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Abstract
Background While Human Factors (HF) methods have been applied to the design of decision support systems 
(DSS) to aid clinical decision-making, the role of HF to improve decision-support for population health outcomes is 
less understood. We sought to comprehensively understand how HF methods have been used in designing digital 
population health DSS.

Materials and methods We searched English documents published in health sciences and engineering databases 
(Medline, Embase, PsychINFO, Scopus, Comendex, Inspec, IEEE Xplore) between January 1990 and September 2023 
describing the development, validation or application of HF principles to decision support tools in population health.

Results We identified 21,581 unique records and included 153 studies for data extraction and synthesis. We included 
research articles that had a target end-user in population health and that used HF. HF methods were applied 
throughout the design lifecycle. Users were engaged early in the design lifecycle in the needs assessment and 
requirements gathering phase and design and prototyping phase with qualitative methods such as interviews. In later 
stages in the lifecycle, during user testing and evaluation, and post deployment evaluation, quantitative methods 
were more frequently used. However, only three studies used an experimental framework or conducted A/B testing.

Conclusions While HF have been applied in a variety of contexts in the design of data-driven DSSs for population 
health, few have used Human Factors to its full potential. We offer recommendations for how HF can be leveraged 
throughout the design lifecycle. Most crucially, system designers should engage with users early on and throughout 
the design process. Our findings can support stakeholders to further empower public health systems.
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Background
Interactive decision aid systems, such as dashboards, 
are vital digital interfaces that support decision-mak-
ers across diverse sectors like healthcare, energy, and 
finance [1]. In these dynamic and often unpredictable 
settings, professionals must make swift and accurate 
decisions under pressure, where the cost of an error can 
be substantial. Given that human cognitive and percep-
tual constraints can lead to decision-making errors, 
these systems aim to minimize errors and enhance user 
decision-making.

Human Factors (HF) Engineering, along with its sub-
discipline of Human Computer Interaction (HCI), 
represents a field poised at the intersection of human 
behavior and system design [2]. It is predicated on the 
principle of tailoring systems to match user capabilities 
and characteristics, thereby minimizing the mismatch 
between humans and the tools they use. This alignment 
aims to reduce cognitive and physical strain, facilitating 
improved performance and satisfaction. The methodolo-
gies encompass understanding user-system interactions, 
crafting solutions responsive to user needs, and evaluat-
ing these solutions against criteria such as decision-mak-
ing accuracy, task efficiency, mental workload, and user 
satisfaction [2].

The emergence of HCI as a distinct field in the late 
20th century represents an evolution of the HF tradi-
tion, with a specific focus on the interfaces between 
humans and computers [3]. While the field of HF broadly 
addresses the design of systems with human users, HCI 
hones in on the complexities of human interactions with 
computer systems. HCI researchers examine how indi-
viduals interact with computers, striving to make these 
interactions more intuitive, efficient, and pleasant. This 
includes studying user behavior, developing new interac-
tion techniques, designing user interfaces, and evaluating 
user experiences. The relationship between HCI and HF 
is synergistic; while HF provides the overarching prin-
ciples of user-centered design and system optimization, 
HCI applies these principles specifically to the design and 
evaluation of software systems. Throughout the manu-
script we refer to HF in a broad sense, thereby encom-
passing HCI.

The system design process for software systems begins 
with a needs assessment and design requirements phase, 
where user, task, environment, and stakeholder analyses 
are conducted to define functional, non-functional, user, 
and regulatory requirements. This is followed by design 
and prototyping, involving conceptual and detailed 
design, as well as creating low-fidelity and high-fidelity 
prototypes to visualize and test concepts. Next, testing 
and evaluation occur through formative and summative 
evaluations, including usability testing and user accep-
tance testing to ensure the system meets requirements. 

Deployment involves implementation, integration, train-
ing, and launching the system. Post-deployment evalua-
tion includes monitoring, maintenance, gathering user 
feedback, and implementing updates and patches based 
on feedback and issues, as well as planning for new 
releases and the system’s end-of-life [4]. Frequently, sys-
tem designers employ agile methods in the software 
design process, which emphasizes iterative development, 
frequent collaboration with stakeholders, and adaptabil-
ity to change throughout the project lifecycle [5].

