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Abstract

Background: Glenohumeral instability is a common problem following traumatic anterior shoulder dislocation.
Two major risk factors of recurrent instability are glenoid and Hill-Sachs bone loss. Higher failure rates of arthroscopic
Bankart repairs are associated with larger degrees of bone loss; therefore it is important to accurately and reliably
quantify glenohumeral bone loss pre-operatively. This may be done with radiography, CT, or MRI; however no
gold standard modality or method has been determined. A scoping review of the literature was performed to
identify imaging methods for quantifying glenohumeral bone loss.

Methods: The scoping review was systematic in approach using a comprehensive search strategy and standardized
study selection and evaluation. MEDLINE, EMBASE, Scopus, and Web of Science were searched. Initial selection included
articles from January 2000 until July 2013, and was based on the review of titles and abstracts. Articles were
carried forward if either reviewer thought that the study was appropriate. Final study selection was based on
full text review based on pre-specified criteria. Consensus was reached for final article inclusion through discussion
amongst the investigators. One reviewer extracted data while a second reviewer independently assessed data
extraction for discrepancies.

Results: Forty-one studies evaluating glenoid and/or Hill-Sachs bone loss were included: 32 studies evaluated
glenoid bone loss while 11 studies evaluated humeral head bone loss. Radiography was useful as a screening
tool but not to quantify glenoid bone loss. CT was most accurate but necessitates radiation exposure. The Pico
Method and Glenoid Index method were the most accurate and reliable methods for quantifying glenoid bone
loss, particularly when using three-dimensional CT (3DCT). Radiography and CT have been used to quantify Hill-Sachs
bone loss, but have not been studied as extensively as glenoid bone loss.

Conclusions: Radiography can be used for screening patients for significant glenoid bone loss. CT imaging, using the
Glenoid Index or Pico Method, has good evidence for accurate quantification of glenoid bone loss. There is
limited evidence to guide imaging of Hill-Sachs bone loss. As a consensus has not been reached, further study
will help to clarify the best imaging modality and method for quantifying glenohumeral bone loss.
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Background
Glenohumeral instability (GHI) has been associated with a
recurrence rate ranging from 30-90 % [1–3]. Currently,
arthroscopic Bankart repair using modern suture anchor
techniques have failure rates ranging from 4-17 % [4–6]. A
number of risk factors have been proposed to predict recur-
rence of GHI following arthroscopic Bankart repair includ-
ing: age, humeral head and glenoid bone loss, shoulder
hyperlaxity, and contact activity [1, 7–10]. Glenoid bone
loss occurs in up to 90 % of patients with recurrent GHI
[11] and, on average, occurs nearly parallel to the long axis
of the glenoid (03:01–03:20 on a clock face) [12, 13]. Bur-
khart et al. showed that significant glenoid bone loss, ap-
proximately 25-45 % of glenoid width loss, was associated
with higher failure rates of arthroscopic Bankart repairs
[14, 15]. The critical defect size for predicting failure of
arthroscopic Bankart repairs has been explored biomechan-
ically [16–18]. Yamamoto et al. found that glenoid loss
greater than 20 % glenoid length and 26 % of glenoid width,
destabilized the shoulder [19]. The threshold of glenoid
bone loss above which arthroscopic Bankart repairs may fail
has generally been accepted as glenoid width loss ≥25 %,
which is equivalent to ≥19 % of the glenoid length and
≥20 % of the surface area created by a best-fit circle on the
inferior surface of the glenoid [14–20]. Width loss of 25 %
may be expressed as a millimeter defect, varying based on
individual glenoid anatomy but is approximately 6-8 mm
given that the average glenoid width at the level of the bare
area is 24-26 mm [19, 21]. It is important to keep in mind
how one calculates glenoid bone loss, as the threshold for
surface area is different than for glenoid width.
Humeral head bone loss, also known as a Hill-Sachs

lesion, occurs in up to 93 % of patients with recurrent
GHI [22]. Hill-Sachs lesions are oriented in the axial
plane approximately at 07:58+/−00:48 or at an angle of
239.1+/−24.3 ° from 12 o’clock [23]. In a biomechanical
study, Kaar et al. showed that defects created at an
orientation of 209 ° significantly decreased resistance to
dislocation when they were greater than 5/8 the depth of
the radius of the humeral head in the axial plane [24].
Sekiya et al. demonstrated that Hill-Sachs lesions cre-
ated in a posterolateral orientation benefited from allo-
graft transplantation when greater than 37.5 % of the
humeral head diameter [25]. In a later cadaveric study,
Sekiya et al. showed that defects of 25 % of the humeral
head diameter in isolation did not increase risk of dis-
location following a capsulolabral repair [26]. There is a
relationship between recurrent dislocations and failure
of arthroscopic Bankart repair with increasing size of the
Hill-Sachs lesion, although an accepted threshold value
for Hill-Sachs bone loss has not yet been determined
[9, 27, 28]. Hill-Sachs bone loss occurs simultaneously
with glenoid bone loss in up to 62 % of GHI patients
[29]. The way in which the glenoid and Hill-Sachs
lesions interact and contribute to GHI is complex but
does appear to be synergistic [30].
The degree of glenohumeral bone loss plays a role in sur-

gical decision-making. The glenoid lesion may be treated
successfully with an arthroscopic Bankart repair if it
is smaller than the previously mentioned values. Larger
glenoid bone lesions may require a bone augmentation pro-
cedure such as a Latarjet coracoid transfer or a J-graft pro-
cedure (bone graft harvested from iliac crest) [31]. A large
Hill-Sachs defect can be addressed via a remplissage pro-
cedure (posterior capsulodesis and infraspinatus tenodesis),
allograft, resurfacing arthroplasty, or rotational osteotomy.
Ideally, the surgeon would be able to accurately quantify
bone loss preoperatively to best ensure a successful post-
operative outcome with the lowest rate of recurrent in-
stability and the least amount of post-surgical morbidity.
Multiple imaging methods exist for quantifying glen-

oid and Hill-Sachs bone loss including radiography,
computerized tomography (CT), and magnetic reson-
ance imaging (MRI). Radiography is inexpensive and
easy to obtain but may be less accurate in detecting the
presence of bone lesions compared to CT. Radiographic
methods have been proposed using both basic views
(true AP, axillary) and special views (Bernageau profile)
to measure glenoid and Hill-Sachs bone loss. CT is easy
to obtain and accurate with respect to bony detail, but
necessitates radiation exposure. MRI is expensive and
more difficult to obtain in public health care systems but
has no radiation exposure, and may provide information
on associated soft tissue lesions involving the labrum,
rotator cuff, and capsule. However, assessment of bone
lesions may be inferior to that of CT. Two common
methods of calculating glenoid bone loss using CT and
MRI are width measurements such as the Griffiths Index
(Fig. 1) and best-fit circle surface area measurements such
as the Pico Method (Fig. 2) [32, 33]. These methods in-
volve reformatting to subtract the humeral head and get
an en face view of the glenoid. The inferior 2/3 of the
glenoid approximates a true circle, the size of which can
be estimated based on either the contralateral glenoid or
intact posteroinferior margins of the injured glenoid
[11, 34, 35]. Bone loss can then be expressed as the area lost
from the circle or the anterior-to-posterior width loss. De-
termination for Hill-Sachs bone loss has included, among
others, depth, width, and length measurements [36–39].
The degree of glenohumeral bone loss affects the suc-

cess of arthroscopic Bankart repair and, at present, there
is no consensus on a gold standard imaging method or
modality for the quantification of glenohumeral bone
loss. We performed a scoping review of the literature to
identify current published imaging methods for quantify-
ing glenoid and humeral head bone loss in GHI and to
evaluate if there was a gold standard method and modal-
ity supported by evidence.



