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Abstract
Purpose This study aimed to elucidate the causal relationship between Obstructive Sleep Apnea (OSA) and 
Chronic Respiratory Diseases (CRDs), employing Mendelian Randomization (MR) to overcome limitations inherent in 
observational studies.

Methods Utilizing a two-sample MR approach, this study analyzed genetic variants as instrumental variables 
to investigate the causal link between OSA and various CRDs, including chronic obstructive pulmonary disease 
(COPD), asthma, bronchiectasis, and idiopathic pulmonary fibrosis (IPF). Data were sourced from the FinnGen 
Consortium (OSA, n = 375,657) and UK Biobank, focusing on genome-wide associations between single-nucleotide 
polymorphisms (SNPs) and the diseases. Instrumental variables were selected based on strict criteria, and analyses 
included a random-effects inverse-variance weighted method supplemented by several sensitivity analyses.

Results The study suggests a protective effect of OSA against COPD (OR = 0.819, 95% CI 0.722–0.929, P-value = 0.002), 
which becomes non-significant after adjusting for BMI, indicating a potential mediating role of BMI in the OSA-COPD 
nexus. No significant causal links were found between OSA and other CRDs (asthma, IPF, bronchiectasis) or between 
COPD, asthma, and OSA.

Conclusions Our findings reveal a BMI-mediated protective effect of OSA on COPD, with no causal connections 
identified between OSA and other CRDs. These results emphasize the complex relationship between OSA, BMI, and 
COPD, guiding future clinical strategies and research directions, particularly in light of the study’s genetic analysis 
limitations.
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Introduction
According to conservative estimates, the prevalence of 
obstructive sleep apnea(OSA) is 3% for women, 10% 
for men in the 30- to 49-year-old age range, and 9% for 
women and 17% for men in the 50- to 70-year-old age 
range [1]. The characteristic features of OSA include the 
episodic collapse of the upper airway, which depends on 
the sleep state [2]. This leads to periodic decreases or ces-
sations in breathing, which can cause hypoxia, hypercap-
nia, or arousal from sleep [3, 4]. Nocturnal hypoxemia is 
often present in OSA and especially in overlap cases with 
COPD because the result of hypoxia is the development 
or worsening of cerebro-cardio-vascular, metabolic and 
other diseases, which cause a high risk of death [5, 6]. 
As noted by Tondo, et al. [6], OSA is closely associated 
with these health risks, underlining the need for effective 
management and intervention strategies.

Chronic respiratory diseases (CRDs) continue to be 
the main cause of death and disability worldwide [7, 8]. 
There were 544,9 million chronic respiratory disease suf-
ferers globally in 2017, a 39.8% increase from 1990 [7]. 
Some of the most common chronic respiratory diseases 
are chronic obstructive pulmonary disease (COPD) and 
asthma [9]. The concurrent prevalence of CRDs, such as 
COPD [10 11], asthma [12], bronchiectasis [13], and idio-
pathic pulmonary fibrosis (IPF) [14, 15] has been repeat-
edly highlighted by modern observational research, 
highlighting a significant clinical overlap with OSA.

The prevalence of OSA is estimated to be 10–30% 
in patients with COPD [16] and 20–60% in those with 
asthma [17, 18]. OSA exacerbates chronic respiratory 
diseases such as COPD, asthma, interstitial lung disease, 
and pulmonary hypertension [19]. OSA with CRDs not 
only deteriorates the progression of these diseases but 
also adversely affects the quality of life of the affected 
individuals.

These ongoing findings point to a significant conver-
gence in the clinical characteristics of these illnesses. 
Nevertheless, a thorough definition of the causal link 
between OSA and CRDs is still pending.

Mendelian randomization (MR), an innovative sta-
tistical approach, offers a method to appraise the causal 
links between OSA and CRDs, utilizing genetic variants 
as instrumental variables [20]. MR analysis can eliminate 
potential unmeasured confounders and reverse causa-
tion, a significant limitation of evidence from observa-
tional studies because the genetic variants are assigned 
randomly at conception [21]. In this work, we used MR 
techniques to assess the causal relationship between OSA 
and CRDs.