In the context of Decision Support Systems (DSS), the 
contribution of HF is significant. These systems often 
involve complex user interfaces that must present infor-
mation in a clear and actionable manner. Human-cen-
tered methodologies have advanced DSS for healthcare, 
aiding clinicians in making better diagnostic and thera-
peutic decisions and promoting patient safety [6, 7]. Yet, 
challenges remain in the adoption of DSS in clinical envi-
ronments due to issues rooted in usability and integra-
tion into existing workflows domains where HF provides 
essential insights [8–11]. Absent a strong emphasis on 
human factors principles such as user interface design 
and interaction paradigms, users may not adopt these 
systems.

The intersection of HF and HCI is particularly potent 
in public health, where decisions affect large popula-
tions. Public health officials undertake complex tasks 
that require synthesizing vast arrays of data, and here, the 
role of HF is to ensure that DSS are not only function-
ally aligned with these tasks but are also accessible and 
engaging for the users. As such, DSS designed for pub-
lic health need to accommodate broader determinants 
of health, from socioeconomic factors to healthcare ser-
vices. This scoping review explores the applications of 
human factors in the design of evidence-based DSS in 
population health.

Methods
Our scoping review was based on the methodologi-
cal framework described by Arksey and O’Malley [12], 
with refinements by Levac and colleagues [13]. We also 
followed the Preferred Reporting Items for Systematic 
Review and Meta-Analysis Protocols (PRISMA-P and 
PRISMA-S, respectively) reporting guidelines to facilitate 
understanding and transparency [14, 15]. Our detailed 
study protocol was published in BMJ Open in March 
2022 [16]; we briefly describe these methods below.

Search strategy
Our search included peer-reviewed literature databases, 
manual searches, and grey literature. First, we searched 
7 interdisciplinary indexed databases: Ovid MEDLINE, 
EMBASE, Scopus, PsycINFO, Compendex, IEEE Xplore, 
and Inspec. Our team included a librarian specialising in 
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health science, and we further consulted with an engi-
neering & computer science librarian to ensure both dis-
ciplines were captured. Details on our search strategy for 
each database can be found in the published protocol [16] 
and Supplemental Material. The MEDLINE search strat-
egy was validated against a key set of 8 articles [17–24], 
pre-determined by the authors and was peer reviewed 
using PRESS [25] by another librarian, not associated 
with this study to ensure accuracy and comprehensive-
ness. We then manually searched the reference lists of 
included articles and relevant reviews. The search was 
completed in September 2023.

Our grey literature search started with a pilot review 
of several public health dashboards for infectious dis-
ease surveillance, modeling and forecasting, where we 
identified that the information presented on these web-
sites were insufficient for the HF aspect of this review. 
Thus, our grey literature search included full-text confer-
ence proceedings papers, identified through Compendex 
(Engineering Village), IEEE Xplore, and Inspec (Engi-
neering Village).

Eligibility criteria
We sought to describe the HF applications to the field of 
population health, thus we excluded clinical applications, 
such as those discussing patient safety, monitoring of an 
individual’s health, or clinical DSS. Since HF applications 
in healthcare began to emerge in the 1990’s [26, 27], our 
search started in 1990 to capture the potential evolu-
tion of HF applications in the public health domain. As 
detailed in our study protocol [16], we included studies 
published in English since 1990 that described the devel-
opment, validation, or application guided by HF princi-
ples in the field of population health. Exclusion criteria 
included articles whose end-user was not public health, 
articles not related to HF, articles that did not describe 
a digital evidenced-based DSS, as well as conference 
abstracts, reviews (including commentaries and discus-
sion pieces), and articles not written in English.

Screening process
The search results were integrated into Covidence [28], a 
systematic review management software, and duplicates 
were removed. Two reviewers independently screened 
the title and abstract of all articles according to the inclu-
sion and exclusion criteria. Disagreements were resolved 
through team discussion and included a third inde-
pendent reviewer as necessary. Using a similar process, 
selected articles then underwent full text screening by 
two independent reviewers, resulting in the final studies 
for inclusion [16].

Data abstraction and synthesis
As outlined in the published protocol [16], a data 
abstraction form was developed and pilot-tested by two 
researchers working independently of each other. The 
abstracted data were synthesized according to three 
themes: study characteristics, population health charac-
teristics, and human factors characteristics (Table  1). A 
reviewer used the form to extract data from each article; 
a second reviewer verified the extraction.

We computed descriptive statistics for all extracted 
items, calculating the total number and percent of all 
studies in a particular category. We also conducted a nar-
rative synthesis of the included studies and the applica-
tion of HF in population health.