Fig. 1 Griffith Index. Width measurements are made perpendicular to a line through the vertical axis of the glenoid and compared to the
uninjured glenoid (B/A x 100) to determine percent width loss (adapted from Griffith et al. [33])
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Methods
Study design
A scoping review was performed to evaluate the litera-
ture based on established guidelines [40, 41]. Scoping re-
views are designed to assess the extent of a body of
literature and identify knowledge gaps. Although qualita-
tive in nature, the review can be systematic in approach
through a comprehensive search strategy and standard-
ized study selection and evaluation, as in our study. Due
to heterogeneity in the articles reviewed, no meta-
analyses were performed in this study.

Selection criteria
Studies were included if the following conditions were
met: (1) publication after the year 2000 (following a pre-
liminary review of the literature, the majority of relevant
imaging methods were published after this time point;
publications prior to 2000 are included in our introduction
Fig. 2 Pico Method. The original description of Pico Method involved dete
circle based on the intact 3–9 o’clock margin, transferring the circle to the inju
software to calculate surface area bone loss. Note that the Pico Method has a
of the injured glenoid to determine the pre-injury glenoid circle (adapted from
and discussion when historically relevant); (2) use of human
or cadaveric human subjects; (3) evaluation of imaging
methods including radiography, CT, and/or MRI; and (4)
quantification of glenoid or Hill-Sachs bone loss using these
imaging modalities. Criteria for exclusion were: (1) non-
English language; and (2) publication in the form of an ab-
stract, letter, or review article.

Search strategies
MEDLINE, EMBASE, Scopus, and Web of Science were
searched from January 2000 until July 2013. A search al-
gorithm was created with the guidance of a medical li-
brarian (see Additional file 1).

Study selection
Article selection was performed over two rounds, by two
orthopaedic surgery residents with the assistance of two
upper extremity fellowship-trained orthopaedic surgeons.
rmining the circumference of the contralateral, normal inferior glenoid
red glenoid, and manually tracing out the glenoid defect and using
lso been used with the intact 6 o’clock-9 o’clock postero-inferior margin
Bois et al. [63])
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During the first round, selection was based on the review
of titles and abstracts. To be as inclusive as possible, an
article was carried forward to the next stage if either re-
viewer thought that the study was appropriate. Final study
selection was based on full text review using the afore-
mentioned inclusion and exclusion criteria. Duplicate
studies were kept until the final article selection. Consen-
sus was reached for final article inclusion through discus-
sion amongst the investigators.
Data extraction
One reviewer extracted study design, imaging modality
evaluated, patient characteristics, quantification method
used, and findings. A second reviewer independently
assessed data extraction for any discrepancies. When
provided by the authors, the reliability, accuracy, sensi-
tivity, and specificity are presented in the results section
with accompanying tables.
Fig. 3 Flowchart of Study Selection
Results
Article selection
Initial literature search retrieved 4536 total articles:
1462 from MEDLINE, 1560 from EMBASE, 827 from
Scopus, and 687 from Web of Science (Fig. 3). After the
initial review of titles and abstracts, 212 articles were
retained. Following review of the full text, 114 articles
remained. After the removal of duplicates, 41 articles
were included.

Article summary
Tables 1, 2, 3, 4, 5 and 6 summarize the selected articles.
We retained 11 articles focusing on Hill-Sachs bone loss,
32 for glenoid bone loss, and 2 articles evaluated both.
There were a significantly higher number of articles
evaluating CT imaging (38) compared to radiography
(11) and MRI (10). For glenoid bone loss, radiography
was evaluated in 7 studies [18, 42–47], MRI in 8 studies
[21, 42, 44, 48–53], and CT in 32 studies [11, 18, 20, 21,



Table 1 Studies Assessing Glenoid Bone Loss with Radiography

Study Modality Details Quantification Technique Findings

Charousset et al. [47]:
Retrospective case
series

Radiography; 2DCT 31 patients True AP radiography: Loss of sclerotic line (ICC):

Assessment: Loss of sclerotic line Inter-observer 0.44-0.47

True AP view; 2DCT arthrogram; 3
observers measured twice

CT: Intra-observer 0.66-0.93

Outcome:
Griffith Index (Fig. 1); best-fit circle
width loss (Fig. 10)

Griffiths Index (ICC):

Reliability
Inter-observer 0.68-0.71

Intra-observer 0.78-0.90

Best-fit circle width loss (ICC):

Inter-observer 0.74

Intra-observer 0.90-0.95

Itoi et al. [18]:
Cadaveric study

Radiography; 2DCT 12 cadavers Radiography: 21 % glenoid length defect:

Assessment: West Point & axillary views 18.6 % on West Point view 2.3 % on axillary view

45 ° angle defects created at 0, 9, 21, 34, &
46 % of glenoid length; radiography at
each cut; 1 observer measured twice

CT: 50 % loss of width on CT

Outcome:

Width of the inferior ¼ of the glenoid
measured in a single axial slice

Correlation, reliability

Correlation coefficients:

0.905-0.993

Coefficients of variance:

0.5-3.6 %

Jankauskas et al. [45]:
Retrospective case–
control study

Radiography; 2DCT 86 patients Superoinferior length of bone defect Detecting bone lesion:

Assessment: Sensitivity 54-65 %

True AP radiography; 2 observers on
radiography; 1 observer on CT

Specificity 100 %

Outcome:
Inter-rater reliability: kappa = 0.88

Reliability; sensitivity; specificity
Radiography vs. CT:

9 shoulders with mean 8.2 ± 3.5 mm glenoid
bone loss on CT were missed on radiography

Sommaire et al. [46]:
Retrospective cohort
study

Radiography; 2DCT 77 patients Radiography: Radiographic D1/D2 ratio (p = 0.003):

Assessment: Bernageau view of both shoulders to
calculate D1/D2 ratio (Fig. 4)

4.2 % patients without recurrence

Pre-operative Bernageau radiographs &
2DCT of unilateral shoulder before
arthroscopic Bankart repair; 1 observer
measured once

CT:

Outcome:

Gerber‘s X index (Fig. 7)

5.1 % in patients with recurrence

CT:

Recurrence Rate (p = 0.004):

Gerber X index < 40 % =20 %
Need for revision correlated with imaging

Gerber X Index >40 % =12.7 %

Note: Reliability not assessed
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Table 1 Studies Assessing Glenoid Bone Loss with Radiography (Continued)

Murachovsky et al.
[43]: Prospective
case–control study

Radiography; 3DCT 10 patients; 50 healthy subjects Radiography: Reliability:

