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stantial fraction of children stay home to receive instruc-
tion remotely [1]. European countries including France, 
Norway, Denmark, and Iceland restricted class size as a 
condition for reopening schools in person, and an OECD 
report described class size as a “critical parameter for the 
reopening of schools.” [2].

Concerns about class size resurfaced as schools con-
templated reopening in late August 2021, when no 
COVID vaccine had yet been approved for elementary 
students (5- to 11-year-olds), only 40% of middle and 
high school students (12 to 17-year-olds) had been fully 
vaccinated [3] and only 61% of parents had received at 
least one vaccine dose [4].

In response to the pandemic of COVID-19 (corona-
virus disease 2019), caused by the virus SARS-CoV-2 
(severe acute respiratory syndrome coronavirus 2), many 
schools implemented policies to reduce class size. Dur-
ing the 2020-21 school year, approximately one-half of US 
schools implemented some type of “hybrid” instruction 
policy that reduced in-person class size by having a sub-
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Abstract
Background  In an effort to reduce viral transmission, many schools reduced class sizes during the recent pandemic. 
Yet the effect of class size on transmission is unknown.

Methods  We used data from Project STAR, a randomized controlled trial in which 10,816 Tennessee elementary 
students were assigned at random to smaller classes (13 to 17 students) or larger classes (22 to 26 students) in 
1985-89. We merged Project STAR schools with data on local deaths from pneumonia and influenza in the 122 Cities 
Mortality Report System. Using mixed effects linear, Poisson, and negative binomial regression, we estimated the main 
effect of smaller classes on absence. We used an interaction to test whether the effect of small classes on absence was 
larger when and where community pneumonia and influenza prevalence was high.

Results  Small classes reduced absence by 0.43 days/year (95% CI -0.06 to -0.80, p < 0.05), but small classes had no 
significant interaction with community pneumonia and influenza mortality (95% CI -0.27 to + 0.30, p > 0.90), indicating 
that the reduction in absence due to small classes was not larger when community disease prevalence was high.

Conclusion  Small classes reduced absence, but the reduction was not larger when disease prevalence was high, so 
the reduction in absence was not necessarily achieved by reducing infection. Small classes, by themselves, may not 
suffice to reduce the spread of respiratory viruses.
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The Biden administration, advised by the American 
Federation of Teachers (AFT), suggested hiring new 
teachers to reduce class sizes by approximately 10%. The 
$50  billion cost, the administration suggested, could be 
drawn from the $125  billion in federal funds allocated 
to public and private elementary and secondary schools 
under the American Rescue Plan of March 2021 [5, 6]. In 
April 2021, the US Department of Education endorsed 
reducing class size to “accommodate social distancing” 
and increase learning. Five states (Alaska, Minnesota, 
Maine, West Virginia, South Carolina) included class size 
reduction among their priorities for federal relief funds 
during the 2021-22 and 2022-23 school years; other 
states left the decision to districts [7].

The rationale for class size reduction is straightforward. 
With fewer children in a classroom, there is a lower prob-
ability that the classroom will contain an infected child, 
and fewer children to whom an infected child will be 
exposed. Children can sit or stand further apart, at least 
on average, reducing the chance of infection by direct 
contact or proximity. With fewer children to supervise, 
teachers and staff can devote more time and attention 
to disinfecting surfaces and enforcing healthy behaviors, 
such as wearing masks and washing hands. A simula-
tion conducted in the first pandemic summer of 2020 
predicted that reducing class sizes would substantially 
reduce COVID-19 outbreaks [8].

Within a few months, though, doubts arose about how 
much class size mattered for the spread of the novel coro-
navirus. Accumulating evidence suggested that COVID-
19 did not spread primarily through direct contact or 
proximity to infected persons or surfaces, but through 
fine droplets and aerosol particles suspended in indoor 
air. It followed that class size was likely much less impor-
tant than masks, which prevent many exhaled fine drop-
lets from spreading into the air, and ventilation, which 
exchanges indoor air containing droplets and aerosols 
with less-contaminated outdoor air. A simulation pre-
dicted that if children talking in an indoor classroom did 
not wear masks, the risk of transmission would become 
unacceptable within an hour for any class size greater 
than 10; by contrast, if children wore masks, the risk 
would remain acceptable for at least 13 h even if the class 
size was as large as 30 [9, 10].

