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Abstract

Background: Globally, child mortality rate has remained high over the years, but the figure can be reduced
through proper implementation of spatially-targeted public health policies. Due to its alarming rate in comparison
to North American standards, child mortality is particularly a health concern in Mexico. Despite this fact, there
remains a dearth of studies that address its spatio-temporal identification in the country. The aims of this study are
i) to model the evolution of child mortality risk at the municipality level in Greater Mexico City, (ii) to identify
municipalities with high, medium, and low risk over time, and (iii) using municipality trends, to ascertain potential
high-risk municipalities.

Methods: In order to control for the space-time patterns of data, the study performs a Bayesian spatio-temporal
analysis. This methodology permits the modelling of the geographical variation of child mortality risk across
municipalities, within the studied time span.

Results: The analysis shows that most of the high-risk municipalities were in the east, along with a few in the north
and west areas of Greater Mexico City. In some of them, it is possible to distinguish an increasing trend in child
mortality risk. The outcomes highlight municipalities currently presenting a medium risk but liable to become high
risk, given their trend, after the studied period. Finally, the likelihood of child mortality risk illustrates an overall
decreasing tendency throughout the 7-year studied period.

Conclusions: The identification of high-risk municipalities and risk trends may provide a useful input for
policymakers seeking to reduce the incidence of child mortality. The results provide evidence that supports the use
of geographical targeting in policy interventions.
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Background
There is a public concern regarding the high percent-
age of child mortality. Globally, there were 5.6 million
child deaths during 2016 [1]. As a consequence, the
world has witnessed an increasing policy interest in
improving children’s health, reflected in the United
Nations’ third Sustainable Development Goal (SDG)
on good health and wellbeing; particularly, in its aim
to end preventable deaths of new-born and children
under five by the year 2030 [2].
Between 2010 and 2017, under-five mortality rate (per

1000 live births) decreased from 17.4 to 13.4 in Mexico
[3]. However, these numbers are still higher than those
observed in North American developed countries. For
instance, during the referenced years these rates declined
from 7.3 to 6.6 in the United States and from 5.6 to 5.1
in Canada [3]. Similarly, the probabilities of dying at age
5–14 years (per 1000 children age 5) in Mexico were 2.8
in 2010 and 2.5 in 2018, while in the United States these
figures were 1.3 for both years, and in Canada 1.1 and
1.0, respectively [4]. Similarly, data from the World Bank
indicate that Mexican infant mortality rate (per 1000 live
births) reduced from 14.9 in 2010 to 11.6 in 2017 [5].
Nevertheless, such rates are still high in comparison to
the United States and Canada, where the figures de-
clined, during the aforesaid years, from 6.2 to 5.7, and
from 4.9 to 4.4, respectively.
This paper focuses on the modelling of child mortality

risk trends across different geographical areas in Greater
Mexico City for the first time, allowing contribution to
the existing literature [6–9] on the spatial analysis of
such risk. Gayawan et al. [6] illustrated the regional vari-
ations of child mortality among ten West African coun-
tries, finding some clusters of higher child mortality in
northwest and northeast Nigeria. Jimenez-Soto et al. [7]
showed the disparities among child mortality across
rural-urban locations and regions in Cambodia, and
analogous findings, additionally including variations
within inter and intra regions, were made in Papua, New
Guinea [8]. In Mexico, a similar study [10] analyzed the
child mortality trend caused by diarrhea in all Mexican
states, identifying different spatial patterns of the peak
mortality rate across time.
The relevance of considering the potential spatial

structure of the data is grounded on the fact that com-
munities are often clustered with respect to certain
shared characteristics, such as their socioeconomic back-
ground [11]. Presumably, people with a high socioeco-
nomic status live close to each other, and likewise
among other socioeconomic standings [12]. However,
socioeconomic status is not the sole factor underlying
child mortality; if the availability of data allows it, other
variables, such as environment, urbanization, or the gen-
etics of people, must be regarded in a spatial analysis