Methods
Study design and data sources
This study encompasses a comprehensive review of sup-
porting information within the article. Employing a 
two-sample MR approach, we investigated the causal 
relationship between OSA and CRDs (Fig.  1). In our 
MR framework, genetic variations serve as instrumen-
tal variables to ascertain if exposure significantly influ-
ences disease development. This method offers robust 
causal inferences, mitigating the impact of unmeasured 
confounders. Our MR design adhered to three critical 
criteria for credible causal estimations: (1) Instrumen-
tal variables must exhibit a substantial association with 
the exposure; (2) The instrumental variables should be 
independent of known confounders. The exposure is 
the sole pathway through which the instrumental vari-
ables influence the outcomes; (3) Genome-wide asso-
ciation studies (GWAS) have demonstrated associations 
between single-nucleotide polymorphisms (SNPs) and 
exposure. The data utilized were derived from publicly 
available GWAS summary statistics, thus obviating the 

Fig. 1 Mendelian randomization model of OSA and CRDs. Abbreviation OSA, obstructive sleep apnea; CRDs: chronic respiratory diseases
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need for additional ethical approval or informed con-
sent. GWAS data for OSA were obtained from the Finn-
Gen Consortium (G6_SLEEPAPNO _INCLAVO) (gs://
finngen-public-data-r9/summary_stats/finngen_R9_G6_
SLEEPAPNO_INCLAVO.gz), comprising 41,704 cases 
and 335,573 controls. OSA diagnosis was according to 
the International Classification of Diseases, Tenth Revi-
sion (ICD-10) and Ninth Revision (ICD-9) codes (ICD-
10: G47.3, ICD-9: 3472 A), which was based on subjective 
symptoms, clinical examination, and sleep registration 
applying AHI ≥ 5/h or respiratory event index ≥ 5/h. The 
CRDs outcomes were COPD, asthma, bronchiectasis, IPF, 
and pulmonary hypertension. Genetic instruments for 
COPD (25,054 cases and 392,709 controls), asthma (2,365 
cases and 453,983 controls), bronchiectasis (583 cases 
and 455,765 controls), IPF (1,369 cases and 435,866 con-
trols) were obtained from the UK Biobank (https://gwas.
mrcieu.ac.uk/, COPD GWAS ID: ebi-a-GCST90042687, 
asthma GWAS ID: ebi-a-GCST90044072, bronchiectasis 
GWAS ID: ebi-a-GCST90044075, IPF GWAS ID: ebi-
a-GCST90399723) (Table  1). COPD was defined using 
post-bronchodilator spirometry according to modified 
GOLD criteria in both studies.

Instrumental variable selection
In this study, SNPs were meticulously selected for 
each exposure factor in accordance with the principal 
assumptions underpinning MR. Initially, SNPs achieving 
genome-wide significance (p < 5 × 10^−8) were consid-
ered for inclusion. Subsequently, to identify independent 
instrumental variables (IVs), we selected variants dem-
onstrating the lowest p-values, ensuring minimal link-
age disequilibrium (LD) as evidenced by an r^2 threshold 
greater than 0.1, based on the European 1000 Genome 
reference panel. Finally, the robustness of these instru-
mental variables was quantified using F-statistics [22], 
with an F-statistic value exceeding ten generally deemed 
suitable for MR analysis.

Statistical analysis
In this investigation, for binary exposures, causal esti-
mates were articulated as odds ratios (ORs) with 95% 
confidence intervals (CIs) per logarithmic odds incre-
ment in the genetically predisposed risk of the exposures. 

Regarding continuous exposures, the causal estimate was 
denoted as an OR accompanied by a 95% CI for each 
standard deviation (SD) increase in exposure. MR analy-
sis employed the primary analytic approach of the ran-
dom-effects inverse-variance weighted (IVW) method. 
This was chosen to estimate the potential bidirectional 
causal relationships between OSA and CRDs, offering 
robust causal estimations in scenarios devoid of direc-
tional pleiotropy. Complementary analyses incorporated 
methods such as the weighted median, simple mode, 
weighted mode, and MR-Egger. Directional horizontal 
pleiotropy was assessed using the MR-Egger intercept 
test. Heterogeneity in MR-Egger regression and the IVW 
method was evaluated through Cochran’s Q statistics 
and funnel plot analyses [23]. Additionally, sensitivity 
was examined via leave-one-out analysis. Post hoc power 
assessments for MR leveraged online resources (https://
sb452.shinyapps.io/power/) [24]. All statistical proce-
dures were executed using the TwoSampleMR packages 
within R (version 4.1.2, www.r-project.org/). All p-values 
were two-tailed. A Bonferroni-adjusted p-value thresh-
old of < 0.004 (0.05/12) was set for determining statistical 
significance in MR analyses. In contrast, p-values < 0.10 
were deemed significant for MR-Egger tests and hetero-
geneity assessments.

