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Abstract
Background  The existing predictive models for metabolic-associated fatty liver disease (MAFLD) possess certain 
limitations that render them unsuitable for extensive population-wide screening. This study is founded upon 
population health examination data and employs a comparison of eight distinct machine learning (ML) algorithms to 
construct the optimal screening model for identifying high-risk individuals with MAFLD in China.

Methods  We collected physical examination data from 5,171,392 adults residing in the northwestern region of China, 
during the year 2021. Feature selection was conducted through the utilization of the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression. Additionally, class balancing parameters were incorporated into the models, 
accompanied by hyperparameter tuning, to effectively address the challenges posed by imbalanced datasets. This 
study encompassed the development of both tree-based ML models (including Classification and Regression Trees, 
Random Forest, Adaptive Boosting, Light Gradient Boosting Machine, Extreme Gradient Boosting, and Categorical 
Boosting) and alternative ML models (specifically, k-Nearest Neighbors and Artificial Neural Network) for the purpose 
of identifying individuals with MAFLD. Furthermore, we visualized the importance scores of each feature on the 
selected model.

Results  The average age (standard deviation) of the 5,171,392 participants was 51.12 (15.00) years, with 52.47% of 
the participants being females. MAFLD was diagnosed by specialized physicians. 20 variables were finally included 
for analyses after LASSO regression model. Following ten rounds of cross-validation and parameter optimization 
for each algorithm, the CatBoost algorithm exhibited the best performance, achieving an Area Under the Receiver 
Operating Characteristic Curve (AUC) of 0.862. The ranking of feature importance indicates that age, BMI, triglyceride, 
fasting plasma glucose, waist circumference, occupation, high density lipoprotein cholesterol, low density lipoprotein 
cholesterol, total cholesterol, systolic blood pressure, diastolic blood pressure, ethnicity and cardiovascular diseases 
are the top 13 crucial factors for MAFLD screening.
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Introduction
Metabolic-associated fatty liver disease (MAFLD), pre-
viously recognized as nonalcoholic fatty liver disease 
(NAFLD), is intricately linked with metabolic pertur-
bations and has emerged as the predominant chronic 
liver ailment on a global scale in the 21st century [1, 2]. 
MAFLD harbors the potential to engender a spectrum 
of grave afflictions, including liver hepatocellular carci-
noma, cirrhosis, and fibrosis [3, 4], alongside maladies 
associated with metabolic syndrome, notably diabetes, 
hypertension, cardiovascular disease, chronic kidney dis-
ease, and systemic inflammation [5–8]. Timely screening 
and vigilant management of MAFLD hold utmost signifi-
cance in averting and ameliorating the potential gravity 
of its complications and ensuing consequences.

During routine screening, accurately identifying 
MAFLD can prove challenging, given that patients might 
not manifest overt signs or symptoms during the initial 
phases. Moreover, traditional biochemical assessments 
fall short of directly quantifying hepatic steatosis and 
inflammatory conditions. Consequently, the susceptible 
population at risk of MAFLD could be considerable, 
warranting screening across a substantial cohort. Ini-
tial diagnosis and staging of MAFLD commonly entail a 
fusion of clinical background, laboratory analyses, and 
imaging assessments. Attaining more precise outcomes 
necessitates the utilization of liver tissue biopsy, which 
presently stands as the widely acknowledged benchmark, 
delivering intricate insights into hepatic histology, fibro-
sis progression, and inflammation intensity [9]. Never-
theless, liver biopsy involves invasiveness, accompanied 
by inherent risks and discomfort, rendering it potentially 
restricted within clinical application. In recent times, 
numerous researchers have harnessed non-invasive indi-
cators and machine learning (ML) algorithms to discern 
MAFLD susceptibility, yielding promising outcomes [10–
12]. Notwithstanding, these investigations are not with-
out limitations. Certain predictive models demonstrate 
specificity toward particular populations [10], while oth-
ers lean on intricate data collection such as omics data 
and biomarkers [11, 12]. Furthermore, a subset of studies 
grapples with diminutive sample sizes or disregards eth-
nic nuances [13, 14]. Consequently, the current MAFLD 
predictive models fall short in catering to the requisites 
of extensive population health screening.

Xinjiang, located in China, is an expansive and cultur-
ally diverse region. Owing to the distinct dietary prefer-
ences and genetic variances among its various ethnic 

groups, the prevalence of overweight and obesity in this 
area is notably high [15–17], resulting in substantial accu-
mulation of hepatic fat content. Moreover, the region’s 
distinctive climatic extremities, desertification, air quality 
concerns, and relatively secluded geographic positioning 
profoundly influence the lifestyles and nutritional intake 
of its inhabitants [18], indirectly elevating the vulnerabil-
ity to MAFLD. Hence, embarking upon MAFLD predic-
tion research encompassing a wide-ranging population 
in Xinjiang is attuned to the region’s ethnically diverse 
and substantial sample characteristics. This approach is 
instrumental in advancing our comprehension of the risk 
factors inherent to MAFLD within this geographical con-
text. Given the background described above, this study 
aims to develop the optimal ML model for identifying 
MAFLD patients from a large-scale health examination 
population in Western China. Two categories of models, 
including tree-based models and other ML models, were 
constructed and compared for their predictive perfor-
mance. Furthermore, the study analyzed the important 
predictive factors to facilitate large-scale MAFLD screen-
ing and gain comprehensive insights into MAFLD risk 
factors, providing novel research perspectives.

