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Abstract

Background: Osteoarthritis (OA) is a prevalent musculoskeletal disease resulting in progressive degeneration of the
hyaline articular cartilage within synovial joints. Current repair treatments for OA often result in poor quality tissue
that is functionally ineffective compared to the hyaline cartilage and demonstrates increased failure rates post-
treatment. Complicating efforts to improve clinical outcomes, animal models used in pre-clinical research show
significant heterogeneity in their regenerative and degenerative responses associated with their species, age,
genetic/epigenetic traits, and context of cartilage injury or disease. These can lead to variable outcomes when
testing and validating novel therapeutic approaches for OA. Furthermore, it remains unclear whether protection
against OA among different model systems is driven by inhibition of cartilage degeneration, enhancement of
cartilage regeneration, or any combination thereof.

Main text: Understanding the mechanistic basis underlying this context-dependent duality is essential for the
rational design of targeted cartilage repair and OA therapies. Here, we discuss some of the critical variables related
to the cross-species paradigm of degenerative and regenerative abilities found in pre-clinical animal models, to
highlight that a gradient of regenerative competence within cartilage may exist across species and even in the
greater human population, and likely influences clinical outcomes.

Conclusions: A more complete understanding of the endogenous regenerative potential of cartilage in a species
specific context may facilitate the development of effective therapeutic approaches for cartilage injury and/or OA.
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Background
As a leading cause of disability and morbidity worldwide,
osteoarthritis (OA) is a degenerative joint pathology as-
sociated with significant health and economic burden to
patients and society [1, 2]. The development of OA in-
volves a series of structural changes within the joints,
and it is influenced by numerous risk factors, such as
aging, genetics, and injury/trauma. Despite extensive
heterogeneity observed in the onset and pathogenesis of

OA, the progressive degradation of the articular cartilage
appears as a unifying feature, and it remains a central
focus in regenerative medicine approaches to the treat-
ment of OA.
The articular cartilage is an intricate and remarkable tis-

sue that provides the biomechanical properties and a low
friction surface necessary for the proper function of syn-
ovial joints [3, 4]. While articular cartilage grants pain-free
mobility under physiological conditions, once damaged, it
presents poor innate healing capacity. Moreover, common
surgical interventions aiming to improve cartilage healing,
such as microfracture and autologous chondrocyte im-
plantation (ACI), often result in a fibrocartilage patch (i.e.,
repair) as opposed to restoring the native hyaline cartilage
(i.e., regeneration). The differences in structure and
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composition combined with a lack of integration with the
native tissue render fibrocartilage biomechanically incom-
patible with the articular cartilage. These shortcomings
are thought to accelerate the fibrocartilage breakdown
leading to further articular cartilage injury/degeneration
over time [5, 6].
Attempts have been made to circumvent this poor in-

trinsic regenerative ability of cartilage and protect it from
further degradation after damage or disease, by promoting
an environment that is chondroprotective (preventing car-
tilage breakdown) and/or chondro-inductive (restoring
cartilage) [7]. These include inhibiting catabolic-related
processes [8, 9], modulating inflammation [10], favoring
chondrogenesis [11, 12], and recruiting or exogenously de-
livering cells of various potencies (e.g., stem cells derived
from various tissue sources to chondrocytes) [13–16].
Despite many efforts, however, the development of effect-
ive disease-modifying therapies for injured cartilage and
OA has yet to be realized.
The therapeutic potential of cell-, drug- or surgical-

based interventions focused on cartilage injury and OA
is commonly assessed using pre-clinical animal models.
Notably, not only different species but also strains at
various ages and contexts of joint damage (direct cartil-
age injury, post-traumatically induced or spontaneous

OA) are employed. All these variables can influence the
regenerative and degenerative responses, create a
spectrum of outcomes (Fig. 1) and have critical implica-
tions for validating new therapeutic strategies. For
instance, spontaneous and trauma-induced cartilage in-
juries appear to differ in terms of molecular signatures
and responses to interventions [17], likely due to diver-
gent mechanisms of disease pathogenesis. Also, age and
genetic/epigenetic traits may influence the regenerative
competence of animals, thus appearing as confounding
factors in cartilage-related studies [17, 18].
Moreover, previous studies have reported that the rate

of progression and severity of cartilage degeneration and
OA-related changes in the joint differ among commonly
used trauma-induced models [19, 20], such as
destabilization of the medial meniscus (DMM) and an-
terior cruciate ligament transection (ACLT). In that
sense, one might question whether the inability to pro-
tect against OA is driven by an overwhelmed endogen-
ous repair response or the complete lack of any
regenerative potential in the tissue. Another important
consideration, often overlooked, is whether chondropro-
tective outcomes seen in OA pre-clinical studies are
driven by inhibiting cartilage degeneration or enhancing
cartilage regeneration, and if/how these factors may