[11, 13, 14]. McDonald et al. [13], analyzing American
counties located in the US-Mexican border, found
urbanization level as the most relevant variable for
explaining child mortality, while ethnicity –Hispanic or
non-Hispanic white– appeared to be less relevant. Ac-
cording to these last authors, higher mortality rates in
non-metropolitan communities were attributed to a di-
minished access to emergency and special care facilities,
limited emergency medical service capabilities, as well as
fewer health care providers per capita. Castro-Ríos et al.
[15] found that access to social security increases the
surviving probability of children with accute lympho-
blastic leukemia. More accurately, the research con-
cluded that children who had been insured for less than
half of their lives had more than a twofold risk of death
than children insured throughout their entire lives.
Child mortality may not only vary over space but also

over time, as it has been determined in previous health
studies; such is the case of the spatio-temporal variations
of stomach cancer risk [16] and asthma risk [17]. Be-
sides, people’s health risks may vary over space and time
due to changes in health-related behaviours, namely
physical activity, smoking, and diet [18]. Thus, in order
to gain a better understanding, the need for analyzing
not just the spatial pattern of the mortality risk but also
its local trend over time, at the geographical level, be-
comes evident. Therefore, this study uses a Bayesian
modelling approach [19] owing to the space, time, and
space-time structure of the data, while the methodology
is based on random effects, which enables the modelling
of the geographical variation of children mortality over
time. It must be acknowledged that this methodology
has been used in the area of criminology [20].
The aims of this study are (i) to model the evolution

of child mortality risk at the municipality level in
Greater Mexico City, (ii) to identify municipalities with
high, medium, and low risk over time, and (iii) using
local trends, to ascertain potential high-risk
municipalities.

Methods
Area of study and child mortality data
Greater Mexico City, one of the most populated urban
areas in the world, is the third-largest metropolis among
the Organisation for Economic Co-operation and Devel-
opment (OECD) countries and the world’s largest out-
side of Asia [21]. It consists of 16 municipalities within
Mexico City and 59 in the State of Mexico1 (see figure 4
in the Appendix). According to the Mexican National
Institute of Statistics and Geography (INEGI) [22], it had
20,892,724 inhabitants, covering a land area of 7866 km2

1An additional municipality, excluded from this analysis, belongs to the
State of Hidalgo.
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in 2015. In economic terms, it is considered the most
important metropolitan area in Mexico, accounting for
25% of the country’s gross domestic product in 2017
[23]. The present study explored the catalogs of death
and birth records, issued by the Mexican Ministry of
Health, of 75 municipalities within Greater Mexico City
in a period spanning from January 2011 to December
2017. This study considered children from 0 to 5 years
old [24]. During the study period, the total number of
live births in the region was 2,121,601, while the number
of deaths of children totalled 35,862. The raw data
(death and birth records) from Mexican Ministry of
Health [25] was aggregated in order to perform a spatial
and temporal analysis at the municipality level.

Statistical analysis
xPreliminary analyses were carried out to investigate the
potential presence of spatial autocorrelation and serial
correlation of the data using the Global Moran Index
[26] and the Autocorrelation Function (ACF). Further-
more, a Bayesian spatio-temporal model was used to
model the potential spatial and temporal child mortality
risk. This research assumes the number of child deaths,
yit, in the municipality i, at a given period t (=2011,
2013, …, 2017) follows a binomial distribution [27], yit~-
Binomial(nit, μit), where nit represents the total number
of live births in the municipality i at period t; and μit de-
notes the child mortality risk in the municipality i at
period t. According to Law et al. [28] and Li et al. [20],
child mortality risk can be modelled as:

logit μitð Þ ¼ αþ si þ uið Þ þ d0t
� þ vt þ d1it

�

þ εit ð1Þ

where α is the overall logit child mortality risk across the
7-year period and the terms si and ui are the spatial
components, which capture the spatial structure and un-
structured effects of the data, respectively. These compo-
nents are common among the study period and account
for the level of clustering and the heterogeneity of the
data, respectively. We assigned a Gaussian distribution
to the spatially unstructured random effect term, ui.
Additionally, d0t

∗ + vt is the overall time trend in all of
the municipalities. The first term (d0t