Results
Our search yielded 21,581 unique studies, of which 153 
studies met our inclusion criteria [19, 21–24, 29–181]. 
Figure  1 provides a modified PRISMA flow diagram of 
our screening workflow. Raw data from the extraction 
process for the 153 included studies can be found in the 
Supplementary Materials.

Study characteristics
Academic Discipline of authors and Year of Publication
The academic disciplines of the authors were diverse, 
with the majority being from Public Health (56%). Other 
disciplines included Multidisciplinary teams (23%), 
which consisted of researchers from both Public Health 
and Computer Science/Human-Computer Interaction/
Informatics fields. Authors from solely Computer Sci-
ence/Human-Computer Interaction/Human Factors or 
Informatics (CS/HCI/HF/Informatics) made up 20%, and 
those from Geographic Information Science/Geographic 
Science (GIS/Geographic Science) comprised 1%. The 
distribution of publications over the years showed that 
3% were published between 2000 and 2004, 11% between 
2005 and 2009, 24% between 2010 and 2014, 29% 
between 2015 and 2019, and 32% between 2020 and 2023 
(Table 2).

Publication type
The types of publications varied, with peer-reviewed 
journal articles being the most common (76%). Con-
ference proceedings accounted for 18% of the publica-
tions, while other types of publications made up 6% (see 
Table 2).

Publication venue type
Publications were most frequently found in Public Health 
(65%) venues. Additional publication venues included 
Informatics (13%), Computer Science/Engineering (12%), 
Geospatial (5%), Human Factors/Human-Computer 
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Interaction (HF/HCI) (1%), and other disciplines (10%); 
see Table 2).

Study location
Most studies were conducted in North America (50%). 
Other study locations included Europe (16%), Africa 
(11%), Asia (10%), South America (4%), Oceania (4%), 
and global or multiple locations (4%; see Table 2).

Study characteristics
1. Academic discipline of authors
 a. Public health
 b. Computer Science (CS)/HCI/HF/Informatics
 c. GIS/Geographical Sciences
 d. Multidisciplinary (combination of public health and CS/HCI/HF/
Informatics or GIS/Geographical Sciences)
2. Year of publication
 a. 2000–2005
 b. 2006–2010
 c. 2011–2015
 d. 2016–2020
 e. 2021–2023
3. Type of publication
 a. Peer-reviewed article
 b. Conference Proceeding
 c. Other
4. Publication venue
 a. Public health
 b. Computer Science (CS)
 c. HCI/HF
 d. Informatics
 e. GIS/Geographical Sciences
 f. Other
5. Study location
 a. North America
 b. Central America
 c. South America
 d. Europe, Asia
 e. Africa
 f. Oceania
 g. Global
Population Health Characteristics
1. Population health topic area
 a. Infectious disease
 b. Non-communicable disease
 c. Public health data and indicators
 d. Maternal, newborn, child, and family health
 e. Vaccines and drugs
 f. Injury
 g. Mental health and substance abuse
 h. Nutrition
 i. Other
2. Tool type
 a. Health surveillance
 b. Program evaluation
 c. Predictive modeling
 d. Other
3. Population health end-user
 a. Program planners
 b. Policy makers
 c. Epidemiologists
 d. Community health workers
 e. Academia

Table 1 Data abstraction themes and items

Study characteristics
 f. Government
 g. Public health professionals not otherwise specified (NOS)
 h. Multidisciplinary roles (multiple intended user groups)
 i. Health care practitioners
 j. Other
4. Setting
 a. Local public health
 b. Regional public health
 c. Federal public health
 d. Multiple levels of public health
 e. Community health organizations
 f. Health care organizations/hospitals
 g. Other
Human Factors Characteristics
1. Point in design lifecycle HF methods used
 a. Requirements gathering and analysis
 b. Design and prototyping
 c. Testing and evaluation
 d. Post-deployment evaluation
2. Sample size (number of participants)
3. Human factors study methods
 a. Questionnaires
 b. Interviews
 c. Focus-groups
 d. Delphi discussions
 e. A/B testing
 f. Experiments
 g. Usability testing
 h. Heuristic evaluations
 i. Task analysis
 j. Log data for user interactions
 k. Observations
 l. Workshops
 m. Informal feedback
 n. Other
4. Direct performance measures collected in studies using A/B 
testing, Experiments, and User Testing
 i. Task completion time
 ii. Accuracy/Task success
 iii. Efficiency
 iv. Number of clicks
 v. Other log data measures
 vi. Mental workload

Table 1 (continued) 
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Population health characteristics
Population health topic area
The studies covered a range of population health topic 
areas. The most frequently addressed topic was infectious 
disease, representing 35% of the studies. Public health 
data and indicators were covered in 14% of studies, while 
maternal, newborn, and child health were the focus of 
10%. Non-communicable diseases were addressed in 10% 
of the studies, and vaccines and drugs were the topic of 
6%. Other areas included injury (4%), mental health (3%), 
nutrition (3%), and substance abuse (2%). Various other 
topics were covered in 13% of studies (Table 3).