Fig. 1 Factors influencing the regeneration and degeneration processes in cartilage. The roles of species, genetic and epigenetic traits, age, as
well as the type and severity of the cartilage damage need to be considered in how this modulates the gradient of regenerative competence,
homeostasis and tissue degeneration
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interrelate in the observed outcome. Despite the critical
role that the balance between cartilage regeneration and
degeneration plays in tissue maintenance and homeosta-
sis, few studies provide a comprehensive view of how
specific treatments contribute to the prevention of cartil-
age degeneration, in the context of cartilage regeneration
(or vice versa) within a given model system [21, 22].
Therefore, in this review, we provide an overarching

view of some of the key variables and their impact on
cartilage tissue regeneration and degeneration. Also, we
discuss how understanding the baseline of the endogen-
ous regenerative capacity within pre-clinical models, and
its modulation within a conducive environment is essen-
tial and should be integrated into the assessment of
therapeutic approaches for cartilage injury and OA, in a
context-specific manner.

Main text - factors influencing regeneration and
degeneration of cartilage
Diversity of regenerative potential across animal models
While most tissues in mammals often fail to regenerate,
as opposed to more primitive organisms such as am-
phibians, a certain inherent capacity to respond to injury
is present. Regenerative competence after distal digit tip
amputation, for instance, has been reported in mice [23,
24] and similarly in the fingertip of humans [25], and
shown to persist to some degree into adult life [26]. Yet,
it remains unclear if fingertip regeneration like digit tip
regeneration is mediated by blastema formation [24],
wherein mesenchymal precursors contribute to the
multi-tissue regeneration. Endogenous appendage regen-
eration involving cartilaginous tissues has also been
identified after through-and-through ear punches in dif-
ferent species [27, 28], and interestingly in the antlers of
deer, which are known to regenerate periodically and
naturally, as well as after injury or amputation [29].
Various animal models have been employed in cartil-

age injury and OA-related studies, including mice, rats,
guinea pigs, rabbits, dogs, and larger animals such as
goats and horses [30–36]. Each animal model presents
advantages and limitations in terms of their cost-benefit,
suitability to mechanistic and molecular studies, and
translational potential (i.e., relevance to human OA), all
of which have been previously reviewed [35, 37]. How-
ever, diversity in regenerative potentials across and
intra-species is also known to exist and can influence
the outcome of cartilage-related studies.
Rabbits have been shown to possess robust intrinsic

healing compared to humans, with previously reported
wound regeneration of ear biopsy punch [27, 38] and su-
perior healing response to full-thickness cartilage lesions
[5, 39]. Caution has also been advised on the use of mice
and rats given their persisting open growth plates as
adults [30], which possibly enhances the natural healing

of articular cartilage. However, contradictory to such be-
lief, age-related decline in the regenerative potential of
cartilage has been demonstrated within rodents, includ-
ing among different strains of mice [40, 41]. Larger ani-
mals such as dogs and horses, on the other hand, seem
to mimic the lack of intrinsic cartilage healing generally
observed in humans, and thus are often considered as
more appropriate models to evaluate the translational
potential of clinical treatments for OA. Despite that, the
genetic diversity within larger animals is regarded as a
source of variability in cartilage repair studies [30],
which possibly has wide-reaching implications on the
outcomes. Therefore, unraveling the genetic/epigenetic
differences that drive heterogeneity may help us under-
stand why specific individuals are protected from OA,
whereas others are more susceptible to its development.
While a comprehensive genome screening of the

greater human population remains elusive, mouse stud-
ies can provide some insights into how genetic variations
might be associated with OA resistance or vulnerability
[34]. Murine models are powerful tools in the investiga-
tion of specific genes related to mammalian tissue regen-
eration, owing to the ease and sophistication of current
genetic manipulations, abundant availability of recom-
binant inbred lines, and a broad-spectrum of cartilage
regenerative potential among strains, from healers to
non-healers [42], to those displaying spontaneous cartil-
age degeneration [43]. Gaining a better understanding of
model systems which display endogenous cartilage re-
generation at the molecular/genetic level, will inform us
why these processes are ineffective in non-healing model
systems, often leading to the development of OA.