Methods
Study population
The data employed in this study originated from the 
China Xinjiang National Health Examination Program, 
carried out in the year 2021. To acquire a thorough grasp 
of the research framework and the criteria for participant 
selection adopted within this initiative, we direct inter-
ested readers to our preceding study [19]. This investiga-
tion collated health examination data from a substantial 
cohort, comprising a total of 9,382,225 individuals. The 
exclusion criteria encompassed: (i) Missing values for 
important variables related to the diagnosis of MAFLD, 
such as plasma triglycerides and high-density lipoprotein 
cholesterol (n = 3,752,890). (ii) Age less than 18 years or 
older than 100 years (n = 444,569). (iii) Participants with 
liver cirrhosis, liver tumors, and liver cancer (n = 13,374). 
After implementing meticulous screening protocols, a 
cohort of 5,171,392 participants, drawn from 14 diverse 
regions, was deemed suitable for subsequent analysis 
(Fig.  1). For the data included in this study, we utilized 
the random forest algorithm for data imputation. The 
detailed demographic distribution across each of these 
regions is as follows: Hotan (735,022), Ili (723,546), Aksu 
(729,658), Changji (373,288), Tacheng (323,568), Bayingol 

Conclusion  This study utilized a large-scale, multi-ethnic physical examination data from the northwestern region 
of China to establish a more accurate and effective MAFLD risk screening model, offering a new perspective for the 
prediction and prevention of MAFLD.
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Mongolian (319,160), Altay (182,453), Turpan (174,962), 
Bortala Mongolian (105,143), Hami (166,406), Kizilsu 
Kirgiz (136,787), Karamay (75,276), Kashgar (924,608), 
and Urumqi (201,515). The study was approved by 
the Ethics Committee and Institutional Review Com-
mittee of First Affiliated Hospital of Xinjiang Medical 
University(K202101-20).

MAFLD diagnosis
MAFLD was diagnosed using any of the following three 
criteria: excessive overweight or obesity, type II diabetes 
mellitus, or metabolic dysregulation, in addition to radio-
logical imaging-confirmed hepatic steatosis, according 
to the current assessment criteria [20]. Hepatic steatosis 
was determined by a diagnostic abdominal ultrasound 
and a physician through a questionnaire asking par-
ticipants about their disease history (e.g., whether they 
have ever been diagnosed by a doctor with fatty liver, 

fatty accumulation, or degeneration of the liver). A body 
mass index (BMI) of ≥ 23 kg/m2 is defined as overweight 
or obesity (Asian cut-off value). Type II diabetes mellitus 
was defined by self-reported medical diagnosis, a his-
tory of type II diabetes, or a fasting glucose value ≥ 7.0 
mmol/L. Metabolic dysregulation was defined by meet-
ing two or more of the following criteria: (1) waist cir-
cumference (WC) ≥ 90/80  cm (Asian cut-off value) in 
men/women, (2) blood pressure ≥ 130/85 mmHg or spe-
cific medication, (3) plasma triglycerides ≥ 1.70 mmol/L 
or specific medication, (4) high-density lipoprotein 
cholesterol (HDL-C) < 1.0 mmol/L for males and < 1.3 
mmol/L for females, and (5) pre-diabetes status (fasting 
blood glucose level from 5.6 to 6.9 mmol/L or HbA1c 
from 39 to 47%).

Fig. 1  Analysis process of this study. LASSO, least absolute shrinkage and selection operator; PPV, positive predictive value; NPV, negative predictive 
value; AUC, area under the receiver operating characteristic curve
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Predictors considered
The research data underwent a meticulous preprocess-
ing procedure, including normalization and standardiza-
tion for all data. When considering which variables to be 
included as predictors, we refer to relevant clinical stud-
ies of MAFLD [21–24] or effective factors that have been 
used for machine learning prediction [25]. Subsequently, 
we meticulously chose 20 pertinent attributes from ques-
tionnaire surveys and customary medical examination 
components for the purpose of shaping the predictive 
model. These attributes encompassed sex, age, ethnic-
ity, education, occupation, marital history (MS), exercise 
frequency (EF), eating habits (EH), smoking status (SS), 
drinking frequency (DF), cardiovascular diseases (CVD), 
waist circumference (WC), body mass index (BMI), 
systolic blood pressure (SBP), diastolic blood pressure 
(DBP), fasting blood glucose (FBG); total cholesterol 
(TC), triglyceride (TG), low-density lipoprotein choles-
terol (LDLC) and high-density lipoprotein cholesterol 
(HDLC). For a comprehensive elucidation of these attri-
butes, we kindly direct readers to consult Table 1.

Data preprocessing
Data preprocessing was performed using the sklearn 
library in Python. Specifically, the sklearn.preprocessing 

module was utilized to transform categorical data into 
numerical labels using LabelEncoder, encode ordinal 
variables using OrdinalEncoder, and create dummy 
variables for nominal variables using OneHotEncoder. 
Additionally, we utilized the MinMaxScaler function for 
normalization. The principle of this function is to deter-
mine the minimum and maximum values for each fea-
ture, and then scale all values in the feature so that the 
minimum value corresponds to 0 and the maximum 
value corresponds to 1, effectively normalizing the entire 
range of values to fall within the interval [0, 1].