Empirically, though, evidence regarding the effect of 
class size on transmission is limited and contradictory. 
Two observational studies have estimated the effect of 
US school reopening policies during the pandemic—fully 
online, fully in-person, or hybrid—on the incidence of 
COVID-19 hospitalizations [11] and positive COVID-
19 tests [12] in fall 2020. Although classes were smaller 
in schools that reopened in a hybrid fashion, both stud-
ies found that opening in a hybrid rather than in-person 
fashion had no significant effect in counties where the 

prevalence of COVID-19 before schools reopened was 
low. In counties where the prior prevalence of COVID-
19 was high, the results were mixed; one study concluded 
that fully opening schools in-person accelerated the 
spread of the virus, [12] while the other reported ambigu-
ous results that were sensitive to model specification [11].

Evidence on the effect of class size on infection is lim-
ited not just for the novel coronavirus (SARS-CoV-2), but 
also for more familiar pathogens such as influenza. While 
correlations between class size and infection are some-
times reported in observational studies, [13] only one 
prior study tried to estimate the causal effect of reducing 
class size on influenza-related absence [14]. By exploit-
ing discontinuities induced by Japanese laws limiting 
class size, the study concluded that reducing Tokyo class 
sizes to 27 from an average of 32 would have substantially 
reduced the risk of school closures due to outbreaks dur-
ing the flu seasons of 2015-2017 [11]. Below a class size of 
27, the benefits of further reductions were less clear. Note 
that most US classes are already smaller than 27 students; 
average US class size is 17 to 26, depending on grade level 
and class type [15].

In this study, we estimate the effect on influenza-
related absence of reducing average class size from 23 to 
15. We use evidence from a randomized controlled trial 
that assigned young children to larger and smaller classes 
at random. We estimate the main effect of class size on 
absence, as well as the interaction between class size and 
community influenza prevalence. Our hypothesis is that 
if class size reduces influenza transmission, the effect of 
class size on absence should be larger in times and places 
when community influenza prevalence is high.

Methods
Project STAR randomized controlled trial
Our primary data come from Tennessee’s Student/
Teacher Achievement Ratio Project (Project STAR)—a 
four-year block-randomized longitudinal trial of class 
size reduction, funded by a $12  million appropriation 
from Tennessee’s House Bill 544, which was passed by 
the Tennessee State Legislature in May 1985 [16–19].

According to Project STAR’s design, within each par-
ticipating school children and teachers were assigned 
at random to three classroom treatments in kindergar-
ten: (1) small classes with a target size of 13 to 17 stu-
dents, (2) regular-sized classes with a target size of 22 
to 26 students, or (3) regular-sized class with a teacher’s 
aide. Children were followed from kindergarten in 1985-
86 through third grade in 1988-89. Children who spent 
kindergarten in a small class remained in small classes 
from kindergarten through third grade. Children who 
spent kindergarten in one of the other conditions—a 
regular-sized class or a regular-sized class with an aide—
were re-randomized between those two conditions after 
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kindergarten. Children who entered participating schools 
after kindergarten were randomized among the three 
conditions as well.

Participants
Out of the 886 elementary schools in Tennessee, 180 
volunteered for Project STAR, but only 100 of those 
schools were large enough to offer at least one kindergar-
ten class in each of the experimental conditions—i.e., at 
least one classroom with 13 to 17 students and at least 
two classrooms with 22 to 26 students each [16]. After 
some negotiation, 79 schools were selected to participate. 
During the four years of Project STAR, four schools with-
drew from the study, and students in one rural county 

progressed from a feeder school offering only kindergar-
ten to a lower elementary school offering grades 1–3.

Dependent measure
The original purpose of Project STAR was to estimate 
the effects of reducing class size on test scores in grades 
K-3; [17] later analyses also estimated effects on grade 
repetition, high school graduation, college attendance 
and completion, and early adult employment and wages 
[20, 21]. Ours is the first analysis of Project STAR to look 
at absence and its correlation with infectious disease 
prevalence.

Project STAR recorded the number of days that each 
student was absent in three of the four study years: kin-
dergarten 1985-86, first grade 1986-87, and third grade 
1988-89, but not second grade 1987-88. Project STAR did 
not record the reasons for absence, but past studies sug-
gest that approximately half of school absences are due to 
illness [22–24]. Some efforts to estimate infection-related 
absence have relied on correlations between absence 
among schoolchildren and disease prevalence in the 
larger community [25]. That is the strategy that we adopt 
here.