Effect of genetic makeup: spectrum from endogenous
regeneration to spontaneous degeneration
Overall, few mammalian model systems demonstrate ro-
bust cartilage regeneration in vivo. In mice, it has been
observed in the Murphy Roths Large (MRL/MpJ) strain,
whose superior ability to regenerate cartilaginous tissue
was first demonstrated in the ear pinnae after through-
and-through punch wound [28] and later in the knee
joint following a full-thickness cartilage defect (FTCD)
[44]. The Sandell group has demonstrated a strong
correlation between auricular (ear) and articular (knee)
cartilage regenerative abilities post-injury, as well as pro-
tection from OA [6], such that the healing phenotype is
associated with a heritable component [45]. The parental
strain LG/J, which shares 75% of MRL/MpJ genome, and
the LGXSM-6 intercross, which shares 76% of LG/J gen-
ome, have also been found to exhibit similar regenera-
tive abilities [6].
Subsequent studies showed that MRL/MpJ regenera-

tive abilities extend to other tissues [46, 47], and more
in-depth investigations provided insightful information
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regarding the mechanisms underlying its superior cartil-
age regeneration. Of note, disturbance of the cell cycle
machinery including increased DNA damage and de-
creased levels of p21 protein, known as a critical cell
cycle regulator, were identified in cells derived from
MRL/MpJ mice. Later, the enhanced healing potential of
through-and-through ear injuries was observed in p21
knockout (p21−/−) mice, suggesting the lack of p21 is at
least partially responsible for the enhanced regenerative
phenotype seen in MRL/MpJ mice [48]. This has been
further corroborated by recent findings implicating p21
deletion in articular cartilage regeneration [49]. How-
ever, the involvement of p21 in other intricate cellular
processes, such as apoptosis [50] and inflammation [51],
in addition to its tight regulation, hinders our ability to
elucidate the exact mechanisms associated with the heal-
ing phenotype seen after its deletion [52]. Overall, the
molecular pathways controlling tissue regeneration
within the abovementioned models remains unclear and
of great interest in regenerative medicine.
More recently, multi-tissue regeneration has been

identified in the African spiny mice (Acomys), including
scar-free healing of auricular cartilage after ear biopsy
punch [53]. Yet, no evidence of articular cartilage regen-
eration has been shown within this model to date. Not-
ably, however, cell cycle regulation in progenitor cells
was pinpointed as one of the key features separating re-
generation after ear punches in Acomys from scarring in
wild-type controls [27]. The same study revealed that a
gradient of regenerative potential exists not only be-
tween species (healers and non-healers) but also within
healer species, wherein ear pinna regeneration varied in
closure rate and was likely influenced by factors such as
sex and genetic variants [27]. While it is more natural to
identify species that fall within the opposite ends of the
healing spectrum, from fibrotic to regenerative re-
sponses, comprehending the differences that give rise to
this healing continuum will greatly inform the design of
targeted cartilage and OA therapies for humans.
In this context, understanding the processes leading to

spontaneous OA pathogenesis and associated cartilage
degeneration is just as important, since it is the most
common form of OA in humans, affecting mainly elderly
populations. Spontaneous cartilage degeneration has
been reported in the Dunkin Hartley guinea pig (3
months old) [54], the commonly employed C57BL/6
mice with advanced age (> 17 months old) [55], and in
the STR/Ort mouse (12 to 20 weeks of age) [56], which
shares many similarities to the severity and progressive
rate of joint deterioration that occurs in humans [57].
Age-dependent spontaneous degeneration has also been
reported in larger species, such as dogs and horses [35,
37]. Despite recapitulating many of the patterns of dis-
ease progression described in human OA, spontaneous

OA models present various challenges, such as longer
experimental times and variable incidence and progres-
sion of OA between animals, likely owing to genetic
variation. Moreover, aging brings about various changes
in the molecular, cellular and functional levels both lo-
cally in the joint tissues and systemically in the body, all
of which can influence the dynamics of OA pathogenesis
and may diminish the tissue’s regenerative response.