Grouping and feature selection
The participants were randomly divided into two sets: a 
training set comprising 4,137,133 individuals and a test-
ing set comprising 1,034,279 individuals, in an 8:2 ratio. 
Subsequently, we employed Least Absolute Shrinkage 
and Selection Operator (LASSO) regression for variable 
selection on the training set. We used the glmnet package 
in R to perform feature extraction using LASSO regres-
sion, specifically employing a binomial logistic regres-
sion model type. LASSO regression aims to optimize 
the coefficient estimates of the model by introducing L1 
regularization, which in turn promotes sparse solutions, 

Table 1  Information description of included variables
Variable Variable type
Sex Categorical variable (“male” or “female”)
Age Continuous variable
Ethnicity Categorical variable (“Han”, “Uyghur”, “Kazak”, “Hui”, “Kirgiz”, “Mongol”, “Tajik”, “other”)
Education Categorical variable (“elementary school or below”, “middle or high school”, “college or above”)
Occupation Categorical variable (“Occupation1”: “leaders of government agencies, party organizations, 

enterprises, and institutions, administrative and clerical personnel or military personnel”, 
“Occupation2”: “technical professionals or production and transportation personnel”, “Oc-
cupation3”: “those involved in agriculture, forestry, animal husbandry, fishing, and water con-
servancy”, “Occupation4”: “commercial and service sector personnel or others whose category 
could not be determined”, “Occupation5”: “unemployed individuals”)

MS Categorical variable (“single”, “married”, “divorced”, “widowed”)
EF Categorical variable (“not exercising”, “occasionally”, “more than once a week”, “daily”)
EH Categorical variable (“meat and vegetable balance”,“meat based”,“vegetarian based”)
SS Categorical variable (“never smoked”, “smoking”, “quit smoking”)
DF Categorical variable (“never”, “occasionally”, “often”, “every day”)
CVD Categorical variable (“yes” or “no”)
WC Continuous variable
BMI Continuous variable
SBP Continuous variable
DBP Continuous variable
FPG Continuous variable
TC Continuous variable
TG Continuous variable
LDLC Continuous variable
HDLC Continuous variable
Note: MS, marital status; EF, exercise frequency; EH, eating habits; SS, smoking status; DF, drinking frequency; CVD, cardiovascular diseases; WC, waist circumference; 
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; TG, triglyceride; LDLC, low-density 
lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol
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i.e., forcing many regression coefficients to shrink to zero, 
thus enabling feature selection.

Prediction models
This study devised and compared two classes of MAFLD 
screening models: tree-based ML models (including 
Classification and Regression Trees (CART), Random 
Forest, Adaptive Boosting (ADABoost), Light Gradient 
Boosting Machine (LightGBM), Extreme Gradient Boost-
ing (XGBoost), and Categorical Boosting (CatBoost), as 
well as other ML models (namely, k-Nearest Neighbors 
(KNN) and Artificial Neural Network (ANN)). Further-
more, to achieve the objective of easily accessible and 
convenient screening, we solely employed data gathered 
from questionnaire surveys as predictive factors for the 
models.

CART, Random Forest, ADABoost, LightGBM, 
XGBoost, and CatBoost are all tree-based ML algo-
rithms. They are capable of handling both classifica-
tion and regression problems by constructing decision 
trees or optimizing gradient boosting decision trees to 
improve prediction performance. CART is a tree-based 
classification and regression algorithm that builds a deci-
sion tree model by recursively partitioning the dataset 
[26]. Random Forest improves prediction accuracy by 
constructing multiple independent decision trees and 
aggregating their results [27]. ADABoost builds a strong 
classifier by training a series of weak classifiers and com-
bining them with weighted voting. It gradually improves 
overall classification performance by adjusting sample 
weights to focus on misclassified samples [28]. Light-
GBM is an efficient gradient boosting framework devel-
oped by Microsoft. It accelerates model training speed 
using a histogram-based decision tree algorithm and has 
lower memory usage [29]. XGBoost is a classic gradient 
boosting framework that enhances model accuracy and 
robustness by using second-order Taylor expansion to 
approximate the loss function and regularization terms 
[30]. CatBoost, developed by Yandex, is a gradient boost-
ing framework with automatic handling capability for 
categorical features. It can directly utilize statistical infor-
mation from categorical features [31].

The KNN algorithm is based on the fundamental idea 
of finding the nearest neighbors to a new input instance 
in the training set [32], and then using the majority vote 
of these K nearest neighbors for classification predic-
tion. The ANN algorithm simulates the structure of neu-
rons in the human brain and consists of an input layer, 
hidden layer(s), and an output layer [33]. The input layer 
receives data and converts it into a suitable format. The 
hidden layer(s) contains multiple neurons that are used 
to extract features and transform the input data. The out-
put layer performs classification or prediction based on 
the output from the hidden layer.

Model evaluation
For the purpose of refining model performance, param-
eter adjustments were meticulously executed across each 
model, hinging on the learning curve, with the aim of 
unearthing the most optimal parameter configurations. 
Furthermore, an appraisal of model efficacy entailed the 
utilization of a confusion matrix, through which sensitiv-
ity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), accuracy, and the area under the 
receiver operating characteristic curve (AUC) were sys-
tematically evaluated. In particular, we generated 95% 
confidence intervals for the AUC. Additionally, to achieve 
better performance, we applied a threshold adjustment 
to the model predictions on the training set to find the 
threshold that maximized the Youden index (the sum of 
sensitivity and specificity minus 1).

Feature importance evaluation
The process of evaluating the importance of features 
through machine learning models involves a system-
atic quantification of the impact of individual features 
on the predictive performance of the model [34]. This 
is achieved by assessing how much the model’s perfor-
mance is compromised when a specific feature is either 
permuted or excluded. Machine learning models, includ-
ing Random Forest, Gradient Boosting, and Neural Net-
works, exhibit distinct advantages in this realm due to 
their capacity to grasp intricate relationships and inter-
actions among features. These models offer insights into 
both linear and nonlinear correlations, thereby facilitat-
ing the identification of pivotal features that substantially 
contribute to the model’s accuracy. The integration of 
machine learning-based assessments of feature impor-
tance not only enhances the model’s interpretability but 
also aids in the selection of relevant features and provides 
guidance for domain-specific insights.