Assessment: Bernageau view (D1/D2) ratio (Fig. 4) Intra-observer ICC 0.897-0.965

Bilateral radiography (all subjects) & CT
(instability subjects); 1 radiologist measured
CT; 3 orthopaedic surgeons measured 3
times each

3DCT: Inter-observer ICC 0.76-0.81

Outcome:

Glenoid AP width measured bilaterally
to calculate % bone loss

Difference between radiography & CT non-
significant (2.28 %)

Reliability

List of Abbreviations: ICC intraclass correlation coefficient; PE percent error
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Table 2 Studies Assessing Glenoid Surface Area Loss with CT and MRI

Study Modality Details Quantification Technique Findings

Barchilon et al. [20]:
Prospective case series

2DCT;
3DCT

13 patients Best-fit circle surface area: Method 1 with method 2:

Assessment: Approximation based on intact posteroinferior edge of ipsilateral glenoid R2 = 0.91

2DCT & 3DCT using 3 methods (1) Software directly measured area of circle and area of missing area
using 2DCT (gold standard)

Method 1 with method 3:

Outcome:
(2) Mathematical formula to calculate % surface area loss using 2DCT
based on circle radius & defect depth with software

R2 = 0.60

Intra-method comparison

(3) Manually measured defect depth & circle radius using 3DCT & femoral
head gauge; formula to calculate % surface area

Note: BCSA methods can be applied
without computer software

Hantes et al. [65]:
Cadaveric study

3DCT 14 cadavers Best-fit circle surface area: Reliability:

Assessment: Sugaya Method Coefficient of variation 2.2-2.5 %

CT scan following 3 serial osteotomy’s; 1
observer measured 5 times for 2 glenoids

Outcome:

Reliability

Huijsmans et al. [21]:
Cadaveric study

3DCT;
MRI

14 cadavers Best-fit circle surface area: Difference with digital picture:

Assessment: Circle approximated based on ipsilateral glenoid; software used CT −0.81 % to −1.21 %

Digital picture, CT, & MRI before/after
osteotomy (random size) on anterior
glenoid; 2 observers measured 3 times

MRI 0.61 % to 0.74 % (non-significant)

Outcome:

CT:

Reliability

Inter-observer r2 = 0.94

Intra-observer r2 = 0.97 (observer 1) and
0.90 (observer 2)

MRI:

Inter-observer r2 = 0.87

Intra-observer r2 = 0.93 (observer 1) and
r2 = 0.92 (observer 2)

Digital image:

Inter-observer r2 = 0.97

Lee et al. [52]: Prospective
case series

2DCT;
MRI

65 patients 1) Best-fit circle surface area (Pico method) Inter-observer ICC:

Assessment: 2) Best-fit circle width method 0.95 for best-fit circle width

CT (bilateral) & MRI followed by
arthroscopy; 1 observer measured CT once;
3 observers measured MRI once; 1 observer
measured MRI 3 times

Arthroscopy with bare-area technique (used as gold standard) 0.90 for area (Pico method)

Outcome:

Intra-observer reliability ICC:

Reliability

0.98 width

0.97 area
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Table 2 Studies Assessing Glenoid Surface Area Loss with CT and MRI (Continued)

Correlation:

CT & MRI 0.83

CT & arthroscopy 0.91

MRI & arthroscopy 0.84

Magarelli et al. [32]:
Prospective case series

2DCT 40 patients Best-fit circle surface area method: Intra-observer reliability:

Assessment: Pico method based on contralateral glenoid ICC 0.94

Bilateral CT; 1 observer measured 3 times;
1observer measured once

SEM 1.1 %.

Outcome:
Inter-observer reliability:

Reliability
ICC 0.90

SEM 1.0 %.

Note: No comparison to other methods

Magarelli et al. [57]:
Prospective cohort study

2DCT;
3DCT

100 patients Best-fit circle surface area: Mean difference:

Assessment: Pico method based on contralateral glenoid 0.62 %+/−1.96 %

Bilateral CT; 2 observers measured once Note: No reliability measurement

Outcome:

Agreement between 2D & 3D CT

Nofsinger et al. [35]:
Retrospective case series

3DCT 23 patients Best-fit circle surface area: Normal shoulder:

Assessment: Anatomic Glenoid Index: circle matched to postero-inferior glenoid of
contralateral glenoid; software measured area of circle

Circle fit true glenoid closely −100.5 %,
SD 2.2 %.Bilateral pre-op CT followed by surgical

repair (12 Bankart, 11 Mean AGI for Bankart group:

Latarjet); 3 blinded observers measured
once

(A1); circle manually adjusted to fit defect & area again calculated by
software (A2); area loss = A2/A1 x 100 92.1 %+/−5.2 %

Outcome:
Mean AGI for Latarjet:

Surgical decision based on size >25 % at
arthroscopy; reliability

89.6 %+/−4.7 %

Inter-rater reliability (Pearson
correlation coefficient):

0.60-0.84

Note: Did not have the power to
separate the two surgical groups

Park et al. [60]:
Retrospective case series

2DCTA 30 patients Best-fit circle surface area: Intra-observer reliability:

Assessment: Pico method based on ipsilateral glenoid ICC 0.96-1.00;

CTA taken pre-op, at 3 months, and 1 year
after bony Bankart repair; 1 observer mea-
sured 6 times

Positive relationship between number
of dislocations & defect size

Outcome:

Reliability
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Table 2 Studies Assessing Glenoid Surface Area Loss with CT and MRI (Continued)

Sugaya et al. [11]: Case–
control study

3DCT 100 patients, 10 healthy volunteers Best-fit circle surface: Normal glenoid did not differ
significantly from contralateral glenoid;
inferior portion of glenoid approximates
a true circle; did not compare
measurements to arthroscopic
measurements; no reliability
measurements

Assessment: Sugaya Method with bone fragment manually outlined

Note: Technique would not work in
case of attritional bone loss without a
Bankart fragment

Bilateral CT; defects categorized as:
small (<5 %), medium (5-20 %), or
large (>20 %); patients also had
arthroscopy: 1 observer measured
once

Outcome:

Comparison to normal
glenoid

List of Abbreviations: ICC: intraclass correlation coefficient; PE: percent error; SEM: standard error of measurement; R2: coefficient of determination; AGI: anatomic glenoid index
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Table 3 Studies Assessing Glenoid Width Loss with CT and MRI

Study Modality Details Quantification Technique Findings

Charousset et al.
[47]:
Retrospective
case series

Radiography;
2DCT

31 patients True AP radiography: Loss of sclerotic line:

Assessment: loss of sclerotic line Inter-observer ICC 0.44-0.47

True AP radiography & 2DCT arthrogram; 3
observers measured twice

CT: Intra-observer ICC 0.66-0.93

Outcome:
Griffiths Index (Fig. 1) & best-fit circle width loss (Fig. 10) Griffiths Index:

Reliability
Inter-observer ICC 0.68-0.71

Intra-observer ICC 0.78-0.9

Best-Fit Circle Width Loss:

Inter-observer ICC 0.74

Intra-observer ICC 0.9-0.95;

Chuang et al.
[68]:
Retrospective
case series

3DCT 25 patients CT: Glenoid Index correctly categorized 96 % of patients

Assessment: Glenoid Index (Fig. 5) Glenoid Index:

Bilateral 3DCT followed by diagnostic
arthroscopy: >25 % glenoid width loss (Latarjet);
<25 % glenoid width loss (arthroscopic Bankart)

Arthroscopy: Latarjet group: mean 0.668

Outcome:

Bare area method Bankart group: mean 0.914

Ability to predict type of surgery offered

Griffith et al.
[33]: Case–
control study

2DCT; 3DCT 40 patients (46 shoulders); 10 healthy subjects Measurements: Healthy subjects:

Assessment: Width & cross-sectional surface area on axial slice; length;
width; length:width ratio; glenoid surface area by point tra-
cing; flattening of anterior glenoid curvature

No significant difference in side-side measurements

Bilateral CT;1 observer measured once Instability Subjects:

Outcome: Width (3 mm difference; 10.8 % width loss);
length:width ratio, & cross-sectional area significantly
different side-to-side

Glenoid comparison with healthy subjects on en
face glenoid view

Griffith et al. [58]:
Prospective case
series

2DCT 50 patients Width Measurement: CT correlation with arthroscopy:

Assessment: Griffiths Index (Fig. 1) Pearson Correlation Coefficient r = 0.79

Bilateral CT followed by arthroscopy; compared
to measurements made during arthroscopy (bare
spot method); 1 observer measured once

Outcome:

Sensitivity 92.7 %

Correlation, PPV, NPV

Specificity 77.8 %

PPV 95 %; NPV 70 %.

Mean bone loss(p = 0.17):

CT 11.0 %+/−8.1 %

Arthroscopy 12.3 %+/−8.8 %
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Table 3 Studies Assessing Glenoid Width Loss with CT and MRI (Continued)

Griffith et al.
[62]: Case–
control study

2DCT 218 patients; 56 healthy subjects Width measurement:
Griffith Index (Fig. 1)

Normal side-to-side glenoid width difference small
(0.46 mm);Assessment:

Note: Glenoid bone loss not calculated on bilateral subjects Reliability:
Bilateral CT; 1 observer measured all subjects; 2
observers measured 40 patients twice Inter-observer reliability ICC 0.91

Outcome: Intra-observer reliability ICC 0.95

Reliability

Gyftopoulos
et al. [48]:
Cadaveric study

2DCT; 3DCT;
MRI

18 cadavers Width method: Intra-observer concordance correlation
coefficient (CCC):

Assessment:
Best-fit circle width method based on ipsilateral glenoid 2DCT 0.95

Defects created along anterior and antero-inferior
glenoid; 3 observers measured defect size once;
1 observer re-measured at 4 weeks; gold stand-
ard was digital photograph

3DCT 0.95

Outcome:

MRI 0.95

Reliability, PE

Inter-observer CCC:

2DCT −0.28-0.88

3DCT 0.82-0.93

MRI 0.70-0.96

Percent error:

2DCT 2.22-17.11 %

3DCT 2.17-3.50 %

MRI 2.06-5.94 %

Lee et al. [52]:
Prospective
cohort study

2DCT; MRI 65 patients 1) Best-fit circle surface area: Inter-observer reliability (ICC)

Assessment: Pico Method Best-fit circle width R = 0.95

CT (bilateral) & MRI followed by arthroscopy; 1
observer measured CT once; 3 observers
measured MRI once; 1 observer measured MRI 3
times;arthroscopy was gold standard using bare-
area technique

2) Best-fit circle width method: Area (Pico method) R = 0.90

Outcome:

Based on contralateral glenoid Intra-observer reliability:

Reliability, correlation

Width R = 0.98, area R = 0.97

Correlation:

CT-MRI r = 0.83

CT-arthroscopy r = 0.91

MRI-arthroscopy r = 0.84

Moroder et al.
[50]:
Retrospective
case series

3DCT, MRI 48 patients Width method: CT for glenoid lesion:

Assessment: Best-fit circle width method Sensitivity 100 %

Pre-op CT & MRI evaluated after failed instability
surgery; findings at initial operation were
comparators; 1 observer measured significant
glenoid defects (>20 % of width)

Specificity 100 %
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Table 3 Studies Assessing Glenoid Width Loss with CT and MRI (Continued)

Outcome: MRI for significant lesion:
Sensitivity 35.3 %Sensitivity, specificity
Specificity 100 %

CT would have misled treatment in only 4.2 %

Tian et al. [51]:
Prospective
cohort study

2DCT; MRA 41 patients; 15 control patients Width method: No significant size measurements between MRA
(10.48 %+/−8.71 %) & CT (10.96 %+/−9.0 %; p = 0.288).Assessment: Best-fit circle width method based on ipsilateral glenoid

(Fig. 10) Correlation between methods:CT & MRA; 2 observers measured once
Pearson correlation coefficient r = 0.921; SD 3.3 %Outcomes:

Correlation

List of Abbreviations: ICC: intraclass correlation coefficient; PE: percent error; PPV: positive predictive value; NPV: negative predictive value
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Table 4 Studies Directly Comparing Imaging Methods for Assessing Glenoid Bone Loss

Study Modality Details Quantification Technique Findings

Bishop et al. [42]:
Cadaveric study

Radiography;
2DCT; 3DCT;
MRI

7 cadavers Observers measured bone loss using his/her usual
approach (Methods not specified)

Overall agreement with gold standard
(kappa score):Assessment:
3DCT 0.5Serial imaging of shoulder after osteotomies of 0 %,

<12 %, 12-25 %, 25-40 %; manually measured glenoid
width through bare area using a digital caliper (gold
standard); 12 observers measured twice

CT 0.4

Outcome:

MRI 0.28

Reliability

Radiography 0.15

Intra-observer reliability (kappa):

3DCT 0.59

CT 0.64

MRI 0.51

Radiography 0.45

Note: 3DCT highest agreement & 2nd highest
intra-observer reliability; radiography lowest
agreement & reliability

Bois et al. [63]:
Laboratory study

2DCT; 3DCT Sawbones:1 model for anterior defect; 1 model for
anteroinferior defect

2DCT & 3DCT: 2D CT methods (ICC, PE):

Assessment:
Indicators: linear width/length (W/L) ratio; defect
length; quantifiers: glenoid index (injured glenoid
inferior circle diameter relative to uninjured glenoid
diameter)

Defect length: 0.81, 7.68

Osteotomies made at 0, 15 %, and 30 % of inferior
glenoid circle diameter; gold standard measurement (3D laser
scanner of model); 6 observers measured all 7 techniques 3DCT:

W/L ratio: 0.50, −16.34

Outcome: Quantifiers: linear ratio (d/R; d = radius to defect,
R = circle radius); Pico method (3 variations):

Glenoid index, 0.3, −4.13

Reliability, PE
(1) Original circle method

3D CT (ICC, PE):

(2) Based on contralateral normal glenoid circle with 3
points of reference

Defect length: 0.90, 0.29

(3) Based on remaining intact glenoid cortex

W/L ratio: 0.88, −2.41

Glenoid index: 0.69, 0.01 (0.85, 3.39 with other
software platform)