∗) assesses the lin-
ear trend, and the second (vt), with additional Gaussian
noise, allows for nonlinearity in the overall trend pattern;
vt follows a normal distribution, vt � Nð0; σ2vÞ. Note that
t∗ is centered at the mid observation period, t∗ = t − 4.
The expression d1it

∗ denotes the spatio-temporal struc-
ture of the data, which permits each municipality to
have a different trend from the overall time trend-
pattern. This term plays an important role considering

that child mortality trends exhibit variability at the local
level (see Fig. 1). Thus, d1it

∗ represents, and assumes, a
linear departure of the municipality temporal trend from
the common trend; such local trend can have an increas-
ing, decreasing, or stable tendency from the overall lin-
ear pattern. Finally, εit � Nð0; σ2E Þ is the component
addressed to contain the variability that is not explained
by other terms, and may include overdisperfsion; that is,
when the variation of the data is higher than its mean –
a common characteristic of binomial models [29, 30].
We assigned the BYM (Besag, York, and Mollié) model

to the structured spatial components (si and di) [31].
Following previous studies [19, 20], we allocated an
intrinsic conditional autoregressive Gaussian distribution
(ICAR) to the priors of the spatial structure (si) and the
spatio-temporal interaction term (di). Thus, the terms di
and si depend on the neighbouring areas, meaning that
near areas are more likely to have similar values; in our
specific case, it means that nearby municipalities are
assumed to have similar child mortality risk rates. This
is controlled by a spatial adjacency matrix W of size N x
N, where the diagonal values are wii = 0 and the off-
diagonal entries are wij = 1 if municipalities i and j share
a common boundary, otherwise wij = 0. In this sense, if
two municipalities are defined to be neighbours, their
random effects are correlated, otherwise they are condi-
tionally independent. The conditional expectation of di
is equal to the mean of the random effects in neighbour-
ing municipalities, whereas the conditional variance is
inversely proportional to the number of neighbour
municipalities; this is similar for si. Note that di may also
control for the potential endogeneity due to the inter-
action between space and time. In accordance with
previous studies’ proceedings [20], we allocated a hyper-
prior distribution of Gamma, a highly non-informative
distribution [32], on the variance of di, si, ui, vt, and εit.
Finally, following the Gelman criterion [33], all random
effect standard deviations, such as σd, σs, σu, σv, and σϵ,
have a positive half Gaussian prior N+∞(0, 10).
To classify each municipality as a high, low, or

medium-risk municipality across time, we used the
values of the posterior probability of the spatial compo-
nent p(exp(ui + si) > 1|data). Posterior probability refers
to the probability of getting a specific value of the spatial
component; in this case, that the value is greater than 1
(meaning that such municipality would have an excess
of mortality). The component exp(ui + si) indicates the
average odds for each municipality, during the study
period, with respect to the overall mortality odds. Thus,
the values greater than 0.8, between 0.2 and 0.8, and
lower than 0.2 were classified as high, medium, and low-
risk municipalities, respectively. This first classification
can be expressed in the hi term which is equal to 1 for a

Lome-Hurtado et al. BMC Public Health           (2021) 21:29 Page 3 of 12



Fig. 1 Geographical pattern evolution of the observed child mortality risk (per 1000 live births) in Greater Mexico City. Figure 1 depicts the
temporalevolution of the geographical pattern of the observed child mortality risk (per 1000 live births) in Greater Mexico City, at the start (2011),
middlef1:3 (2014), and end (2017) of the study period. Source: Own elaboration using data from INEGI and Mexican Ministry of Health
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high-risk area, 2 for a low-risk area, and 3 for a
medium-risk area. This criterion has been used in previ-
ous studies [31]. Further, to measure the local trend of
each classified municipality, for each specific category hi
we used the values of the posterior probability of the
local slopes, d1i. This technique enabled the measure-
ment of each municipality’s local dynamic pattern
throughout the study period. Thus, if p(d1i > 0|hi,
data) > 0.8, p(d1i > 0|hi, data) < 0.2, or 0.2 < p(d1i > 0|hi,
data) < 0.8, the municipality was classified as having an
increasing, decreasing, or stable trend, in comparison
with the overall trend.
The model was implemented in R [34] and WinBUGS