Statistical analysis
In this study, continuous variables were represented 
using mean (standard deviation), while categorical vari-
ables were presented using counts (percentages). For 
each variable, t-tests or Mann-Whitney tests were used 
for continuous variables, and chi-square tests or Fisher’s 
exact tests were used for categorical variables. Two-
tailed p-values less than 0.05 were considered statistically 
significant.

Results
Basic characteristics
This study included 5,171,392 participants, with a mean 
age (standard deviation) of 51.12 (15.00) years, of which 
approximately 52.47% were females (Table 2). The major-
ity of participants were of Uighur ethnicity (54.73%), 
43.54% had completed only primary education or lower, 
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Characteristics Total
N = 5,171,392

Non-MAFLD
N = 4,646,808

MAFLD
N = 524,584

P-value

Sex < 0.001
  male 2,457,777 (47.53%) 2,209,878 (47.56%) 247,899 (47.26%)
  female 2,713,615 (52.47%) 2,436,930 (52.44%) 276,685 (52.74%)
Age 51.12 (15.00) 50.49 (15.29) 56.70 (10.59) 0.000
Ethnicity 0.000
  Han 1,500,321 (29.01%) 1,289,429 (27.75%) 210,892 (40.20%)
  Uyghur 2,830,454 (54.73%) 2,607,099 (56.11%) 223,355 (42.58%)
  Kazak 451,386 (8.73%) 405,064 (8.72%) 46,322 (8.83%)
  Hui 217,779 (4.21%) 192,264 (4.14%) 25,515 (4.86%)
  Kirgiz 171,452 (3.32%) 152,952 (3.29%) 18,500 (3.53%)
Education 0.000
  Elementary school or below 2,251,377 (43.54%) 2,042,455 (43.95%) 208,922 (39.83%)
  Middle or high school 2,461,380 (47.60%) 2,206,676 (47.49%) 254,704 (48.55%)
  College or above 458,635 (8.87%) 397,677 (8.56%) 60,958 (11.62%)
Occupation 0.000
  Occupation1 325,629 (6.30%) 272,291 (5.86%) 53,338 (10.17%)
  Occupation2 313,443 (6.06%) 264,069 (5.68%) 49,374 (9.41%)
  Occupation3 3,389,941 (65.55%) 3,136,958 (67.51%) 252,983 (48.23%)
  Occupation4 855,347 (16.54%) 729,141 (15.69%) 126,206 (24.06%)
  Occupation5 287,032 (5.55%) 244,349 (5.26%) 42,683 (8.14%)
MS 0.000
  spinsterhood 502,280 (9.71%) 489,050 (10.52%) 13,230 (2.52%)
  married 4,331,240 (83.75%) 3,857,570 (83.02%) 473,670 (90.29%)
  divorced 96,800 (1.87%) 87,235 (1.88%) 9,565 (1.82%)
  widowed 241,072 (4.66%) 212,953 (4.58%) 28,119 (5.36%)
EF 0.000
  never 4,512,045 (87.25%) 4,108,865 (88.42%) 403,180 (76.86%)
  occasionally 204,521 (3.95%) 168,795 (3.63%) 35,726 (6.81%)
  more than once a week 109,839 (2.12%) 91,514 (1.97%) 18,325 (3.49%)
  everyday 344,987 (6.67%) 277,634 (5.97%) 67,353 (12.84%)
EH 0.000
  meat and vegetable balance 5,011,848 (96.91%) 4,507,626 (97.00%) 504,222 (96.12%)
  meat based 80,525 (1.56%) 68,217 (1.47%) 12,308 (2.35%)
  vegetarian based 79,019 (1.53%) 70,965 (1.53%) 8,054 (1.54%)
SS 0.000
  never 4,667,913 (90.26%) 4,202,173 (90.43%) 465,740 (88.78%)
  smoking 474,768 (9.18%) 420,615 (9.05%) 54,153 (10.32%)
  quit smoking 28,711 (0.56%) 24,020 (0.52%) 4,691 (0.89%)
DF 0.000
  never 4,827,021 (93.34%) 4,348,617 (93.58%) 478,404 (91.20%)
  occasionally 310,453 (6.00%) 270,561 (5.82%) 39,892 (7.60%)
  often 28,579 (0.55%) 23,285 (0.50%) 5,294 (1.01%)
  everyday 5,339 (0.10%) 4,345 (0.09%) 994 (0.19%)
CVD: 0.000
  No 4,613,430 (89.21%) 4,188,959 (90.15%) 424,471 (80.92%)
  Yes 557,962 (10.79%) 457,849 (9.85%) 100,113 (19.08%)
WC 86.99 (12.37) 86.00 (11.89) 95.80 (13.06) 0.000
BMI 25.57 (4.21) 25.15 (3.99) 29.33 (4.21) 0.000
SBP 123.25 (17.83) 122.31 (17.53) 131.58 (18.38) 0.000
DBP 74.47 (11.02) 73.93 (10.84) 79.23 (11.47) 0.000
FPG 5.55 (1.60) 5.46 (1.49) 6.31 (2.24) 0.000
TC 4.44 (1.18) 4.40 (1.18) 4.86 (1.15) 0.000

Table 2  Baseline characteristics of participants in this study
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and 65.55% were engaged in agricultural, forestry, animal 
husbandry, fishing, and water management occupations.

Notably, the dataset revealed a conspicuous imbalance 
concerning the prevalence of MAFLD, with 524,584 indi-
viduals diagnosed with the condition against a signifi-
cantly larger group of 4,646,808 without it, highlighting a 
ratio of roughly 1:9.