Linear ratio: 0.97, 29.9

Pico (1): 0.98, 4.93

Pico (2): 0.84, 7.32

Pico (3): 0.86, 12.14

Note: Pico method (1) based on the
contralateral, intact glenoid and Glenoid Index
on 3DCT were most reliable & accurate;
Glenoid Index on 2DCT was deemed invalid
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Table 4 Studies Directly Comparing Imaging Methods for Assessing Glenoid Bone Loss (Continued)

Rerko et al. [44]:
Cadaveric study

Radiography;
2DCT; 3DCT;
MRI

7 cadavers Observers measured bone loss using his/her usual
approach (Methods not specified)

Accuracy (PE):

Assessment: 3DCT −3.3 %+/−6.6 %

Serial imaging of shoulder with osteotomies grouped as
0 %,<12 %, 12, 25 %, 25-40 %; gold standard defined as
glenoid width using digital caliper; 2 radiologists & 2 ortho-
paedic surgeons measured twice

2DCT −3.7 %+/−8.0 %

Outcome:

MRI −2.75 %+/−10.6 %

PE, reliability

Radiography −6.9 % +/− 13.1 %

Intra-observer reliability (ICC):

3DCT 0.947

2DCT 0.927

MRI 0.837

Radiography 0.726

Inter-observer reliability (ICC):

3DCT 0.87-0.93

2DCT 0.82-0.89

MRI 0.38-0.85

Radiography 0.12-0.53

List of Abbreviations: ICC: intraclass correlation coefficient; PE: percent error
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Table 5 Other Methods for Assessing Glenoid Bone Loss

Study Modality Details Quantification Technique Findings

De Filippo et al. [66]:
Cadaveric study

2DCT 10 cadavers De Filipo Method: Fig. 6 Curved MPR CT:

Assessment: Note: Curved MPR assessed curved structures
very accurate

PE 1.03 %; inter-observer reliability (Cronbach
alpha) 0.9952 had anteroinferior defects created; 1 re-

measured at 3 months; measured glenoid bone
area on flat MPR & curved MPR of all 10 cadavers;
laser scanner used directly on cadavers as gold
standard; 3 radiologists measure once

Intra-observer reliability (ICC) 0.998

Outcome:

Flat MPR CT:

PE, reliability

PE 16.99 %

Inter-observer reliability (Cronbach alpha) 0.995

Note: Authors conclude curved gives more
accurate glenoid contour

Diederichs et al. [59]:
Cadaveric study

3DCT 5 cadavers; 30 patients with no glenoid injury Manually traced out border of glenoid; volume
and surface area calculated with measurements
made manually (to calculate volume, depth was
assumed to be 10 mm)

Coefficient of variation:

Assessment: Width 1.7 %

Glenoid width, height, surface area, & volume;
osteotomy created on one cadaveric glenoid;
compared to contralateral for calculation; 1
investigator measured study group; another
measured the controls

Volume 1.3 %

Outcome:

Coefficient of varaition

Dumont et al. [49]:
Technique description

CT; MRI Authors describe a new method to calculate
surface area loss

Best-fit circle to inferior glenoid; measured angle
(alpha) from center of circle between superior
and inferior edges of lesion; converted measured
angle to percentage area loss = [(alpha-sinalpha)/
2π] x 100

No assessment of reliability or comparison to
other methods

Note: This method avoids issues with defect
orientation and is simple to apply without
complicated software

Tauber et al. [56];
Retrospective case series

CT 10 patients with associated glenoid fracture
(>21 % glenoid length)

Fit circle to outer glenoid, measured glenoid
length at 45° angle (A), measured length to
defect (B); calculated bone loss as: (A x 0.965 –
B)/A x 100

Inter-observer reliability:

Assessment:
ICC = 0.81

2 examiners measured once
Average width loss 26.2 %

Outcome:

Reliability

Van Den Bogaert et al. [69]:
Cadaveric study

2DCT 20 cadavers Glenohumeral index: Glenohumeral Index Compared to Gold
Standard:Assessment: Maximal AP diameter of humeral head / maximal

AP diameter of glenoid (axial images) Non-significant differenceDiameter measured with a digital caliper in vitro
(gold standard) followed by CT quantification; 3
observers measured once

Outcome:

Direct comparison

List of Abbreviations: ICC: intraclass correlation coefficient
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Table 6 Studies Assessing Hill-Sachs Bone Loss with Radiography, CT and MRI

Citation Method Details Quantification Method dings

Charousset et al. [47]:
Retrospective case
series

Radiography 26 patients Quantitative assessment: ratio reliability:

Assessment: P/R ratio on true AP radiography in internal rotation
(Fig. 10)

er-observer ICC 0.81-0.92

3 observers measured twice
Qualitative assessment:

ra-observer ICC 0.72-0.97

Outcome:
True AP radiograph in external rotation (present or
absent lesion)

alitative assessment reliability:

Reliability er-observer ICC 0–0.30

ra-observer ICC 0.06-0.92

te: Simple patient positioning and reliable

Ito et al. [38]:
Retrospective case
series

Radiography 27 patients (30 shoulders) Width and depth of Hill-Sachs lesion measured: dth difference (p > 0.05):

Assessment: Supine position; arm 135 ° flexion, 15 ° internal
rotation; radiography beam perpendicular

location group 13.4 mm+/−2.5 mm

Divided into 2 groups: dislocation (11) and
dislocation with recurrent subluxation (19); 1
observer measured once

Note: Patient positioning may be cumbersome and
difficult to replicate in a clinical setting

th subluxation group 13.8+/−3.5 mm

Outcome:

pth difference (p < 0.05):

Width difference

location group 3.9+/−0.9 mm

th subluxation group 2.1+/−1.0 mm

te: Deeper lesions associated with subjective joint
ity but not number of dislocations

Kralinger et al. [39]:
Retrospective cohort
study

Radiography 166 patients Hill-Sachs Quotient: currence rate associated with Hill-Sachs Quotient:

Assessment: Bernageau view and AP view at 60 ° internal
rotation (Fig. 8)

ade I 23.3 %

1 observer measured once ade II 16.2 %

Outcome: ade III 66.7 %

Recurrence rate

Sommaire et al. [46]:
Retrospective cohort
study

Radiography 77 patients d/R ratio: k of recurrence (p = 0.016):

Assessment: True AP radiograph in internal rotation (similar to
Charousset et al. [2010]; Fig. 9)

% in d/R ratio <20 %

Final clinical outcome after arthroscopic Bankart
repair and imaging; 1 observer measured once

% in d/R ratio >20 %

Outcome:
te: d/R ratio predictive of failure of arthroscopic
nkart repair

Need for revision repair

Hardy et al. [37]:
Retrospective cohort
study

Radiography;
2DCT

59 patients Radiograph 45 ° internal rotation view: ratio (p < 0.01):

Assessment: Depth of defect/radius of humerus (d/R) ratio
(similar to Charousset et al. [2010])

od/excellent group: 16.2 %

After arthroscopic stabilization divided into 2
groups based on Duplay clinical functional score:
good/excellent (38) fair/poor (21); 1 observer
measured all patients once; 10 observers
measured 10 patients

CT:
or/fair group: 21.3 %
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Table 6 Studies Assessing Hill-Sachs Bone Loss with Radiography, CT and MRI (Continued)