Results
Instrumental variable selection
In the initial phase of our analysis, we rigorously selected 
SNPs that demonstrated a robust association with the 
exposure, applying stringent criteria (p < 5 × 10^−8, 
F-value > 10) and ensuring independence (r² < 0.001 
within a 10,000 kb physical window). This process yielded 
22 SNPs from the FinnGen Consortium (G6_SLEE-
PAPNO_INCLAVO) designated as IVs after excluding 
SNPs with LD (r2 > 0.001). No proxy SNP was missing 
for other CRDs outcomes. Detailed information for each 
SNP for OSA used in the current study can be found in 
the supplementary file (Supplementary material, Table 
S1).

The causal effect of OSA on CRDs
The results of the MR analyses are shown in Fig.  2; 
Table  2, and the scatter plots and forest plots are 

Table 1 Details of the GWASs included in the mendelian randomization
Consortium Phenotype Participants Web source

ncase ncontrl
FinnGen OSA 38,998 336,659 https://r9.finngen.fi/
UK Biobank COPD 25,054 392,709 https://www.nealelab.is/uk-biobank
UK Biobank Asthma 2365 453,983 https://www.nealelab.is/uk-biobank
UK Biobank bronchiectasis 583 455,765 https://www.nealelab.is/uk-biobank
UK Biobank IPF 1369 435,866 https://www.nealelab.is/uk-biobank
Abbreviation OSA, obstructive sleep apnea; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
http://www.r-project.org/
https://r9.finngen.fi/
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
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presented in Supplementary Figure S1 and Figure S2, 
respectively. In the univariable IVW analysis, geneti-
cally predicted OSA is negatively associated with COPD 
[IVW: odds ratio (OR) = 0.819, 95% CI 0.722–0.929, 
P-value = 0.002]. The Cochran’s Q value suggested a mod-
erate level of heterogeneity (Q = 37.207, p < 0.05) obtained 
from individual variants. Furthermore, the leave-one-
out analysis suggested that the observed association was 
not significantly changed after removing any single vari-
ant (Supplementary Figure S3). In order to exclude the 
influence of confounding factors, we used multivariate 

Mendelian randomization analysis (MVMR). The MVMR 
estimates remained unchanged after an BMI adjustment 
accounting for multiple testing (P-value = 0.434). No 
genetic association of OSA with asthma, IPF, and bron-
chiectasis was found with all P values > 0.05.

The causal effect of CRDs on OSA
As shown in Supplementary Table S2, the scatter plots 
(Supplementary Figure S5), and forest plots (Supple-
mentary Figure S6), the MR results showed COPD and 
asthma were not causally related to OSA, with ORs close 

Table 2 MR results for the relationship between OSA on CRDs
Exposures Outcomes No. of SNPs Method OR(95%CI) p Heterogeneity test Pleiotropy test

Cochran’s Q(I2) p p pintercept
OSA* COPD# 21 IVW

MR Egger
Weighted median
Simple mode
Weighted mode

0.82(0.72 ~ 0.93)
1.20(0.71 ~ 2.03)
0.92(0.80 ~ 1.06)
0.96(0.72 ~ 1.28)
0.97(0.80 ~ 1.17)

0.002
0.502
0.269
0.796
0.734

37.207(46.25%)
33.401(43.12%)

0.011
0.021

0.158

OSA* Asthma# 21 IVW 1.28(0.84 ~ 1.94) 0.250 42.332(52.75%) 0.003 0.232
MR Egger 3.80(0.64 ~ 22.45) 0.158 39.192(51.52%) 0.004
Weighted median 1.05(0.65 ~ 1.68) 0.841
Simple mode 2.13(0.80 ~ 5.68) 0.145
Weighted mode 0.87(0.43 ~ 1.73) 0.691

OSA* IPF# 22 IVW 1.00(0.99 ~ 1.00) 0.819 8.638(0%) 0.991 0.856
MR Egger 1.00(0.99 ~ 1.01) 0.488 8.187(0%) 0.992
Weighted median 1.00(0.99 ~ 1.00) 0.799
Simple mode 1.00(0.99 ~ 1.00) 0.743
Weighted mode 1.00(0.99 ~ 1.00) 0.764

OSA* Bronchiectasis# 21 IVW 1.11(0.49 ~ 2.51) 0.801 39.852(49.81%) 0.005 0.407
MR Egger 0.49(0.14 ~ 1.72) 0.388 38.397(50.52%) 0.005
Weighted median 0.64(0.26 ~ 1.57) 0.331
Simple mode 3.69(0.57 ~ 24.03) 0.186
Weighted mode 0.53(0.14 ~ 1.95) 0.352

*data form The FinnGen Consortium(G6_SLEEPAPNO)
#data form UK Biobank

Abbreviation OSA, obstructive sleep apnea; SNPs, single-nucleotide polymorphisms; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary 
fibrosis; IVW, inverse-variance weighted

Fig. 2 The causal effect of OSA on chronic respiratory diseases. Abbreviation OSA, obstructive sleep apnea; SNP: single-nucleotide polymorphisms; COPD: 
chronic obstructive pulmonary disease; MVMR: multivariate Mendelian randomization analysis; BMI: body mass index; IPF: idiopathic pulmonary fibrosis
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to 1 (p > 0.05). Egger’s test showed that no potential hori-
zontal pleiotropy exists. Cochran’s Q test indicated no 
heterogeneities. The leave-one-out analysis also revealed 
the stability of the results (Supplementary Figure S7). 
Insufficient SNPs were present in IPF and bronchiectasis 
to facilitate a conclusive Mendelian analysis.