Statistical analysis revealed significant differences 
between participants with and without MAFLD in terms 
of age, sex, ethnicity, education, occupation, MS, EH, EF, 
DF, SS, CVD, WC, BMI, SBP, DBP, FBG, TC, TG, LDLC 
and HDLC.

Features extraction
In this study, we utilized LASSO regression to perform 
feature selection on the training dataset. As depicted 

in Fig.  2, the outcomes of the feature selection process 
through LASSO regression unveiled that the model 
encompasses 20 non-zero coefficient variables. These 
variables include sex, age, ethnicity, education, occupa-
tion, MS, EF, EH, SS, DF, CVD, WC, BMI, SBP, DBP, FBG, 
TC, TG, LDLC and HDLC. These 20 variables were sub-
sequently integrated as input features for the screening 
model developed within the framework of this research.

Tuning of parameters
In this study, a 10-fold cross-validation approach was 
implemented to fine-tune and optimize the parameters 
of the six tree-based models using the training dataset. 
The performance of these models, as indicated by their 
AUC values, was visualized across various parameter 
configurations.

Fig. 2  Feature selection using LASSO regression in the training set. (A) Cross-validation was performed 10 times to select the optimal parameters 
(lambda) of the LASSO model. (B) LASSO coefficient profile of 20 characteristics. In the LASSO regression algorithm, as lambda is tuned, the shrinkage 
and variable selection process leads to a corresponding change in the trajectory of the coefficients of each characteristic related to MAFLD, which can 
be visualized in the LASSO coefficient profile. MAFLD, metabolic dysfunction-associated fatty liver disease; LASSO, least absolute shrinkage and selection 
operator

 

Characteristics Total
N = 5,171,392

Non-MAFLD
N = 4,646,808

MAFLD
N = 524,584

P-value

TG 1.49 (1.04) 1.43 (0.98) 2.00 (1.38) 0.000
LDLC 2.48 (1.01) 2.44 (1.00) 2.81 (1.01) 0.000
HDLC 1.39 (0.66) 1.40 (0.66) 1.33 (0.57) 0.000
Continuous variables were characterized as mean (standard deviation), while categorical variables were described in terms of frequency (percentage)

MS, marital status; EH, eating habits; Occupation 1: leaders of government agencies, party organizations, enterprises, and institutions, administrative and clerical 
personnel or military personnel; Occupation 2: technical professionals or production and transportation personnel; Occupation 3: those involved in agriculture, 
forestry, animal husbandry, fishing, and water conservancy; Occupation 4: commercial and service sector personnel or others whose category could not be 
determined; Occupation 5: unemployed individuals; EF, exercise frequency; DF, drinking frequency; SS, smoking status; CVD, cardiovascular diseases; WC, waist 
circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; TG, triglyceride; 
LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol.

Table 2  (continued) 
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More specifically, in the process of hyperparameter 
tuning, max_depth was evaluated from a range of 1 to 20, 
recording the AUC value for each configuration, and then 
selecting the max_depth corresponding to the highest 
AUC value for each model. The optimal hyperparameters 
for each model are presented in Table 3. The optimal val-
ues for max_depth were identified as 11 for CART, 16 for 
Random Forest, 5 for ADABoost, 11 for LightGBM, 8 for 
XGBoost, and 6 for CatBoost, respectively. Default values 
are used for the remaining hyperparameters. As a result, 
we successfully trained and established six classifica-
tion tree models that exhibited a noteworthy predicting 
performance.

Comparison of model performance
Tables 4 and 5 show the evaluation metrics correspond-
ing to the performance of each model on the training 
and test data sets, respectively. Our observations reveal 
that the tree-based machine learning models outshine 
alternative machine learning methods in the context of 
conducting large-scale MAFLD screening within popu-
lations. Notably, the CatBoost algorithm emerges with 
remarkable prowess, attaining Sensitivity, Specificity, 
and AUC values of 0.814, 0.753 and 0.862, respectively. 
In contrast, the artificial neural network (ANN) dis-
plays relatively modest performance in this task. Figure 3 

delineates the comprehensive receiver operating charac-
teristic (ROC) curve on the training set and the test set, 
encapsulating all classifiers under scrutiny.

Importance of features
Within the confines of this study, we embarked on an 
evaluation and prioritization of feature importance spe-
cifically pertaining to the CatBoost model, which show-
cased the most superior performance and attained the 
highest AUC value. Based on the empirical findings 
delineated in Fig.  4, we discerned that BMI, age, TG, 
WC, FPG, occupation3 (pertaining to agriculture, for-
estry, animal husbandry, fishing, and water conservancy 
roles), HDLC, LDLC, TC, ethnicity (Uyghur), DBP, SBP 
and CVD emerged as the foremost 13 pivotal predictive 
factors. These factors were identified through the utiliza-
tion of the CatBoost model to anticipate MAFLD within 
a sizeable population, grounded in the insights gleaned 
from questionnaire data.