Outcome: Humeral head radius (best-fit circle to
circumference); defect width; defect depth (from
edge of circle); defect length (amount of CT slices
with the defect); lateralization angle (compared to
AP line through center of head)

Mean volume of lesion (p < 0.001):

Correlation of clinical score with radiographic
findings; surgical failure rate

Note: Radiographic technique easily obtained

Good/excellent group: 640 mm3

Poor/fair group: 2160 mm3

Surgical failure rate:

d/R >15 %: 56 %

d/R < 15 %: 16 %

Presence of lesion, depth, lateralization angle, lesion,
and humeral head volume ratio all non-significant
between groups

Reliability:

Inter-observer reliability for depth and radius
measurements non-significant

Kodali et al. [72]:
Laboratory study

2DCT 6 anatomic bone substitute models Circle fit to humeral head: Inter-observer reliability ICC:

Assessment: Width and depth measured on sagittal, axial, and
coronal planes (similar to Saito et al. (2009)

Depth - 0.879

Circular humeral head defects created; 2DCT
width-depth measurements made in 3 planes
and compared to the defect sizes measured by a
3D laser scanner

Width 0.721

Outcome:

Accuracy (PE):

5 observers measured once

Width: sagittal 10.9+/−8.6 %, axial 10.5+/−4.4 %,
coronal 15.9+/−8.6 %;

Depth: sagittal 12.7+/−10.0 %, axial 16.7
+/−10.2 %,coronal 22.5+/−16.6 %

Saito et al. [12]:
Retrospective case-
controls study

2DCT 35 patients; 13 normal Circle fit to the humeral head on axial slices: Mean size of Hill-Sachs lesion:

Assessment: Depth: greatest length of distance from floor of
defect to edge of circle; width: measured between
edges of defect

Depth 5.0+/−4.0 mm; width 22+/−6 mm

1 observer measured 3 times Intra-observer reliability:

Outcome: Pearson correlation coefficient: 0.954-0.998

Reliability Coefficient of variation: 0–7.4 %.

Cho et al. [36]:
Prospective cohort
study

3DCT 104 patients (107 shoulders) Fit circle to articular surface of humeral head: Inter-observer reliability:

Assessment: Axial and coronal planes: width and depth
measured on axial and coronal slice where lesion
was largest

ICC 0.629-0.992

evaluated size, orientation, & location as means
to predict engagement; engagement defined
arthroscopically; 1 observer measured 27
randomly selected shoulders 3 times; 2nd
observer measured once

Intra-observer reliability:

Outcome:

ICC 0.845-0.998

Reliability, size of Hill-Sachs lesion relationship to
engaging lesions

Size of Hill-Sachs lesion (axial):

Engaging group width 52 % & depth 14 %

Non-engaging group width 40 % & depth 10 %
(both p <0.001)
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Table 6 Studies Assessing Hill-Sachs Bone Loss with Radiography, CT and MRI (Continued)

Size of Hill-Sachs lesion (coronal):

Engaging group width 42 % & depth 13 %

Non-engaging group width 31 %, & depth 11 %
(p = 0.012 & 0.007 respectively).

Note: Orientation of Hill-Sachs angle significantly
higher in engaging lesions

Kawasaki et al. [73]:
Modeling

3DCT Evaluated 7 CT scans of bilateral shoulders Created 3D contour; mirrored the normal shoulder
and overlap contours; computer measured defect
difference

Proposed a method to calculate humeral head
bone loss

Kirkley et al. [70]:
Prospective case series

MRI 16 patients Hill-Sachs lesions were categorized as small (<1 cm)
or large (>1 cm);

Presence vs. absence of Hill-Sachs lesion:

Assessment:
Note: Did not clarify slice or dimensions measured
to determine Hill-Sachs lesion size

Kappa = 1

MRI followed by arthroscopic evaluation; 2
observers measured once

Distinguishing small from large lesion:
Kappa = 0.44

Outcome: Not able to accurately quantify size

Reliability

Salomonsson et al. [71]:
Prospective cohort
study

MRI 51 patients Hill-Sachs depth: Size of Hill-Sachs lesion:

Assessment: Measured on axial slice at largest point Stable group 5 mm; unstable group 3 mm (non-
significant)MRI immediately and clinical follow-up to

105 months; divided into stable and unstable (re-
current instability); 2 observers measured once

Outcome:

Size of Hill-Sachs lesion correlation with recurrent
instability

List of Abbreviations: ICC: intraclass correlation coefficient; PE: percent error

Saliken
et

al.BM
C
M
usculoskeletalD

isorders
 (2015) 16:164 

Page
18

of
26



Fig. 4 Bernageau Radiography. a) Patient positioning. b) Antero-posterior
glenoid width measurement on this view (Murachovsky et al. [43])
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32, 33, 35, 42–51, 54–69]. For Hill-Sachs bone loss, radi-
ography was evaluated in 5 studies [37–39, 46, 47], MRI
in 2 studies [70, 71], and CT in 5 studies [23, 36, 72–74].

Glenoid imaging
Radiography
Routine radiographic views (true AP and axillary) were
found to have lower accuracy and reliability in calculat-
ing glenoid bone loss (Table 1) [18, 42, 44, 45, 47]. Spe-
cial radiographic views on the other hand, in particular
the Bernageau profile view (Fig. 4), had better accuracy
and reliability scores [18, 43, 46]. The Bernageau profile
had an intra-observer intraclass correlation coefficient
(ICC) 0.897-0.965 and inter-observer ICC 0.76-0.81
compared to a true AP radiograph with an intra-
observer ICC 0.66-0.93 and inter-observer ICC 0.44-0.47
[43, 47]. Sommaire et al. demonstrated failure of Bankart
repair when the width loss was 5.3 % compared to no
failure with width loss 4.2 % using the Bernageau view
(p = 0.003), although no clinically relevant threshold was
defined [46]. A true AP radiograph was found to be spe-
cific (100 %) but not sensitive (54-65 %) for detecting a
large glenoid bone lesion [45].