DSS type
Most of the studies utilized health surveillance tools, 
accounting for 69% of studies. Program evaluation tools 
and predictive modeling tools were each used in 8% of 
the studies. Other types of tools were employed in 14% of 
the studies (see Table 3).

Population health end-user
The end-users of the population health tools and inter-
ventions were predominantly multidisciplinary teams, 
representing 35% of the studies. Program planners were 
the end-users in 27% of studies, while public health pro-
fessionals (not otherwise specified) accounted for 12%. 
Policy makers were the end-users in 8% of the studies, 
community health workers in 4%, and academia in 3%. 
Other end-users were identified in 12% of studies (see 
Table 3).

Population health setting
The settings refer to where the tools are intended to be 
used. Multiple levels of public health were the most com-
mon setting, reported in 25% of the studies. Local pub-
lic health units were the intended setting in 17% of the 
studies, and regional public health in 16%. Public health 
(not otherwise specified) was the setting in 16% of the 
studies, while federal public health accounted for 12%. 

Fig. 1 PRIMSA flow chart for screening workflow
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Hospitals were the intended setting in 4% of the studies, 
community health centres in 3%, and other settings in 8% 
of studies (see Table 3).

Human factors characteristics
Researchers primarily engaged with users during the 
testing and evaluation phase, followed by the post-
deployment evaluation phase, the needs assessment and 
requirements gathering phase, and the design and pro-
totyping phase (Table 4). The majority of studies (n = 96) 
involved users at only one point in the design lifecycle; 
36 studies engaged users in two phases, 17 studies in 
three phases, and only 4 studies involved users in all four 
design lifecycle phases. Detailed results for how users 
were engaged within each phase are presented in the sub-
sequent sections.

User needs assessment and requirements gathering
During the needs assessment and requirements gathering 
phase, various methods were employed to engage users 
and gather necessary information. Interviews were the 
most frequently used method, cited in 26 studies, with an 
average sample size of 15 participants, although 19% of 
these studies did not specify the sample size. Meetings, 
workshops, and discussions were used in 21 studies, with 

an average of 13 participants, but a significant number 
of these studies (67%) did not report sample sizes. Focus 
groups were conducted in 11 studies, averaging 21 partic-
ipants, with 36% not specifying sample sizes. Question-
naires were used in 6 studies, with a mean sample size of 
27 and all studies reporting their sample sizes. Observa-
tions and the Delphi method were each employed in 5 
studies. Observations averaged at 10 participants with 
20% not reporting sample sizes, while the Delphi method 
had a notably higher average of 84 participants, with 60% 
not specifying sample sizes. Less frequently used meth-
ods included usability assessments of baseline tools and 
task analysis (see Table 4).

Design and prototyping
In the design and prototyping phase, several methods 
were utilized to engage users and gather feedback. The 
most frequently used method was design-based work-
shops, reported in 16 studies, with an average sample size 
of 25 participants. Expert and stakeholder reviews were 
conducted in 9 studies, averaging at 3 participants. Heu-
ristic evaluations were used in 4 studies, with an average 
of 4 participants. Focus groups and questionnaires were 
each employed in 3 studies, with focus groups averaging 
at 7 participants and questionnaires at 13 participants. 

Table 2 Study characteristics 
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Interviews were conducted in 2 studies with the aver-
age sample size of 18. Informal feedback was gathered in 
2 studies, with an average sample size of 5 participants. 
The Delphi method was used in 1 study, but no informa-
tion on sample size was provided. Overall, many of the 
qualitative methods for engaging users in the design and 
prototyping processes neglected to indicate their sample 
size (see Table 4).