Aging and the regenerative potential
The age of the animal is always an essential consider-
ation, as it is generally agreed that younger animals have
increased intrinsic cartilage regenerative potential com-
pared to adults. Pre-clinical studies to date have demon-
strated correlations between aging and regenerative
decline within mammals [39, 40]. Yet, the biological and
molecular mechanisms responsible for enhanced regen-
erative competence at a younger age remains poorly
understood. Joutoku et al. have recently studied the in-
volvement of chemokines, namely the CCL21/CCR7
axis, in regulating cartilage regeneration at a younger
age [18]. Interestingly, juvenile mice deficient in CCR7
displayed significantly impaired cartilage healing post-
injury (longitudinal full-thickness cartilage injury in the
trochlear groove) compared to wild-type controls, while
adult CCR7-deficient mice developed similar fibrocarti-
laginous tissue as controls in response to injury. More-
over, exogenous delivery of CCL21 ligand, whose
transient expression had been identified at the injury site
in juvenile mice, led to enhanced healing in adult rabbit
after osteochondral defects [18]. Collectively, these find-
ings suggest that this signaling pathway could be a
promising target for the enhancement of adult tissue
regeneration.
As for disease development, studies investigating cor-

relations between spontaneous OA and aging have pin-
pointed the increase in senescent chondrocytes with age
as an essential contributing factor to cartilage degener-
ation [58–60]. Additionally, diminished chondrocyte ac-
tivity and consequently reduced turnover of ECM
components [61, 62], a diminished or dysfunctional pool
of stem cells [15, 63], oxidative stress [64], and differen-
tial expression of pro-inflammatory cytokines and che-
mokines [65] all seem to play a role in age-related OA.
Some of these molecular features have also been shown
in post-traumatically induced OA (PTOA) models [66];
however, there are few comprehensive studies exploring
the synergistic effects of age and trauma, and how it in-
fluences response to treatment.
When comparing age paradigms in different strains of

mice, it has been shown that OA severity in aged mice is
greater than young mice following injury [17, 67, 68].
Huang et al. described age-dependent structural changes
post-trauma in the articular cartilage and subchondral
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bone of mice, with OA features appearing earlier and be-
ing more pronounced in the aged groups [68]. Further-
more, Loeser et al. have previously reported that age also
alters gene expressions in the whole joint, even in the
absence of injury, highlighting this likely affects the tis-
sue response after a traumatic event [67]. Not surpris-
ingly, old versus young animals have been shown to
respond differently to intervention [17, 60]. For instance,
selective removal of senescent cells that arise in the knee
joint after traumatic-injury at 10-week old mice was
shown to protect them from OA development, decrease
pain and promote a pro-chondrogenic environment [60].
In contrast, the clearance of senescent cells in aged mice
(19-months old) was insufficient to overcome disease
progression [60].
Similarly, Usmani et al. explored the therapeutic po-

tential of inhibiting TGFα, a growth factor previously
implicated in OA pathogenesis, within the context of
spontaneous and post-traumatic OA. The latter
employed a DMM surgery model to induce cartilage in-
jury in young (10-week old), as well as aged (6-month
old) mice. The authors found that TGF-α deficiency did
not protect mice from the development of spontaneous
OA and that its effect in trauma-induced OA is age-
dependent, whereby only young mice were protected
from OA progression [17]. Ultimately, the etiology of
human OA is highly complex, thus thoughtful consider-
ation must be given to the species, age, and disease
model chosen, including if it is spontaneous or post-
traumatically induced, and how appropriate each one is
for the exploration of specific human clinical subtypes.