Discussion
Given the swiftly increasing prevalence of MAFLD, the 
task of identifying prospective MAFLD patients and 
implementing suitable therapeutic interventions has 
become an exigent priority. Within the confines of this 
study, a comprehensive cohort of 5,171,392 adults aged 

Table 3  The optimal hyperparameters of each algorithm
Algorithms Hyperparameters
CART {‘ccp_alpha’: 0.0, ‘class_weight’: {0: 0.5565471129755745, 1: 4.9210921980753906}, ‘criterion’: ‘gini’, ‘max_depth’: 11, ‘max_features’: 

None, ‘max_leaf_nodes’: None, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 
0.0, ‘random_state’: 0, ‘splitter’: ‘best’}

RF {‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘class_weight’: {0: 0.5565471129755745, 1: 4.9210921980753906}, ‘criterion’: ‘gini’, ‘max_depth’: 
15, ‘max_features’: ‘auto’, ‘max_leaf_nodes’: None, ‘max_samples’: None, ‘min_impurity_decrease’: 0.0, ‘min_impurity_split’: None, 
‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘n_jobs’: 30, ‘oob_score’: False, ‘ran-
dom_state’: 0, ‘verbose’: 0, ‘warm_start’: False}

ADABoost {‘algorithm’: ‘SAMME.R’, ‘base_estimator’: ‘deprecated’, ‘estimator__ccp_alpha’: 0.0, ‘estimator__class_weight’: None, ‘estimator__cri-
terion’: ‘gini’, ‘estimator__max_depth’: 5, ‘estimator__max_features’: None, ‘estimator__max_leaf_nodes’: None, ‘estimator__min_im-
purity_decrease’: 0.0, ‘estimator__min_samples_leaf’: 1, ‘estimator__min_samples_split’: 2, ‘estimator__min_weight_fraction_leaf’: 
0.0, ‘estimator__random_state’: 0, ‘estimator__splitter’: ‘best’, ‘estimator’: DecisionTreeClassifier(max_depth = 5, random_state = 0), 
‘learning_rate’: 1.0, ‘n_estimators’: 50, ‘random_state’: None}

LightGBM {‘boosting_type’: ‘gbdt’, ‘class_weight’: None, ‘colsample_bytree’: 1.0, ‘importance_type’: ‘split’, ‘learning_rate’: 0.1, ‘max_depth’: 11, 
‘min_child_samples’: 20, ‘min_child_weight’: 0.001, ‘min_split_gain’: 0.0, ‘n_estimators’: 100, ‘n_jobs’: 48, ‘num_leaves’: 31, ‘objective’: 
None, ‘random_state’: 0, ‘reg_alpha’: 0.0, ‘reg_lambda’: 0.0, ‘subsample’: 1.0, ‘subsample_for_bin’: 200000, ‘subsample_freq’: 0, ‘verbos-
ity’: -1, ‘scale_pos_weight’: 9.842184396150781}

XGBoost {‘objective’: ‘binary: logistic’, ‘use_label_encoder’: False, ‘base_score’: 0.5, ‘booster’: ‘gbtree’, ‘colsample_bylevel’: 1, ‘colsample_bynode’: 
1, ‘colsample_bytree’: 1, ‘enable_categorical’: False, ‘gamma’: 0, ‘gpu_id’: -1, ‘importance_type’: None, ‘interaction_constraints’: ‘’, ‘learn-
ing_rate’: 0.300000012, ‘max_delta_step’: 0, ‘max_depth’: 8, ‘min_child_weight’: 1, ‘missing’: nan, ‘monotone_constraints’: ‘()’, ‘n_estima-
tors’: 100, ‘n_jobs’: 60, ‘num_parallel_tree’: 1, ‘predictor’: ‘auto’, ‘random_state’: 0, ‘reg_alpha’: 0, ‘reg_lambda’: 1, ‘scale_pos_weight’: 
9.842184396150781, ‘subsample’: 1, ‘tree_method’: ‘exact’, ‘validate_parameters’: 1, ‘verbosity’: None, ‘eval_metric’: ‘error’}

CatBoost {‘loss_function’: ‘Logloss’, ‘eval_metric’: ‘AUC’, ‘iterations’: 500, ‘learning_rate’: 0.03, ‘random_seed’: 0, ‘l2_leaf_reg’: 0, ‘random_state’: 0, 
‘depth’: 6, ‘scale_pos_weight’: 9.842184396150781, ‘boosting_type’: ‘Ordered’}

KNN {‘algorithm’: ‘auto’, ‘leaf_size’: 30, ‘metric’: ‘minkowski’, ‘metric_params’: None, ‘n_jobs’: None, ‘n_neighbors’: 100, ‘p’: 2, ‘weights’: ‘uniform’}
ANN {‘activation’: ‘relu’, ‘alpha’: 0.0001, ‘batch_size’: ‘auto’, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘early_stopping’: False, ‘epsilon’: 1e-08, ‘hidden_layer_

sizes’: (20,), ‘learning_rate’: ‘constant’, ‘learning_rate_init’: 0.001, ‘max_fun’: 15000, ‘max_iter’: 200, ‘momentum’: 0.9, ‘n_iter_no_change’: 
10, ‘nesterovs_momentum’: True, ‘power_t’: 0.5, ‘random_state’: 0, ‘shuffle’: True, ‘solver’: ‘adam’, ‘tol’: 0.0001, ‘validation_fraction’: 0.1, 
‘verbose’: False, ‘warm_start’: False}
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18 and above was enlisted. Leveraging their physical 
examination data, we endeavored to develop and juxta-
pose AI algorithms intended for the large-scale popula-
tion screening of MAFLD. Our comprehensive inquiry 
sheds light on the exemplary performance exhibited by 
the CatBoost algorithm within the domain of MAFLD 
screening. Remarkably, BMI, age, TG, WC, FPG, occupa-
tion3, HDLC, LDLC, TC, ethnicity (Uyghur), DBP, SBP 
and CVD have emerged as the pivotal predictive factors 
of significance.