Supplemental data from the 122 cities mortality reporting 
system (CMRS)
To estimate the correlation between absence and infec-
tion, we merged Project STAR with data from the 122 
Cities Mortality Reporting System (CMRS), a surveil-
lance study run by the Centers for Disease Control and 
Prevention from 1962 to 2016 [26]. The CMRS recorded 
mortality data for 122 US cities, including the four larg-
est cities in Tennessee: Memphis, Nashville, Knoxville, 
and Chattanooga. For some cities, the data include the 
surrounding metropolitan area; for others, they are lim-
ited to the city proper. Thirty-three of the 79 schools that 
started Project STAR were in cities covered by the CMRS 
(Table 1).

For each city and week, the CMRS recorded the total 
number of deaths, as well as the number of deaths that 
were due to pneumonia and influenza (PI). Deaths were 
reported for each week, and we aggregated them to each 
school year. The school year was defined as running from 
week 34 of one calendar year to week 22 of the next. For 
example, deaths during the kindergarten school year of 
1985-86 were defined as the total of deaths from week 
34 of 1985 (starting August 24) through week 22 of 1986 
(starting May 31). Changing the beginning and end of the 
school year by a few weeks would not materially change 
the results, since the vast majority of PI deaths were con-
centrated in December and January.

For each city and school year, we calculated PI mortal-
ity—the percentage of deaths that were due to PI. PI mor-
tality is often interpreted as a proxy for the prevalence 

Table 1  Description of Project STAR randomized controlled trial, 
Tennessee, school years 1985-89
Year 1985-86 1986-87 1988-89 All 3 

years
Grade K 1 3
Outcome
  Absences (mean) 10.5 7.6 6.8 8.3
Treatments (randomly 
assigned)
  % small class 30 28 32 30
  % regular-sized class 35 38 31 34
  % regular-sized class 
with teacher’s aide

35 33 38 35

Covariates
  % female 49 48 48 48
  % free lunch 48 52 50 50
  % white 67 66 66 66
  % black 32 33 34 33
  % other race/ethnic-
ity (incl. Hispanic, Asian, 
Native American)

0.5 0.8 0.5 0.6

Sample size
  Observations 6,251 6,662 6,586 19,499
  Distinct students 6,251 6,662 6,586 10,816
  Teachers 
(classrooms)

325 337 331 993

  Schools 79 76 74 80
Number of schools by 
district
  Memphis Public 
Schools

20 19 19 20

  Knox County Public 
Schools (incl. Knoxville)

5 4 4 5

  Davidson County 
Public Schools (incl. 
Nashville)

4 4 4 4

  Hamilton County 
Public Schools (incl. 
Chattanooga)

3 3 3 3

  Other school 
districts

47 46 44 48
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and virulence of influenza viruses [31]. It is far from 
a perfect proxy, since many people contract influenza 
without dying of it, yet it does have some validity since 
students miss school more often during weeks when PI 
mortality peaks [25]. Although we would have liked to 
have separate estimates of PI mortality for the attendance 
zone of each school, PI mortality was only available at 
the city level. This is a common limitation in infectious 
disease surveillance, which state agencies, federal agen-
cies, and private insurers commonly aggregate to larger 
geographic areas such as cities, counties, or multi-county 
regions [11, 12, 27, 28].

To merge the CMRS with the Project STAR data, we 
had to identify the location of each Project STAR school. 
The Project STAR data do not identify schools explic-
itly, but we identified them by merging with other data. 
In particular, Table II in the Project STAR Technical 
Report [32] listed the name and district of all 80 partici-
pating schools, along with the number of small classes, 
regular classes, and regular classes with an aide that each 
school offered in each year of Project STAR. Other char-
acteristics of Tennessee schools were available in the US 
Department of Education’s Common Core of Data, [33] 
which provided data on every US school back to 1986-87 
(year 2 of Project STAR). By matching the Project STAR 
data to variables from the Technical Report and Common 
Core, we identified which schools in the Project STAR 
were in the four cities surveyed by the CMRS, and that 
gave us the community PI mortality for those schools. 
We used the ultimatch command for Stata to minimize 
the Euclidean distance between matched schools [34]. 
Alternative matching procedures yielded identical esti-
mates; in the few cases where the matched school dif-
fered, the matched city was the same, so the matched 
value of community PI mortality, which was measured at 
the city level, did not change.