Models of OA and cartilage damage
Research focusing on cartilage degeneration typically
employs animal models of spontaneous or post-
traumatic OA to elucidate the mechanisms of onset and
progression of the disease (Table 1). As previously dis-
cussed, models of spontaneous cartilage degeneration
primarily explore the effects of genetic traits and aging
on the susceptibility to OA, whereas PTOA models typ-
ically induce cartilage degeneration by surgically produ-
cing joint instability and altering its regional distribution
of loads (e.g., ACLT, DMM, meniscectomy). Although
such approaches have provided valuable information on
related risk factors, diagnostic biomarkers, and potential
therapeutic targets, different models can promote dis-
tinct yet intertwined pathways leading to cartilage de-
generation, thus influencing the study outcome.
Haase et al. have recently compared two surgically in-

duced PTOA models in C57BL/6 mice, specifically
DMM and transection of the medial collateral ligament
(MCL-MM) [20]. Mice that underwent MCL-MM dem-
onstrated rapid and pronounced degradation of the col-
lagen matrix component, with cartilage lesions being
identified as early as 6-weeks post-surgery. By contrast,
no cartilage lesions were seen for the duration of the as-
sessment (12 weeks post-surgery) in the DMM model,
which displayed slow OA progression, with proteoglycan
loss over an extended period and identifiable collagen
degradation by 8-weeks post-surgery. It is worth noting,
however, that other studies have reported histological
evidence of cartilage lesions after DMM surgery at earl-
ier time-points [67–70] than the one observed in this

Table 1 Summary of most widely used osteoarthritis models and direct cartilage injury models with respect to their type/mode of
action and most commonly employed species [40, 44, 79]

CARTILAGE DEGENERATION Osteoarthritis models Commonly used species

Spontaneous Aging Naturally occurring Guinea Pig, Mouse, Dog

Genetic Genetically modified Mouse

Induced Chemical Collagenase Mouse, Rat, Rabbit

Sodium Monoiodoacetate (MIA)

Diet-induced Obesity/Metabolic syndrome Mouse, Rat

Post-traumatic (non-invasive) Cyclic tibial compression Mouse, Rabbit, Dog

Intra-articular tibial fracture

Post-traumatic
(invasive/surgical)

Anterior cruciate ligament
transection (ACLT)

Rat, Rabbit, Dog

Destabilization medial
meniscus (DMM)

Mouse, Rat

Meniscectomy Mouse, Rat, Rabbit, Dog, Goat

CARTILAGE REGENERATION Cartilage Injury models Commonly used species

Induced Longitudinal full-thickness
cartilage defect [40]

Osteochondral/Chondral
defect - trochlear groove

Mouse, Rabbit

Full-thickness cartilage
defect (FTCD) [44]

Focal osteochondral defect -
trochlear groove

Mouse, Rat, Rabbit, Dog, Horse
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study, which might own to factors such as sex and age of
the animals at the time of injury [68]. That aside, even
though mechanical destabilization serves as the initiating
factor in both models, differences in the dynamics of mo-
lecular and structural changes, and associated progressive
cartilage degeneration were distinct, which speaks to dif-
ferential regulation of secondary mechanisms.
Of note, surgical models of PTOA are invasive, with

the surgery itself inducing inflammation, and possibly
degenerative changes in the joint environment, thereby
diminishing our ability to understand the mechanisms
underlying the disease phenotype. Therefore, non-
invasive approaches mimicking PTOA have been devel-
oped, which involve mechanical overloading of the joint
to induce cartilage lesions (Table 1). Some examples
would be non-physiological cyclic compression and
closed intra-articular tibial fracture (IAF) [71–74]. Re-
gardless of the initial trigger, divergences in the mechan-
istic aspects of progression and severity of degenerative
changes have been shown in comparative studies involv-
ing surgical and non-surgical PTOA models across spe-
cies and strains [19, 73, 75–77].
Other examples of induced OA models, yet non-

traumatic in nature, include chemically and diet-induced
models (Table 1). Chemically induced models rely on
the injection of compounds that promote damage to car-
tilage components, compromising its function, whether
by means of inflammation or toxicity [78, 79]. Sodium
monoiodoacetate (MIA) is one of the most widely used
compounds as it promotes joint inflammation and chon-
drocyte death. While less invasive than surgically in-
duced models, the rapid progressing degeneration
induced by these compounds bares little resemblance to
the pathophysiology of OA, thus they are more com-
monly employed for pain-related studies [37]. Given the
relevance of obesity and metabolic syndrome associated
risk in the development of OA [80], efforts have been di-
rected to understanding their effects on the incidence
and pathogenesis of the disease. Diet-induced OA
models, most typically performed in rodents, expose the
animals to high-fat or high-fat/high-sucrose diet regi-
mens. These models have been shown to successfully in-
duce OA-like joint degeneration [81–83] mainly driven
by low-grade inflammation [80]. In line with other stud-
ies, age has been shown as a contributing factor in diet-
induced OA severity [84]. It is interesting, however, that
individuals from the same species have been reported to
display distinct obesity phenotypes in response to diet-
induced metabolic disturbance, and that their suscepti-
bility or resistance can be associated with severity of
OA-like knee damage [81, 85]. However, the impact of
obesity and low-grade inflammation displayed in these
models on cartilage regeneration has not yet been
characterized.