User testing and evaluation
In the user testing and system evaluation phase, various 
methods and measures were employed to assess system 
performance and user experience. User testing, was the 
most frequently used method, appearing in 49 studies 
with an average sample size of 16 participants. Of the 49 
studies that conducted user testing, 1 study [69] used an 
experimental framework, 11 collected quantitative data 
[21, 47, 48, 65, 69, 117, 132, 138, 146, 162, 177] including: 
task completion time (8 studies; [21, 47, 48, 65, 117, 138, 
146, 177] ), task success/accuracy (6 studies; [21, 48, 65, 
69, 132, 162]), efficiency (1 study; [69]), and the number 
of clicks (1 study; [146] ). Questionnaires were utilized in 
43 studies, with an average sample size of 22 participants, 
while interviews were conducted in 21 studies, averaging 

at 14 participants. Informal feedback was gathered in 17 
studies, with an average sample size of 8 participants, 
and focus groups were used in 12 studies, with an aver-
age of 13 participants. Log data was analyzed in 3 stud-
ies, and experiment [69] 1 study, with an average sample 
size of 33 participants. The Delphi method was used in 
2 studies, with an average sample size of 15 participants. 
Notably, many studies using these methods neglected 
to specify their sample sizes, particularly for qualitative 
methods such as informal feedback sessions, like the 
qualitative methods applied in the design and prototyp-
ing phase (see Table 4).

Post-deployment evaluation
In the post-deployment assessment and evaluation phase, 
various methods were employed to gather feedback and 
assess system performance after it was deployed for use 
by end-users. Questionnaires were the most frequently 
used method, reported in 33 studies with an average sam-
ple size of 71 participants. Interviews were conducted in 
28 studies, averaging at 44 participants, and focus groups 
were used in 9 studies with an average sample size of 22 
participants. User testing was employed in 7 studies, with 
an average sample size of 11. Quantitative metrics were 

Table 3 Population health study characteristics 
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used in 4 of the 7 studies that conducted user testing and 
included task success/accuracy (3 studies; [23, 149, 152]), 
the number of clicks (1 studies; [146]), and task comple-
tion time (1 study; [146]). Additional methods included 
log data analysis (5 studies), informal feedback (4 stud-
ies), and observations (3 studies) with an average sample 
size of 15 participants. App issue reporting and experi-
ment and A/B testing were each conducted in 2 studies, 
with the latter having an average sample size of 105 par-
ticipants. Heuristic evaluations were used in 1 study, with 
an average sample size of 4 participants. Notably, again 
many studies, particularly those relying on qualitative 
methods such as informal feedback, did not specify their 
sample sizes (see Table 4).

Discussion
Have HF methods been used to their full potential?
Over the past 20 years, HF methods have been increas-
ingly applied throughout the design lifecycle of DSS for 

public health contexts. A variety of qualitative and quan-
titative methods were used, with qualitative methods 
used more frequently during the needs assessment and 
design and prototyping phases, while quantitative meth-
ods more frequently used in the two evaluation phases: 
user testing and evaluation and post-deployment evalua-
tion. Indeed, qualitative methods, such as interviews and 
observations, provide deep, contextual insights into user 
needs and behaviors, ensuring a user-centered design 
process. They allow for flexibility and iteration, uncover-
ing unmet needs and fostering empathy, which leads to 
more inclusive and effective solutions. These methods 
help designers create systems that truly resonate with 
and benefit users, which is why they are advantageous 
in the early phases of the design lifecycle. On the other 
hand, quantitative methods provide objective, measur-
able data that allow for statistical analysis, and bench-
marking, ensuring rigorous evaluation during user 
testing and post-deployment phases. These methods 

Table 4 HF study characteristics. Note that orange bars reflect quantitative methods while green bars represent qualitative methods 
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offer precision, reproducibility, and the ability to identify 
trends, enabling data-driven decisions and continuous 
improvement of system performance.

However, our findings indicate that researchers have 
not been using quantitative human factors methods to 
their full potential in the two evaluation phases. Impor-
tantly, most user testing and evaluation approaches did 
not collect direct measures of performance with the sys-
tem. Additionally, only 3 studies [69, 121, 127] employed 
A/B testing or experimental methods to compare new or 
current tools with alternatives in public health contexts. 
Furthermore, no study evaluated whether these DSS help 
public health professionals make better decisions. As 
such, despite following some best practices in engaging 
users in the system design process, there is little evidence 
for the efficacy of these tools in supporting users in deci-
sion making tasks. Furthermore, a large proportion of 
studies did not report their sample size, particularly for 
qualitative methods. Those that reported sample sizes 
for qualitative studies generally followed best practices 
(e.g. 6–8 participants per focus group) [182]. Most stud-
ies reported sample sizes for quantitative methods, which 
followed best practices using larger sample sizes than 
qualitative methods (e.g., 20 + per questionnaire).