Data analysis
Because Project STAR assigned children and teachers 
to treatments at random, we could estimate the effect of 
class size by comparing the average number of absences 
in each treatment group. To maximize our power to 
detect an effect, we pooled data longitudinally across 
the years of the study. In analyzing the pooled data, we 
accounted for correlations among observations of the 
same child in different years, as well as correlations 
among different children in the same classroom and 
school year.

More specifically, we fit the following linear mixed 
model:

	

Absencectsdg = αs + βg + γ1Smallctsdg

+ γ2Aidectsdg + · · · + uc + ectsdg

Here Absencectsdg  was the number of absences for child 
c with teacher t in school s and district d during grade 
g (kindergarten 1985-86, first grade 1986-87, or third 
grade 1988-89). Smallctsdg  and Aidectsdg  indicated which 
experimental treatment the child received during that 
grade—a small class or a regular class with an aide; reg-
ular classes without an aide were the reference. αs  was 
a school fixed effect, which accounted for the fact that 
some schools had higher absence rates than others, and 
children were randomized to conditions within schools 
rather than between then. βg  was a grade fixed effects, 
which accounted for the fact that absence rates were 
higher in kindergarten than in later grades. uc  was a 
child random effect used to model the correlation among 
observations of the same child in different grades. ectsdg  
is a random residual, clustered at the classroom level to 
account for the correlation among observations of dif-
ferent children in the same classroom. We estimated the 
model using the xtreg command in Stata software, ver-
sion 16.1.

Because the experimental treatments were assigned at 
random, they were not correlated with any child charac-
teristics, so no child-level covariates were needed to get 
unbiased estimates of treatment effects. Nevertheless, we 
fit the model both with and without covariates represent-
ing each child’s race, gender, and free lunch eligibility (an 
indicator of poverty). Unsurprisingly, these covariates 
changed the results very little.

To estimate whether the effect of class size on absence 
was stronger in communities and years with higher infec-
tion rates, we added a covariate PIsg , representing PI 
mortality in district d during the school year when the 
child was in grade g. We centered PIsg  around its mean 
of 7.3, and we let the mean-centered variable interact 
with the experimental treatments:

	

Absencectsdg = αs + βg + γ1Smallctsdg + γ2Aidectsdg

+ γ3PIdg + δ11PIdg × Smallctsdg

+ δ12PIdg × Aidectsdg + · · · + uc + ectsdg

Although community infection rates could not be ran-
domized, the coefficients of PIdg  and the interactions 
can be interpreted as causal effects if the year and school 
fixed effects control adequately for unobserved con-
founding variables that vary between schools and years. 
Again, we fit the model both with and without covari-
ates for race, gender, and free lunch eligibility. Again, the 
covariates made little difference to the results.

Because absences is a count variable, we also fit Poisson 
and negative binomial models with the same fixed effects, 
random effects, and covariates. The results, given in the 
Online Supplement, were very similar.
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Results
Table  1 summarizes the design of Project STAR and 
the characteristics of participating children, schools, 
and school districts. The table reports on children with 
absence data in kindergarten, first, or third grade; no 
absence data was recorded in second grade. In each of 
those three school years, over 6,000 children partici-
pated in over 300 classrooms; across all three years, over 
10,000 distinct children participated in nearly 1,000 
classrooms. Approximately equal numbers of classrooms 
were assigned to the three experimental treatments, but 
because the small classrooms had fewer students, slightly 
less than one-third of children were assigned to the small 
class condition. Nearly two-thirds of participating chil-
dren were white, one-third were black, and less than 1% 
were other races and ethnicities. Just under half of par-
ticipating children were female, and precisely half were 
poor enough to receive free school lunches. Comparisons 
elsewhere show that Project STAR students were poorer 
and more likely to be black than children living elsewhere 
in Tennessee and other states in the 1980s [20].

The bottom of Table 1 shows the distribution of partici-
pating schools across Tennessee school districts. About 
one-third of participating schools were in the four cit-
ies covered by the CMRS. Fully a quarter of participat-
ing schools were in Memphis, while another 15% were in 
Knox County (principally Knoxville), Davidson County 
(principally Nashville), and Hamilton County (principally 
Chattanooga).

The top of Table  1 shows the average number of 
absences per student per year, which dropped from over 
10 in kindergarten 1985-86 to less than 7 by third grade 
1988-89. Figure  1 compares absences across the three 
experimental treatments. The differences were small but 
consistent across kindergarten, first, and third grade, 
with each year having fewer absences in small classes 
than in regular-sized classes or regular-sized classes with 
a teachers’ aide. Table 2 shows that these differences are 
statistically significant (p < 0.05), with smaller classes hav-
ing 0.4 fewer annual absences per student, on average, 
across kindergarten, first, and third grade. Including gen-
der, race, and free lunch status as covariates had practi-
cally no effect on this result.