While it is broadly assumed that articular cartilage has
little to no intrinsic repair at a population level, what if
cartilage regeneration can outplace cartilage degener-
ation in some proportion of the population. This hy-
pothesis is supported by results from previous clinical
studies, wherein only about 50% of human patients that
undergo cartilage or joint injury develop OA over time
[86, 87]. In this context, one might reasonably question
whether the protection against OA in these individuals
is driven by enhanced regenerative capability and/or
muted degenerative response. Therefore, genetic back-
ground and the individual’s baseline of endogenous re-
generative capacity should be considered and controlled
for when comparing outcomes post-injury. While this is
inherently difficult to test in humans directly, pre-
clinical mouse studies support this hypothesis.
Despite their genetic predisposition to the develop-

ment of spontaneous OA, STR/ort mice are less prone
to cartilage lesion formation after joint compressive
overloading than CBA mice [43], suggesting that inher-
ent genetic risk of developing OA is not directly associ-
ated with susceptibility to trauma-induced cartilage
damage. Interestingly, the “super-healer” MRL/MpJ mice
are resistant to cartilage damage and show reduced se-
verity of PTOA when compared to C57BL/6 mice,
whether following surgical DMM [22] or non-surgical
IAF [88]. Similar results are seen in the LG/J strain [34],
whereas p21−/− mice seem to be vulnerable to cartilage
damage following DMM surgery [89], despite its super-
ior regenerative potential after full-thickness cartilage in-
jury [49].
Direct cartilage injury is commonly used to study the

tissue regenerative potential by producing a partial or a
FTCD, focally or longitudinally in the trochlear groove,
that can reach into the subchondral bone (Table 1) [18,
44, 90]. These models help examine the effect of genetic
manipulations and exogenously delivered treatments, such
as cell therapy and tissue-engineered constructs, on cartil-
age regeneration. Owing to the nature of their targeted
site of injury, cartilage defect models allow for a straight-
forward revaluation of progressive tissue healing, although
the relative size of injury in smaller species somewhat
limits the comparison to the human condition.
As alluded to, models of direct cartilage injury and

PTOA reflect the duality of cartilage regeneration and
degeneration (Fig. 2). In the context of direct cartilage
injury, such as FTCD, one can investigate the mecha-
nisms underlying the endogenous regenerative ability of
a species/strain, as well as infer the efficacy of treatment
of interest in enhancing cartilage regeneration. Con-
versely, when using an OA model, one can analyze
whether the treatment of choice is capable of attenuating
or preventing OA development and cartilage degener-
ation when compared to untreated controls.
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Fig. 2 Assumed outcomes based on three different possible scenarios using an osteoarthritic model of PTOA or a FTCD cartilage injury model. In
the context of indirect cartilage damage (OA model), one can analyze whether the treatment of choice is capable of attenuating or preventing
OA development and cartilage degeneration (i.e., chondroprotection) when compared to untreated controls. However, the endogenous
regenerative potential of the strain or species might interfere with the assumed outcome. Conversely, when using a direct cartilage injury model,
one can investigate the mechanism underlying the endogenous regenerative ability, as well as to infer the efficacy of treatment of interest in
enhancing cartilage regeneration
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However, to elucidate the biological mechanisms pro-
moting a protective phenotype in the latter, it is neces-
sary to understand whether the intervention inhibited
degeneration and/or promoted regeneration of the car-
tilage. In which case, the causative role associated with
an intrinsic healing potential and the chosen therapeutic
intervention should also be investigated. Intra-articular
injection of kartogenin, for instance, has been shown to
protect mice against the development of OA following
surgically-induced trauma [91]. Such outcome is likely
due to a combinatory effect of enhanced regenerative re-
sponse and chondroprotection, resulting from the modu-
lation of endogenous stem cells and expression of
chondrogenic factors, and the promotion of a conducive
environment with decreased expression of catabolic en-
zymes, respectively [91, 92].
Recent studies investigating the involvement of che-