In contrast to conventional statistical models, ML mod-
els offer substantially enhanced data analysis and predic-
tive capacities in disease prognostication. These models 

possess the capability to manage extensive, high-dimen-
sional, and intricate medical datasets, effectively discern-
ing latent patterns and predictive principles to elevate the 
precision of predictions. Presently, an array of investiga-
tions has been undertaken to predict MAFLD employing 
laboratory indicators. Several scholars have integrated 
lipidomics, metabolomics, genomics, transcriptomics, 
and biomarkers as predictive variables for the formula-
tion of models [35–37]. While these models have exhib-
ited commendable outcomes in predicting MAFLD, 
acquiring such data through extensive health screenings 
proves impractical and hampers endeavors aimed at the 
broad-scale screening of diseases. Additionally, certain 

Table 4  Performance of each algorithm in the training set
Algorithms Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) Threshold
CART 0.833 0.721 0.253 0.974 0.733 0.855

(0.8542–0.8553)
0.501

RF 0.845 0.758 0.283 0.977 0.767 0.881
(0.8803–0.8813)

0.498

ADABoost 0.831 0.736 0.262 0.975 0.746 0.862
(0.8612–0.8622)

0.489

LightGBM 0.828 0.743 0.267 0.974 0.752 0.864
(0.8631–0.8641)

0.538

XGBoost 0.851 0.747 0.276 0.978 0.758 0.878
(0.8777–0.8786)

0.517

CatBoost 0.842 0.757 0.282 0.977 0.766 0.878
(0.8771–0.8780)

0.530

KNN 0.833 0.723 0.254 0.975 0.734 0.857
(0.8565–0.8575)

0.110

ANN 0.829 0.729 0.257 0.974 0.739 0.857
(0.8568–0.8578)

0.095

Note: PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; KNN, K-Nearest Neighbor; ANN, 
Artificial Neural Network; CART, Classification and Regression Tree; RF, Random Forest; ADABoost, Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; 
XGBoost, Extreme Gradient Boosting; CatBoost, Categorical Boosting

Table 5  Performance of each algorithm in the test set
Algorithms Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) Threshold

(determined by the training set)
CART 0.824 0.713 0.243 0.973 0.724 0.845

(0.8438–0.8461)
0.501

RF 0.806 0.749 0.265 0.972 0.755 0.856
(0.8553–0.8574)

0.498

ADABoost 0.823 0.731 0.256 0.974 0.741 0.855
(0.8535–0.8557)

0.489

LightGBM 0.823 0.740 0.262 0.974 0.748 0.859
(0.8583–0.8603)

0.538

XGBoost 0.823 0.742 0.264 0.974 0.750 0.861
(0.8600–0.8621)

0.517

CatBoost 0.814 0.753 0.270 0.973 0.759 0.862
(0.8612–0.8632)

0.530

KNN 0.815 0.715 0.243 0.972 0.725 0.841
(0.8397–0.8419)

0.110

ANN 0.838 0.716 0.249 0.975 0.728 0.856
(0.8547–0.8568)

0.095

Note: PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve; KNN, K-Nearest Neighbor; ANN, 
Artificial Neural Network; CART, Classification and Regression Tree; RF, Random Forest; ADABoost, Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; 
XGBoost, Extreme Gradient Boosting; CatBoost, Categorical Boosting
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investigations center on the interplay between distinct 
ailments and MAFLD, encompassing cardiovascular dis-
eases, diabetes, and liver fibrosis, while others pertain 
solely to particular demographics, such as adolescents or 
individuals with obesity [35, 38–40]. Some studies suffer 
from the limitation of small sample sizes [35, 38, 39], or 
do not consider ethnic-specific factors [13, 14]. Studies 
constrained by these limitations might encounter chal-
lenges in extrapolating research conclusions and predic-
tion models to the broader populace. In stark contrast, 

our investigation encompasses a dataset of 5,171,392 par-
ticipants hailing from the Xinjiang region, distinguished 
by its expansive sample size and ethnically diverse popu-
lation. Consequently, the implications of our study hold 
promise for advancing MAFLD screening and prognosti-
cation within a sizable Chinese demographic.

The aforementioned studies on MAFLD prediction 
models have all achieved notably high AUCs, with some 
models reaching above 0.8 [13, 35, 36, 40] and others 
exceeding 0.9 [35] in their test sets, demonstrating good 

Fig. 3  ROC curves on the training set and the test set for KNN, ANN, CART, RF, ADABoost, LightGBM, XGBoost and CatBoost respectively. ROC, receiver 
operating characteristic; KNN, K-Nearest Neighbor; ANN, Artificial Neural Network; CART, Classification and Regression Tree; RF, Random Forest; ADABoost, 
Adaptive Boosting; LightGBM, Light Gradient Boosting Machine; XGBoost, Extreme Gradient Boosting; CatBoost, Categorical Boosting
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predictive performance under their respective study con-
ditions. All models constructed and optimized in this 
study achieved AUCs above 0.8 in the test set, among 
which the best-performing CatBoost model reached 
an AUC of 0.862. This, to a certain extent, suggests that 
the variables selected in this study hold predictive value 
under the context of large-scale population disease 
screening, and the constructed models exhibit com-
mendable performance in MAFLD screening.