CT and MRI
Surface area loss measurements
The surface area loss methods vary in the manner to
which a circle is approximated to the inferior glenoid -
based on either contralateral glenoid or intact posteroin-
ferior margins of injured glenoid - but will be grouped
together in this review as best-fit circle surface area
methods (Fig. 10) (BCSA). The Pico Method (Fig. 2) is a
BCSA based on the contralateral glenoid described by
Baudi et al. [75]. The Pico Method has demonstrated
good inter-observer (ICC 0.90) and intra-observer (ICC
0.94, 0.96-1.0) reliability as well as a low coefficient of
variation (2.2-2.5 %) [32, 60, 65]. Magarelli et al. (mean
difference between two-dimensional CT [2DCT] and
three-dimensional CT [3DCT] 0.62 %+/−1.96 %) showed
the method could be applied accurately with both 2DCT
and 3DCT [32]. The previous article used software to cal-
culate the surface area lost, but Barchillon et al. demon-
strated that a BCSA method similar to the Pico Method
could be applied using 3DCT, a femoral head gauge, and
applying a mathematical formula [20]. Milano et al. dem-
onstrated that using the Pico Method, recurrent disloca-
tion was associated with defects greater than 20 %. [55]
Huijsmans et al. showed that a BCSA method could be
used by MRI with similar accuracy to 3DCT [21]. Nof-
singer et al. used a method termed the Anatomic Glenoid
Index (see Table 2 for description) in an attempt to retro-
spectively predict which surgical procedure an instability
patient would receive but were unable to separate the two
groups with their method [35].
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Width loss measurements
Griffith et al. created the Griffith Index using bilateral
shoulder CT scans (Fig. 1) as one of the first width loss
techniques and it has been found to be reliable and ac-
curate [33, 47, 58]. A method similar to the Griffith
Index, termed the Glenoid Index (Fig. 5) was shown to
accurately predict if a patient would require a Latarjet
procedure 96 % of the time [68]. Other width loss meas-
urement methods have measured width loss from a cir-
cle approximated to the inferior glenoid (based on either
contralateral or ipsilateral glenoid) and have been found to
have good reliability and accuracy (Table 3) [47, 48, 50, 52].
Evidence is conflicting with respect to whether width loss
measurements can be applied to MRI. Tian et al. suggested
volumetric interpolated breath-hold examination (VIBE)
magnetic resonance arthrography (MRA) was as accurate
as 2DCT and Lee et al. found a correlation between 2DCT
and MRI of r = 0.83 and the difference in accuracy was
1.3 % for width loss measurements [51, 52]. Moroder et al.
found that MRI (35 % sensitive, 100 % specific) was not as
sensitive as 3DCT (100 % sensitive, 100 % specific) for de-
tecting a significant bone lesion [50]. Gyftopoulous et al.
found 3DCT was more accurate than 2DCT and MRI (per-
cent error 3DCT 2.17-3.5 %, 2DCT 2.22-17.1 %, MRI 2.06-
5.94 %) although the difference was not significant and
they concluded that MRI could accurately measure glenoid
bone loss [48].

Comparative studies
A few studies directly compared imaging modalities and
methods (Table 4). Bishop et al. found 3DCT had the highest
accuracy (agreement kappa 0.5) and second highest intra-
observer reliability (intra-observer kappa 0.59) while radiog-
raphy (agreement kappa 0.15, intra-observer kappa 0.45) had
the lowest in a comparison of radiography, 2DCT, 3DCT,
and MRI [42]. Rerko et al. also found that 3DCT was the
Fig. 5 Glenoid Index. The Glenoid Index is calculated from injured width/n
to normalize the pre-injury glenoid width accounting for any height differe
width to pre-injury width. Although demonstrated here using 2D CT, the d
(Adapted from Chuang et al. [68])
most accurate (percent error [PE] -3.3 % +/− 6.6 %) and reli-
able (inter-observer ICC 0.87-0.93) method compared to
radiography (PE −6.9 %; ICC 0.12-0.53), 2DCT (PE −3.7 %;
ICC 0.82-0.89), and MRI (PE −2.75 %; ICC 0.38-0.85) [44].
Bois et al. evaluated 7 measurement techniques using 2DCT
and 3DCT and found that the Pico Method based on the
contralateral, intact glenoid (inter-observer ICC 0.84; PE
7.32) and Glenoid Index using 3DCT (ICC 0.69; PE 0.01)
were the most reliable and accurate methods [63].
Other glenoid bone loss methods
Results are presented in Table 5. Dumont et al. used an
arc angle to determine percent surface area loss but have
not tested the method clinically [49]. De Filipo et al. cre-
ated a new technique using curved multiplanar recon-
struction (MPR), a CT technique generally used for
vascular studies for its ability to follow curved surfaces,
and found it was more accurate than flat MPR in meas-
uring surface area loss (Fig. 6) [66]. Diederichs et al.
expressed bone loss in terms of volume using 3D com-
puter software to mirror the contralateral normal glen-
oid and found good accuracy in a cadaveric study [59].
Sommaire et al. used Gerber’s Index and found that a
threshold of 40 % bone loss was associated with recur-
rent instability (Fig. 7) [46].
Hill-Sachs imaging

Radiography Results are presented in (Table 6). Ito
et al. positioned patients supine with the shoulder in
135 ° flexion and 15 ° of internal rotation to obtain a
view of the posterolateral notch and calculate depth and
width of the Hill-Sachs lesion but reliability was not ex-
plored [38]. Kralinger et al. calculated a Hill-Sachs Quo-
tient (Fig. 8) by measuring depth and width on a true
AP radiograph with the arm in 60 ° internal rotation and
ormal width. Chuang et al. use the parameters of the normal glenoid
nce between shoulders. They then compare the ratio of post-injury
escription of the Glenoid Index by Chuang et al. involves 3DCT.



Fig. 6 Glenoid bone loss calculated with De Filippo method using CT curved MPR. Normal right glena (a; 6.87 sq. cm), left glena with deficiency
(b; 5.49 sq. cm)
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length on a Bernageau profile [39]. Recurrence rate was
noted to be higher with a larger quotient (Grade I
23.3 %; grade II 16.2 %; grade III 66.7 %) although the
reliability and accuracy have not been tested.
A technique of creating a ratio using the Hill-Sachs de-

fect depth and humeral head radius (d/R) on a true AP
radiograph with the arm in internal rotation has been
found to be reliable and clinically relevant (Fig. 9). Char-
ousset et al. demonstrated inter- and intra-observer reli-
ability ICC 0.81-0.92 and 0.72-0.97 respectively with this
technique [47]. Sommaire et al. retrospectively found the
recurrence rate of GHI was 40 % when d/R >20 % com-
pared to 9.6 % when d/R <20 %, while Hardy et al. found
arthroscopic stabilization failure rate was 56 % when d/R >
15 % compared to 16 % when d/R <15 % [37, 46].
Fig. 7 Gerber Index. The Gerber Index calculates bone loss based on
a ratio of length of glenoid defect and diameter of glenoid.
(Adapted from Sommaire et al. [46])
CT and MRI
Hardy et al. measured the volume of the defect on axial
slices using width, depth, and length and found a signifi-
cantly larger defect volume in patients with lower
Duplay functional scores but did not evaluate reliability
[37]. Saito et al. and Cho et al. both measured defect
depth and width on the axial slice where the lesion was
largest [23, 36]. Saito et al. found intra-observer Pearson
correlation coefficients of 0.954-0.998 using 2DCT. Cho
et al. found inter- and intra-observer reliability ICC of
0.772-0.996 and 0.916-0.999 respectively for depth and
width measurements on 2DCT. Cho et al. also showed
that the size of engaging Hill-Sachs lesions were signifi-
cantly larger than non-engaging lesions. Kodali et al.
evaluated the reliability and accuracy of 2DCT with an
anatomic model and showed inter-observer reliability
ICC 0.721 and 0.879 for width and depth respectively.
The accuracy was highest in axial slices but there was
still a percent error of 13.6+/−8.4 % [72].
Two studies evaluated MRI for quantifying Hill-Sachs

lesions. Salomonsson et al. measured the depth of the le-
sion but were not able to show a significant difference
between stable and unstable shoulders that were treated
non-operatively [71]. Kirkley et al. tested the agreement
between MRI and arthroscopy for the quantification of
Hill-Sachs size [70]. They showed moderate agreement
(Cohen’s kappa value 0.444) for the size of the lesion as
normal, less than 1 cm, or greater than 1 cm.