Human factors vs. agile Software Development
In the field of HF, researchers have thoroughly and rigor-
ously assessed system design in the context of safety-crit-
ical systems such as those encountered in the aviation, 
surface transportation, military, and nuclear domains. 
However, as demonstrated in this study, this approach is 
lacking in the design of DSS in public health. This may in 
part be attributed to several constraints such as time and 
resources. For instance, funding opportunities are more 
limited for public health DSS than in other domains 
such as military DSS. In turn, this limits the number of 
public health staff available to develop and systemati-
cally evaluate these systems. Against these constraints, 
agile approaches to development afford user engage-
ment and feedback throughout the design lifecycle, how-
ever, they may fall short in providing robust evidence for 
the efficacy of DSS. Indeed, most studies identified in 
this review were from researchers in the public health 
domain. Multidisciplinary teams may open-up additional 
funding opportunities in addition to fostering synergy 
between public health domain expertise and engineering 
technical skills.

When should we conduct HF experiments?
In systems design, it is best practice to engage with 
users throughout the design lifecycle. Encouragingly, we 
have seen an increase in the engagement of users in the 
design of DSS for public health. While it may not always 
be feasible to conduct A/B testing or experimentation, 

especially under time and funding constraints, some cir-
cumstances may warrant a more thorough approach. For 
example, more rigorous testing may be beneficial in the 
context of DSS intended to support high-stakes decision-
making processes. Additionally, introducing novel tech-
nologies, such as artificial intelligence (AI) and machine 
learning (ML), in public health necessitates thorough 
testing to validate their efficacy. AI and ML models can 
potentially enhance the speed and accuracy of epidemio-
logical insights, enabling quicker decision-making during 
time-critical events like the COVID-19 pandemic [183]. 
However, HF challenges such as the “black box” that 
characterises many AI/ML tools can hinder the ability of 
epidemiologists to explain results and decision-makers to 
take confident action.

Strengths and limitations
Our scoping review has numerous strengths. Since it 
was designed to capture studies in both engineering and 
public health over the last twenty years, it has consider-
able breadth and comprehensiveness. Importantly, the 
long review period allowed us to track changes in this 
area over time. Our search strategy was reviewed by two 
librarians in both the public health sciences and engi-
neering domains, which also improves the rigour of our 
search and address challenges with different nomencla-
ture with this interdisciplinary research. We were also 
able to ensure that each record was reviewed by both a 
team member from HF engineering and one from pub-
lic health, with the ability to discuss potential conflicts 
with a third member of the study team. This approach 
reduces the likelihood of false positives or negatives in 
terms of the studies deemed to meet inclusion criteria. 
Finally, our study protocol was previously peer-reviewed 
and published [16] and we did not deviate from our study 
protocol.

Our review also has some important limitations. We 
were only able to include studies published in English and 
thus we may be under-capturing studies from the Global 
South. Our review also does not include a full appraisal 
of methodological quality or risk of bias as such check-
lists do not exist for the study of HF in health. As DSS 
continue to be developed for use in clinical medicine 
and population health, the development of a checklist to 
guide rigorous Human Factors evaluations may represent 
a fruitful area of future work, especially by groups such 
as the EQUATOR network [184]. While it was difficult to 
summarize all potentially relevant details of our included 
studies due to space restrictions, we aimed to cover the 
most salient details for stakeholders in this space. We 
also present our full table of the 153 studies that met our 
inclusion criteria in the Supplementary Materials.
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Conclusion
While we identified many studies that applied HF meth-
ods to design decision support tools for population 
health, few leveraged HF methods to their full potential. 
We offered several recommendations for how HF meth-
ods can be leveraged at different points within the design 
lifecycle. The key is to engage with users early on and 
throughout the design process rather than simply bring-
ing in end-users for usability testing. In terms of testing, 
there is a need to consider additional metrics beyond 
usability and tool utility. This includes measuring task 
performance, mental workload, situation awareness, and, 
ultimately, the quality of decisions made. Furthermore, 
there is a greater need for more rigorous evaluations, to 
generate the level of evidence needed to determine if and 
how DSS improve public health decision-making. Over-
all, HF methods have great potential for enhancing the 
impact of dashboards and data-based decision support 
tools and efforts are needed to adopt best practices in 
design and evaluation.
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