In this study, we have identified that BMI, age, TG, 
FPG, WC, occupation, HDLC, LDLC, TC, SBP, DBP and 
CVD are pivotal factors for MAFLD screening. Obesity 
has been widely confirmed to be highly associated with 
MAFLD; therefore, BMI and WC are also important 
predictive factors for MAFLD. Age is highly correlated 
with MAFLD, with a higher age being associated with 
an increased risk of MAFLD, a factor that has been con-
sidered in many MAFLD prediction studies [41]. TG, 
HDLC, LDLC, and TC are components of lipid profiles 
in blood tests, and these parameters have been confirmed 
to be highly correlated with MAFLD. This is because 
elevated lipid levels are prone to causing the accumu-
lation of fat in the liver [42]. Studies have shown a sig-
nificant association between fasting blood glucose levels 
and the incidence and severity of MAFLD. Elevated fast-
ing blood glucose levels serve as markers of diabetes and 
insulin resistance, both of which are notably linked to 
MAFLD. Insulin resistance leads to inadequate utiliza-
tion of insulin, promoting fat accumulation in the liver 

and facilitating the development of MAFLD. Moreover, 
elevated fasting blood glucose itself may directly harm 
the liver, causing inflammation and fibrosis in liver cells, 
further exacerbating the condition of MAFLD [43]. Indi-
viduals immersed in activities such as agriculture, for-
estry, animal husbandry, fishing, and water conservancy 
are predominantly engaged in physically demanding 
labor. Prolonged exposure to physical labor or regular 
exercise exerts a favorable influence in averting the onset 
of MAFLD, a notion substantiated by an array of schol-
arly investigation [44]. Research indicates that elevated 
systolic and diastolic blood pressure are associated with 
an increased risk of MAFLD. Epidemiological investiga-
tions reveal that the prevalence of MAFLD among hyper-
tensive patients is approximately 49.5%, significantly 
higher than that in the general population [42]. Further-
more, MAFLD appears to be closely linked to hyperten-
sion and endothelial dysfunction, seemingly serving as an 
independent risk factor for prehypertension and hyper-
tension [45]. Our research findings highlight a robust 
correlation between MAFLD and cardiovascular disease. 
On one hand, cardiovascular disease risk factors (includ-
ing hypertension, hyperlipidemia, and diabetes) can cul-
minate in anomalous hepatic fat buildup, giving rise to 
MAFLD. Moreover, inflammatory and vascular injury 
elements prompted by cardiovascular disease can perme-
ate the systemic circulation, fostering the progression of 
MAFLD. On the other hand, individuals with MAFLD 
frequently manifest obesity and metabolic irregularities, 

Fig. 4  Feature importance of CatBoost algorithm. Ethnicity (Hui), Ethnicity (Kirgiz), Ethnicity (Kazak), Ethnicity (Uyghur) and Ethnicity (Han) are dummy 
variables of Ethnicity. MS, marital status; EF, exercise frequency; EH, eating habits; SS, smoking status; DF, drinking frequency; CVD, cardiovascular diseases; 
WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; TC, total cholesterol; 
TG, triglyceride; LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol
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such as insulin resistance and elevated cholesterol levels. 
These factors compromise endothelial function and cata-
lyze the advancement of atherosclerosis, thereby exac-
erbating the vulnerability to cardiovascular disease [38]. 
Ethnicity is also an important predictor. Ethnic group 
may be associated with regional, dietary habits, climate, 
genes and other factors. Previous studies have reported 
that there are differences in the incidence of MAFLD 
among different ethnic groups or regions [46].

This study boasts several notable strengths. Foremost, 
the MAFLD prediction model devised herein leverages 
variables garnered from physical examination data. Con-
sequently, when juxtaposed with conventional MAFLD 
diagnostic methodologies, this model emerges as swifter, 
cost-efficient, and conducive to preliminary MAFLD 
screening within extensive populations. Additionally, 
our investigation encompasses a substantial and diverse 
Chinese demographic, encompassing an array of eth-
nic backgrounds. This inclusivity adeptly captures the 
influence of ethnicity-specific elements on the disease, 
markedly bolstering the applicability of our model. Fur-
thermore, the meticulous sample selection adhering to 
scientifically grounded inclusion and exclusion criteria 
characterizes this study. This approach adeptly retains 
comprehensive data hailing from extensive health screen-
ing questionnaires, thus seamlessly aligning with the 
tenets of epidemiological research on MAFLD in real-
world scenarios.

However, this study also has certain limitations. Firstly, 
our model is based on health check questionnaire data 
derived from a large-scale Chinese population, exclud-
ing data from other countries. The peculiarities of Xinji-
ang’s ethnic structure and geographical environment may 
impact the generalizability of this model to other popu-
lations, despite it being the first model established based 
on a multi-ethnic population comprising millions of 
samples. Secondly, this study is cross-sectional in design, 
which restricts our ability to ascertain causal relation-
ships between certain factors and MAFLD, as exempli-
fied by the relationship between exercise frequency and 
MAFLD. Follow-up cohort studies are needed to address 
this limitation. Thirdly, the quantification of alcohol con-
sumption did not strictly adhere to the exclusion criteria 
for MAFLD (males > 30 g/day, females > 20 g/day), which 
could potentially impact the predictive ability of our 
model. The self-reported component of predictive factors 
may introduce bias due to inaccuracies or incomplete 
reporting. Furthermore, the exclusion of a large number 
of participants with indeterminate disease outcomes may 
increase potential selection bias.

Conclusions
The severity and prevalence of MAFLD have garnered 
heightened recognition from the public, propelling the 
dire necessity for the formulation of a large-scale, pop-
ulation-oriented early screening model. Grounded in a 
multi-ethnic and expansive sample populace, this study 
exclusively harnessed questionnaire surveys and custom-
ary medical examination components to meticulously 
establish and juxtapose tree-based MAFLD predictive 
models against alternative ML methodologies. We iden-
tified the optimal MAFLD predictive model and exten-
sively analyzed the interactions between various risk 
factors and MAFLD. The study results demonstrated 
that our MAFLD screening model achieved satisfactory 
predictive performance, providing a new and more eco-
nomical and efficient approach for the prevention and 
screening of MAFLD.
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