[35] (statistical software). We ran MCMC chains of 100,
000 (for this number, the model reaches convergence)

with different initial values. 70,000 iterations were used for
making inferences from the model, after having burned in
the first 30,000. The convergence was examined by visual
inspection of the history plots and through the Gelman-
Rubin diagnostic [33], which are standard statistical tests
to measure convergence of MCMC chains. The values
from the Gelman-Rubin diagnostic remained lower than
1.04 for every single model parameter, meaning that the
chains achieved convergence after the burn-in period.

Results
Descriptive analysis
The Global Moran Index of the data for each year was posi-
tive and significant, with a mean value of 0.32 and a p value

Table 1 Descriptive statistics. Observed child mortality ratea in Greater Mexico City (2011 to 2017)

Observed child mortality risk 2011 2012 2013 2014 2015 2016 2017

Mean 20.4 19.91 18.42 18.12 18.97 17.08 17.47

Standard deviation 8.18 7.03 6.09 6.39 8.87 7.41 5.26

Minimum valueb 1.92 1.49 2.16 2.32 2.22 1.74 3.3

Maximum valuec 58.39 51.02 35.64 34.3 60.34 55.56 35.71
aChild mortality rate = (child deaths / number of resident live births) × 1000. In other words, number of child deaths per 1000 resident live births
bCorresponds to the municipality with the minimum value among all the municipalities of Greater Mexico City
cCorresponds to the municipality with the maximum value among all the municipalities of Greater Mexico City

a b

Fig. 2 a and b. Spatial child mortality risk, at the municipality level, and its overall trend in Greater Mexico City. a shows the spatial component of
the child mortality risk during the study period. Those areas with risk values greater or lower than 1 have a higher or lower child mortality risk in
comparison with the average, respectively. b displays the overall risk trend, with a 95% CI, from 2011 to 2017. Source: Own elaboration using data
from INEGI and Mexican Ministry of Health
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Fig. 3 (See legend on next page.)
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< 0.0001, illustrating the presence of a positive spatial cor-
relation in the records. In other words, this result is indica-
tive of the existence of some nearby municipalities with a
similar mortality risk. The ACF mean was 0.58 (lagged 1
year for each municipality) across all the municipalities.
This number evidences the presence of serial correlation;
that is, the association of certain level of observed mortality
across time.
Table 1 provides descriptive statistics of the observed

child mortality rate in Greater Mexico City, from 2011
to 2017, defined as the number of deaths of children,
aged 0 to 5 years, per 1000 live births. Broadly, there was
a slight mitigation on the average child mortality rate
during these years, shifting from 20.4 in 2011 to 17.47 in
2017. Note that according to the means and variances,
illustrated in Table 1, a trace of overdispersion was
present in our data.
Figure 1 depicts the temporal evolution of the observed

child mortality risk by municipality in Greater Mexico
City at different years − 2011, 2014, and 2017 (start,
middle, and end)– throughout the study period. The dark
green and red colors indicate the lowest and highest risk,
respectively. Overall, municipalities with higher risk were
enclosed in the east, besides a few scattered in the north.
Conversely, municipalities with the lowest mortality risk
clearly constituted a cluster in the south-west (darker
green color).

Modelling spatial-temporal patterns
Figure 2a illustrates the child mortality risk by munici-
pality, compared to the average throughout the study
period. A risk value above or below 1 suggests a higher
or lower risk associated with the concerning municipal-
ity, in comparison to the Greater Mexico City 7–year
average. The figures mainly display that municipalities
menaced by a higher child mortality risk are those situ-
ated in the surroundings of Mexico City: the east area,
along with a few in the north. Concurrently, municipal-
ities located in Mexico City, as well as a few in the north

of the studied area, presented lower risks. Figure 2b il-
lustrates the overall time trend of the relative risk in
comparison to the Greater Mexico City average from
2011 to 2017. It is possible to observe, overall, a slightly
decreasing tendency of such risk.
Figure 3a, b, and c display the temporal dynamics of