mokines and correlated inflammatory component in OA
pathogenesis have linked the CCL2/CCR2 signaling axis,
mainly known for its role in monocyte recruitment, to
trauma-induced and age-associated OA phenotypes in
humans and rodents [93–95]. Interestingly, controversy
remains regarding CCL2/CCR2 contribution to cartilage
degeneration. Using a murine DMM model, Miller et al.
found that while depletion of CCR2 improved pain-

associated outcomes, it did not protect CCR2−/− mice
from cartilage degeneration [96]. Expanding on these
findings, Zarebska et al. reported similar outcomes due
to ligand deficiency, with CCL2−/− mice showing de-
creased pain and comparable histopathological scores to
CCR2−/− and wild-type controls after induced-PTOA
[97]. Yet, statistical significance was reached by 20-
weeks following DMM in CCL2−/− mice, associated with
less severe cartilage degeneration compared to the other
mouse groups [97].
Likewise, Raghu et al. demonstrated that CCL2 defi-

ciency was protective of cartilage degeneration, and pro-
moted a significant decrease in macrophage infiltration,
inflammation and expression of matrix-degrading mole-
cules [98]. However, contradictory to previous findings,
lack of CCR2 was also shown to mitigate mouse OA,
whether through genetic inactivation of CCR2 or
pharmacologic blockage of this receptor by a CCL2 an-
tagonist [98]. Given such conflicting results, Jablonski
and colleagues explored the association between the
CCR2/CCL2 signaling axis and cartilage regeneration
using the FTCD model of direct cartilage injury. Inter-
estingly, the authors found that CCR2−/−, but not
CCL2−/− nor CCL2−/−CCR2−/− mice display enhanced
cartilage regeneration following FTCD [21]. Collectively,

Fig. 3 Comprehensive view of the effect of targeted treatments in inhibiting cartilage degeneration) and enhancing cartilage regeneration. The
power of the combined analysis in informing the outcome of targeted therapies for OA and cartilage injury is greater than the one provided by
the models isolation
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these results suggest that while depletion of CCL2 levels
may inhibit cartilage degeneration (chondroprotective) it
does not promote cartilage regeneration, whereas deple-
tion of CCR2 is conducive of cartilage regeneration and
likely associated with the controversial outcomes regard-
ing chondroprotection post-trauma.
Overall, studies providing a comprehensive view of

how specific treatments contribute to the prevention of
cartilage degeneration, as well as to the enhancement of
its regeneration are scarce [21, 22]; however, the previ-
ous examples highlight the importance that a combined
analysis has in informing the outcome of targeted ther-
apies for OA and cartilage injury (Fig. 3).

Conclusion
It is widely accepted that several risk factors can alter
the progression of OA such as obesity, joint trauma, im-
proper mechanical loading, and aging. A recent review
by Mimpen and Snelling has suggested that heterogene-
ities in endotypes that predispose to OA onset and pro-
gression should be considered in patient selection and
outcome assessment in clinical trials [99]. We suggest
that the considerations highlighted in this review in
terms of pre-clinical animal models may also apply to
humans. There is a general belief that humans lack a re-
generative response within the cartilage tissue; however,
it remains unknown whether there is a gradient of re-
generative competence within cartilage across the
greater human population and how this might affect
clinical outcomes.
We are encouraged by recent findings on the topic,

suggesting that the regenerative capacity of cartilage is
variable and depends on where it resides in the human
body, being more robust in the ankle joints [100]. We
believe it is plausible that a level of variation in endogen-
ous regenerative response exists across patients as well,
due to genetic traits or molecular mechanisms, and
should also be considered in clinical studies and in the
future clinical trials. In essence, a predisposition to car-
tilage regeneration might be present among patients that
show a positive response to chondroprotective therapies.
Hence, a thorough understanding of the role of treat-
ment interventions on the dynamics of endogenous
regenerative and degenerative responses may help us
develop targeted and effective therapeutic approaches,
wherein given a conducive environment, the regenera-
tive stimuli can prevail among tissues and/or organs
otherwise known as non-regenerative; as is the case
with OA.
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