Although these results show that smaller classes 
reduced absence, it is not clear whether the reduction in 
absence was due to a reduction in infection. To address 
that question, we added community PI mortality to the 
model for the cities covered by the CMRS. Figure 2 sum-
marizes trends in PI across the four cities. In Nashville, 
PI mortality held steady between 5 and 6% across the 4 
years of Project STAR. In Memphis, PI mortality rose 
from 6 to nearly 10%, and in Knoxville and Chattanooga, 
PI mortality rose from approximately 7 to approximately 
9%. The differences in levels and trends within and 
between cities help to identify the effect of PI mortality 
on absence.

Table 2 shows that PI mortality was a significant predic-
tor (p < 0.05) of absence; a 1% point increase in PI mortal-
ity was associated with an increase of approximately 0.4 

Fig. 1  Smaller classes had slightly fewer days absent, on average, than regular-sized classes or regular-sized classes with a teacher’s aide
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annual absences per student. However, community PI 
rates did not appear to moderate the effect of class size 
on absence. The interaction between PI and the small 
class size condition was close to zero and far from statis-
tical significance (p > 0.9). The interaction between PI and 
the teacher’s aide condition was also close to zero and far 
from statistical significance (p > 0.9).

Including PI and interactions in the model slightly 
reduced the statistical significance of the main effect of 
small classes. The point estimate for the effect of small 

classes is similar in all models, but the confidence inter-
val gets slightly wider and the p values get slightly larger 
when PI and interactions are included in the model (from 
p = 0.02 to p = 0.06 without covariates, from p = 0.03 to 
p = 0.11 with covariates). This is partly because the sam-
ple size is reduced to districts with PI data and partly 
because there is some correlation between the small class 
variable and its interaction with PI.

Table 2  Linear mixed model predicting days of absence per year, Project STAR, Tennessee, school years 1985-89
c Coef. (95% CI) Coef. (95% CI) Coef. (95% CI) Coef. (95% CI)
Small class -0.43* (-0.80, -0.06) -0.42* (-0.79, -0.05) -0.49+ (-1.01, 0.04) -0.43 (-0.95, 0.09)
Teacher’s aide 0.21 (-0.13, 0.54) 0.20 (-0.14, 0.54) 0.20 (-0.28, 0.68) 0.19 (-0.29, 0.67)
First grade (ref. kindergarten) -2.70** (-3.00, -2.41) -2.73** (-3.03, -2.43) -1.94** (-2.42, -1.46) -1.97** (-2.44, 

-1.50)
Third grade (ref. kindergarten) -3.33** (-3.64, -3.03) -3.36** (-3.66, -3.06) -3.38** (-4.39, -2.37) -3.46** (-4.43, 

-2.48)
PI 0.38* (0.00, 0.75) 0.39* (0.02, 0.76)
Small class × PI 0.02 (-0.27, 0.30) 0.02 (-0.27, 0.30)
Teacher’s aide × PI -0.00 (-0.28, 0.27) -0.01 (-0.28, 0.26)
Female (ref. male) 0.26+ (-0.03, 0.55) 0.23 (-0.20, 0.65)
Black (ref. white) -1.48** (-2.06, -0.90) -1.19** (-2.06, 

-0.33)
Other race/ethnicity -1.65* (-3.30, -0.00) -2.10* (-3.83, -0.37)
Free lunch 1.64** (1.34, 1.93) 1.86** (1.40, 2.32)
Observations 19,499 19,329 8,073 8,028
Distinct children 10,816 10,726 4,966 4,936
Note. ** p < 0.01, * p < 0.05, + p < 0.1, two sided. Coef.=Regression coefficients. CI = classroom-clustered 95% confidence intervals. PI = percent of deaths due to 
pneumonia and influenza, mean-centered. All models include school fixed effects, year fixed effects, and child random effects

Fig. 2  Percent of deaths due to pneumonia and influenza in four Tennessee cities and four school years
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Discussion
In Tennessee’s Project STAR randomized controlled trial, 
reducing class sizes by one-third significantly reduced 
annual absence by 0.4 days per child on average. Varia-
tion in absence rates were correlated with variation in PI 
mortality across cities and years, but the effect of class 
size on absence was not increased in years and commu-
nities with high PI mortality. Although smaller classes 
reduced absence, it is not clear that they did so by reduc-
ing infection.