high-risk, medium-risk, and low-risk municipalities. Of
the total, high-risk municipalities amounted to 27 (36%),
medium-risk to 29 (39%), and low-risk to 19 (25%). On
the whole, high-risk municipalities were located in the
east of the metropolitan area along with a few spots in
the north and west (see Fig. 3a). Meanwhile, most of the
low-risk municipalities were located in the south-west
(Fig. 3c). Finally, medium-risk municipalities were
mostly situated in the north, in addition to a few of them
scattered in the east, center, and west, as exhibited in
Fig. 3b. All of these classified municipalities were signifi-
cant at the 95% Credible Interval (CI).
The inserted small graphs in Fig. 3a, b, and c show the

different trends of the observed risk (black solid dots),
the estimated risk (dashed line with open circles) with
95% CI (grey region), and the estimated common trend
(black line) of the mortality risk over time.
Figure 3a exhibits that most of the high-risk munici-

palities (74%) had a stable dynamic regarding their child
mortality risk trend; whereas, 4 of them (15%) showed
an increasing trend. The remaining 3 high-risk munici-
palities (11%) were the only ones with a decreasing trend
over time. Figure 3b depicts medium-risk municipalities,
24% of which exhibited an increasing trend in risk. The
majority of the medium-risk municipalities (62%) pre-
sented a stable tendency, whereas municipalities with a
decreasing trend amounted to 14%.
Finally, Fig. 3c illustrates that 21% of low-risk munici-

palities experienced a relative increment in child mortal-
ity risk over time. However, most of these low-risk
municipalities (63%) had a stable trend during the study
period, leaving just 16% of them under the category of
decreasing trend.

(See figure on previous page.)
Fig. 3 a. Temporal trend in child mortality risk for high-risk municipalities. a displays the temporal dynamics of child mortality risk for high-risk
municipalities in Greater Mexico City, which are classified into 3 categories: stable, decreasing, and increasing risk. The inserted figures show the
observed child mortality risk (black solid dots), the estimated child mortality risk –posterior mean of risk– (open circles and dashed line) with a
95% CI (grey region), and the estimated common trend (black line) over time. Source: Own elaboration using data from INEGI and Mexican
Ministry of Health. b. Temporal trend in child mortality risk for medium-risk municipalities. b displays the temporal dynamics of child mortality risk
for medium-risk municipalities in Greater Mexico City, which are classified into 3 categories: stable, decreasing, and increasing risk. The inserted
figures show the observed child mortality risk (black solid dots), the estimated child mortality risk –posterior mean of risk– (open circles and
dashed line) with a 95% CI (grey region), and the estimated common trend (black line) over time. Source: Own elaboration using data from INEGI
and Mexican Ministry of Health. c. Temporal trend in child mortality risk for low-risk municipalities. c displays the temporal dynamics of child
mortality risk for low-risk municipalities in Greater Mexico City, which are classified into 3 categories: stable, decreasing, and increasing risk. The
inserted figures show the observed child mortality risk (black solid dots), the estimated child mortality risk –posterior mean of risk– (open circles
and dashed line) with a 95% CI (grey region), and the estimated common trend (black line) over time. Source: Own elaboration using data from
INEGI and Mexican Ministry of Health

Lome-Hurtado et al. BMC Public Health           (2021) 21:29 Page 7 of 12



Discussion
This research studied child mortality dynamics across
municipalities in Greater Mexico City. It identified mu-
nicipalities with high child mortality risk, as well as those
with medium risk that, given their trend, may become
high risk.
Our findings illustrate that 36% of the total municipal-

ities fit into a high-risk categorization. These municipal-
ities are, overall, located in the east of Greater Mexico
City, along with a few spots in the north and west. This
is an expected result given that Mexico City (see Fig. 4
in the Appendix) holds the best economic and socioeco-
nomic conditions, while the surrounding municipalities
have lower economic and social standings. According to
INEGI, the north, west, and east areas of Greater Mexico
City are characterized by their relatively lower socioeco-
nomic and education levels with respect to the average
(see Figure 5 in the Appendix). The previous results are
in line with Sreeramareddy et al. [36] and Aheto [37],
who identify a positive association between deprived
economic conditions and child mortality risk; the lower
the level of income, the greater the probabilities of
higher child mortality rates.
In terms of risk evolution, four high-risk municipalities

