as a future clinical tool [86–89]. With the deepening of 
the research, it is reasonable to believe that the biome-
chanical detection of bone is promising as a practical and 
straightforward method to evaluate the process of bone 
healing during DO in the future.

Biochemical markers
Biochemical marker evaluation of new bone formation
Theoretically speaking, the alteration of bone metabolism 
may lead to subsequent morphological changes. In other 
words, the changes in biochemical marker should be ear-
lier than those in BMD monitoring. Therefore, biochemi-
cal markers are a potential novel evaluation method for 
bone healing, and could be a decent supplement to imag-
ing examinations in clinical work.

Relationship between measurement parameters and new 
bone
At present, several kinds of biochemical markers of bone 
transformation (BTMs) have been identified [90], such 
as osteocalcin (OC), bone specific alkaline phosphatase 
(BSAP), N-terminal procollagen peptide (PINP), and 
C-terminal procollagen peptide (PICP) [91, 92], and they 
can reflect the biological activities of osteoblasts and 
osteoclasts in vivo.

Related research progress
Windhagen et  al. [93] found in the sheep DO model 
that OC began to increase in the distraction phase and 
peaked in the curing phase. Fink et  al. [94, 95] further 
studied the relationship between BTM and radiographic 
density during DO. They found that the average correla-
tion coefficient between OC and radiographic density 
was 0.68 ± 0.11, and they also observed that PICP levels 
increased rapidly after surgery and further during consol-
idation. Therefore, they believe that measuring serum OC 
and PICP levels can obtain valuable information about 
bone formation during DO. Leung et al. [96] studied the 
goat DO model and found a strong correlation between 
plasma BSAP activity and newborn bone’s radiological 
morphology and biomechanical properties. This shows 
that we can use BSAP to monitor the change process of 
callus formation. Kumar et  al. [92] prospectively stud-
ied 168 patients with closed tibial fractures treated with 
interlocking intramedullary nails. The treatment process 
was divided into six periods to determine BTMs (BSAP, 
PINP, OC, etc.) and clinical and imaging evaluation. They 
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found that bone formation markers (BSAP, OC, PINP) 
were significantly lower in patients with delayed union. 
Therefore, continuous monitoring of BTMs can be served 
as an auxiliary means for imaging examination (predict-
ingdelayed healing).

New directions
Bone metabolic markers have been reported to monitor 
bone healing, and some of them have a high degree of the-
oretical feasibility. The biochemical bone markers detected 
in different diseases, osteogenic distraction sites, and 
treatment methods vary, complicating the issues. Some 
indicators can be monitored by serum or urine samples, 
and different methods limit the comparability between dif-
ferent studies. Combining different biochemical markers 
in bone healing during DO is also a good form of evalu-
ation. Overall, the clinical data for biochemical markers 
are somewhat limited. Further well-designed experimental 
and clinical studies are still needed.

Conclusion
There are several ways to evaluate bone healing during DO 
quantitatively. In this study, we comprehensively reviewed 
the methods of X-ray, DXA, ultrasound, QCT, biome-
chanical detection and biochemical markers in the quan-
titative evaluation of bone healing. Various methods are 
irreplaceable and complementary to each other in moni-
toring the whole process of bone lengthening, and each 
of them has its advantages and disadvantages (Table  1). 
Considering multiple monitoring methods simultaneously 
may be a better solution, which might be the future direc-
tion for clinical bone lengthening (e.g., combining imag-
ing evaluation and biochemical markers). With progress 
in the field, more optimized evaluation method for bone 
healing during DO will be considered in the future.
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