Discussion
Glenohumeral bone loss is a key factor in predicting re-
current instability following traumatic anterior shoulder
dislocation. Increasing size of glenoid and Hill-Sachs
lesions are associated with higher failure rates of arthro-
scopic Bankart repairs. Clinical and biomechanical stud-
ies have attempted to determine threshold values of



Fig. 9 Humeral head depth:radius ratio (d/R). On a true AP x-ray
with internal rotation, a circle template is fit to the contour of the
articular surface of the humeral head and the depth of Hill-Sachs
bone loss is measured. (Adapted from Sommaire et al. [46])

Fig. 8 Hill-Sachs Quotient. a) True AP x-ray of the humerus with the
shoulder in 60° internal rotation to measure the width (x) and depth
(y) of the lesion. b) Bernageau profile view to measure the length (z)
of the lesion. The Hill-Sachs Quotient is calculated by multiplying x,
y and z. Grade: I <1.5 cm2; II 1.5-2.5 cm2; III > 2.5 cm2 (Adapted from
Kralinger et al. [39])
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glenohumeral bone loss to use in preoperative planning.
Radiography, CT, and MRI have all been explored as
imaging modalities for quantification of these glenohum-
eral bone lesions, with CT being studied most exten-
sively. Within each modality a number of methods have
been proposed to quantify the bone loss. There is still a
need for further investigation to determine the best mo-
dality and method but significant progress has been
made since 2000.
Radiography appears to have a role in screening pa-
tients for glenoid bone loss; standard radiographic views
are straightforward for imaging technicians to obtain but
their accuracy is low compared to CT and MRI [42].
Specialized radiographic views are more accurate; how-
ever they may be difficult to reproduce clinically due to
patient discomfort or apprehension [74]. Slight devia-
tions in gantry orientation or arm positioning may also
obscure the bony details [47].
Two general methods emerged when quantifying glen-

oid bone loss using advanced imaging, width and surface
area methods. Each of these methods uses humeral head
subtraction and reconstruction to obtain en face views of
the glenoid. Because bone loss occurs anteriorly, width
methods measure the bone loss in this anterior-posterior
dimension in the inferior 2/3 of the glenoid. Ji et al. state
that this measurement should be made specifically at
03:20 on a clock face, the most common location of bone
loss [13]. The bone loss in the width methods is expressed
compared to the pre-injury glenoid. Some authors have
used CT scans of the contralateral, uninjured shoulder to



Fig. 10 Best-Fit Circle Width Loss. A circle is approximated to the
inferior glenoid and the expected diameter of the circle is compared
to the defect width
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obtain the pre-injury width. Others have approximated
the pre-injury width by using the intact inferior edges of
the injured glenoid to place a circle. Earlier studies sug-
gested that either form of calculating the width loss was
adequate, although newer studies have found that using
bilateral CT is more accurate [42, 63]. The Glenoid Index
(Fig. 5) is the most accurate width measurement method.
Surface area methods function by approximating a circle
to the inferior glenoid in the same manner as the width
methods then finding the area missing. The surface area
methods have been studied frequently and have good to
excellent reliability [32, 60, 65]. Initially computer software
was required to calculate the surface area; however
Barchillon et al. showed that one could use a femoral
gauge in a clinical setting and still produce accurate re-
sults [20]. Comparative studies suggest that the Pico
Method based on bilateral CT scans is most accurate and
reliable, particularly when using 3DCT versus 2DCT [42,
48, 63]. The accuracy of the Pico method may be affected
in part due to the curved nature and concavity of the glen-
oid. De Felippo et al. have attempted to address this with
their De Felippo method that utilizes curved MPR. This
was shown to have low interobserver variability and a high
correlation with their reference standard. Evidence is cur-
rently equivocal if MRI can be used to calculate glenoid
bone loss using width and surface area methods in a clin-
ical setting [48, 50, 61]. In comparative studies, CT was
found to be more accurate than MRI [42, 48].
Radiography has been shown to be useful in quantify-

ing Hill-Sachs bone loss. Creating a depth/radius ratio
on a true AP radiograph with internal rotation is reliable
and shown to be clinically relevant, although the accur-
acy has not been clarified [37, 46, 47]. CT imaging has
been used to quantify depth, width, and volume of the
lesion. It appears the reliability of CT is good but its ac-
curacy is questionable, often underestimating the size of
the lesion [72]. A complicating factor in determining the
significance of a Hill-Sachs lesion is the role its orienta-
tion plays. More horizontal lesions tend to engage the
glenoid lesion and incorporating this factor along with
the size is likely important but has not been determined
yet [36]. Walia et al. have explored how Hill-Sachs and
glenoid lesions interact and engage theoretically and
concluded that combined bony defects reduced stability
more than expected based on isolated defects alone [30].
The exact way they reduce stability and how to calculate
this clinically is unknown.
This study is limited by its qualitative nature. Because

the literature has evaluated multiple methods and mo-
dalities with different statistical tools it is difficult to
pool data and achieve a clear answer of which method is
the best. However, this may guide future prospective
studies into which method to apply. There was a trend
to use either a width or surface-area method, each of
which can be applied with the same imaging data set ob-
tained from a CT or MRI. Comparing these methods
and correlating with surgical results may give an answer
to the best imaging method.

Conclusions
Our scoping review has synthesized the current evidence
regarding imaging techniques to quantify glenoid and
Hill-Sachs bone loss. A number of modalities and
methods have been explored to quantify glenoid bone
loss. Radiography does not appear to have the accuracy
required for pre-operative planning but may play a role
in screening patients that would require advanced im-
aging. The Bernageau profile view to calculate AP glen-
oid width is the most accurate radiograph. CT is the
most accurate modality but the risk of radiation expos-
ure, particularly when using methods that require bilat-
eral imaging, needs to be considered. Of the methods
used with CT, the Glenoid Index is the most accurate
and reliable width method while the Pico Method is
the most accurate and reliable surface area method.
The Glenoid Index requires bilateral shoulder CT and
the Pico Method is most accurate when applied using bi-
lateral CT but may also be applied with unilateral im-
aging. There are equivocal findings about the accuracy
or MRI compared to CT and this needs to be clarified
by future studies.
A consensus measurement technique for calculating

Hill-Sachs bone loss or a threshold size for predicting re-
current instability has not yet been established. Larger
lesions, at least >25 % of the humeral head diameter, ap-
pear to increase risk of recurrent instability in biomech-
anical studies [24]. Calculating a depth:radius radio
on a true AP radiograph with the arm internally
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rotated is inexpensive, easy to obtain, and predicts
recurrence with good reliability when >20 %. How-
ever, its accuracy has not yet been established. Meas-
uring the depth and width on axial slices of a CT
scan have good to excellent reliability and have been
associated with engaging Hill-Sachs lesions. However
the role of CT in predicting recurrence has not been
determined.
Ease of calculation, radiation exposure, experience of

interpreting radiologist or surgeon, and software avail-
ability are factors that should be considered when deter-
mining which method will be used. Finally, glenoid and
Hill-Sachs bone loss may need to be evaluated together
as the manner in which these lesions interact is complex
and requires further study.
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