Discussion
In this investigation, we present what we believe to be the 
inaugural bidirectional MR study elucidating the impact 
of OSA on a spectrum of CRDs. Our analysis discerned 
a diminished and statistically non-significant associa-
tion between OSA and COPD upon adjustment for BMI. 
Importantly, no significant causal linkage was observed 
between OSA and other respiratory conditions such as 
asthma, IPF, and bronchiectasis.

Furthermore, our data suggest that OSA may act as 
a protective factor against COPD, a relationship that 
loses significance upon BMI adjustment. This find-
ing highlights the complex interplay between BMI and 
respiratory diseases, suggesting that BMI may medi-
ate the relationship between OSA and COPD. Similarly, 
Tondo, et al. [25] found BMI significantly modulates the 
impact of OSA on various comorbidities, providing an 
observational perspective that complements our Men-
delian randomization approach. A body of extant obser-
vational studies buttresses this hypothesis. Shin, et al. 
[26] reported heightened exacerbation risks in COPD 
patients with a BMI below 25 kg/m², in contrast to those 
with higher BMI values. Complementing this, a sub-
stantial Japanese cohort study demonstrated an inverse 
relationship between BMI and COPD mortality risk, evi-
denced by a hazard ratio of 0.48 per standard deviation 
increase in BMI. This study also highlighted the inverse 
correlation between weight gain post-age 20 and COPD 
mortality risk, underscoring the prognostic significance 
of BMI and weight trajectories in COPD [27]. More-
over, the causal relationship between OSA and BMI [28] 
emerges as a positive prognostic factor in COPD patients 
within our study’s context. Obesity significantly increases 
the risk and severity of OSA due to mechanical, physi-
ological, and inflammatory factors that compromise air-
way patency and respiratory function [29]. Nevertheless, 
a higher BMI can indicate better nutritional status, which 
is crucial for patients with advanced COPD who often 
experience weight loss and muscle wasting [30]. These 
reserves provide essential energy to support breathing 
and other physical activities, potentially slowing the pro-
gression of disability [31]. The intricate interplay between 
OSA, BMI, and COPD warrants further investigative 
efforts to elucidate the underlying mechanisms.

This investigation discerned no causal link between 
OSA and several CRDs, namely asthma, IPF, and bron-
chiectasis. This absence of causal association diverges 

from the conclusions of previous observational studies, 
potentially attributable to confounding variables inher-
ent in such study designs. Moreover, our findings did 
not identify a causal relationship in the reciprocal analy-
sis concerning COPD, asthma, and OSA. However, it is 
crucial to note that the validity of these results may be 
constrained by the limited number of SNPs utilized in the 
study. The limited SNP count potentially undermines the 
robustness of these findings, indicating the necessity for 
further research with a more extensive genetic dataset to 
corroborate or challenge these preliminary observations.

A major strength of this MR study lies in its ability 
to circumvent reverse causality and minimize residual 
confounding. Additionally, the study boasts significant 
investigatory power and accuracy in estimating effect 
magnitudes by employing the most comprehensive data-
set for exposures and the most extensive summary-level 
data for OSA risk and CRDs. Nonetheless, there are 
limitations. Firstly, the functions of the genetic instru-
ments and their impact on risk factors are not completely 
understood. Secondly, potential pleiotropic effects, possi-
bly obscured by a limited number of genetic instruments 
or small sample sizes, remain a concern, although the 
MR-Egger intercept indicates minimal horizontal pleiot-
ropy. Thirdly, our study did not differentiate the impacts 
of various BMI ranges on both OSA and COPD, a limita-
tion we aim to address in future research.

In summary, our study elucidates a potentially protec-
tive influence of OSA on COPD, an effect that appears 
to be mediated through BMI. These findings underscore 
clinicians’ need to consider the interplay among OSA, 
BMI, and COPD in clinical practice. Such awareness 
could inform more nuanced diagnostic and therapeutic 
approaches, enhancing patient outcomes in managing 
these conditions.
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