Strengths and limitations
This study has several strengths. One is that class size 
was assigned at random, guaranteeing that the associa-
tion between class size and absence is causal. Another 
strength is the large sample size (over 10,000 children in 
80 schools) and long study duration (4 years).

A final strength is the focus on influenza, a disease that 
affects school-age children strongly. School-age children 
infected with influenza often have symptoms so severe 
that they must stay home from school [29]—especially at 
the time of the study, in the 1980s, when influenza vac-
cines were not yet approved for healthy school-age chil-
dren [30]. The highly symptomatic nature of influenza 
in school-age children should increase the correlation 
between absence rates and influenza infection, increasing 
the validity of absence as a proxy for infection.

Not only do school-age children suffer symptoms from 
influenza, schools also play a substantial role in transmit-
ting influenza viruses [31]. During influenza pandemics, 
incidence spikes after schools open [32] and subsides, at 
least among school-age children, when schools close for 
two weeks or more [33, 34].

Yet our study’s focus on influenza in the 1980s also lim-
its its relevance to the novel coronaviruses that began to 
spread in 2019. Unlike children infected with influenza, 
children infected by SARS-CoV-2 typically display mild 
or no symptoms [35]. While schools play a major role 
in transmitting influenza, they seem to play a compara-
tively small role in transmitting SARS-CoV-2. About half 
of COVID-19 studies have found no effect of school clo-
sures, and most studies found no effect of school reopen-
ings on COVID-19 transmission [36].

Yet these differences between influenza and COVID-
19 do not necessarily weaken our conclusions. Our find-
ing that smaller classes did little to reduce absences that 
were correlated with influenza suggests that small classes 
might do even less to slow the spread of COVID-19, in 
which schools and school-age children play a smaller 
role.

A limitation of the data was that it did not distinguish 
between absences due to illness and absences due to 
other reasons. This is a common limitation, especially in 
older data, which rarely specified the reason for absence, 

at most reporting whether the absence was excused 
or unexcused [37]. Only a few recent studies from 
the United Kingdom have had data that distinguishes 
absence due to illness specifically [22, 37, 38]. Research-
ers with access to data on reasons for absence should 
examine the effect of class size on absence due to illness, 
especially in times and places where community infec-
tion prevalence is high.

An additional limitation of the data was its relatively 
limited geographic variation. Although the number of 
schools and districts was substantial, only four cities in 
the 122 Cities Mortality Report System were represented, 
and three of those cities had similar trends in PI mortal-
ity (Fig. 2). Future research on this topic should examine 
a wider variety of locations with more variation in disease 
prevalence.

Policy implications
Project STAR did not take place during a pandemic, and 
although it reduced class size by 35%  it did not change 
other practices. In this respect, the policy evaluated in 
Project STAR was different than the policies tried during 
the COVID-19 pandemic. During the COVID-19 pan-
demic, class size reductions of 50% or more were part of a 
multi-pronged strategy that included measures that were 
not used during Project STAR, such as mask-wearing, 
regular disinfection of surfaces, and avoidance of mass 
assemblies during recess and lunch.

Yet as the COVID-19 pandemic receded, the relevance 
of Project STAR to current policy increased. Many 
schools dropped mask mandates and resumed assem-
blies starting in 2021-22, yet federal funds continued to 
be available for class size reduction through September 
2023.

Are current reductions in class size likely to reduce the 
spread of disease? Our results suggest that they may not. 
Project STAR reduced average class size by 35%, which 
is less than the 50% reductions that some hybrid schools 
enacted during the height of the pandemic, but far more 
than the 10% reduction that the White House suggested 
in its February 2021 proposal [5]. Yet we found little or 
no evidence that Project STAR reduced infection-related 
absence. It seems unlikely that the 10% reduction in class 
size suggested by the White House would do much to 
reduce the spread of COVID-19 or other pathogens.

Rather than spending $50 billion on class size reduction 
as the White House suggested, other uses of that money 
might do more to prevent the spread of disease. Examples 
consistent with CDC guidance [35] include resources and 
incentives for vaccination and testing of school staff, par-
ents, and children; upgrading HVAC systems and run-
ning them longer and at higher volumes; and installing 
high-efficiency particulate air (HEPA) filters and ultravio-
let germicidal irradiation (UVGI) systems [36].
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