(Chalco, Chicoloapan, Texcoco, and Tonanitla), mostly
located in the west, exhibited an increasing trend over
time. Similarly, seven medium-risk municipalities
(Miguel Hidalgo, Chiconcuac, Nextlalpan, Ozumba, Teo-
loyucan, Tequixquiac, and Tultepec), accounting for 24%
of the total in that category, manifested an increasing
trend over time, representing their liability to become
high risk in the short term. Six of these seven municipal-
ities are in the north area. As Figure 5 in the Appendix
depicts, these municipalities with high and medium risk
face deprived economic and social conditions, with the
exception of Miguel Hidalgo. These results are congru-
ent with those of Escamilla-Santiago et al. [38], who evi-
denced, for the period between 1990 and 2009, an
increasing cancer mortality rate in children and teen-
agers residing in high marginalized Mexican states.
It must be acknowledged that a decreasing trend man-

ifested in the average mortality risk likelihood over the
7-years study period. This result coincides with Aguirre
and Vela-Peóns work [39], who, by deploying the brass
mortality method, estimated a decreasing infant mortal-
ity rate in Mexico from 1990 to 2010. This slight decre-
ment may partially be explained as the result of diverse
public health policies, such as the public programmes
deployed by the Mexican Ministry of Health aimed at
decreasing neonatal mortality risk. Among these pro-
grammes, it is worth mentioning “Programa de Acción:
Arranque Parejo en la Vida, 2002”, “Programa de Acción

Específico 2007-2012, 2008”, and “Programa de Acción
Específico Salud Maternal y Perinatal, 2013-2018” [40].
Finally, it should be acknowledged that owing to data

limitations, the results here exposed require a word of
caution. Specifically, we assumed no mobility of chil-
dren. Although this assumption may not apply in a dy-
namic area such as Greater Mexico City, more precise
data –unavailable at the time– would be required to per-
mit the consideration of this factor. Consequently, as in
other studies [41, 42], the mobility of people was not in-
cluded. Despite the previous constraint, we hope the key
strengths of this study, including space, time, and space-
time structures, may provide relevant insights for dimin-
ishing child mortality risk in Greater Mexico City. In
this sense, McLaughlin et al. [43] highlighted the import-
ance of spatial data and the local context, as inputs for
policy decisions. Likewise, in the area of health, Ugarte
et al. [44] illustrated how spatial and temporal trends
provide useful information for addressing health inequal-
ities. However, in order to complement this study, future
studies should aim to investigate additional potential fac-
tors underlying the mortality of children.

Conclusion
By unearthing the identification and evolution of child
mortality risk on municipalities belonging to Greater
Mexico City, the findings of this research may provide
an important input for policy decisions addressed to re-
duce the mortality of children. Locations with high child
mortality risk should be benefited from priority interven-
tions. In this sense, this analysis provides important
baseline information for decision-makers. The identifica-
tion of spatial and temporal trends across different areas
supplies decision-makers with relevant inputs for design-
ing programmes to tackle health inequalities [45]. Using
these inputs, spatially-targeted programmes may focus
on small locations, allowing policy measures to have a
more effective local impact. In this regard, it has already
been demonstrated that in comparison with programmes
where resources are not addressed towards specific geo-
graphical areas [45, 46], vulnerable and local groups
benefit more when the aforementioned inputs are used.
This study identified municipalities with medium and
high child mortality risk, especially those with an in-
creasing trend over time (Chalco, Chicoloapan, Texcoco,
and Tonanitla, in the case of high child mortality risk),
which helps to implement the geographical targeting of
policy efforts to reduce it. Given the overall scarcity of
healthcare resources in Mexico, we hope these results
may contribute to the improvement of cost-effective
policies.
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Appendix

Fig. 4 Mexico, Greater Mexico City, and Mexico City. Municipalities of Greater Mexico City: 1) Azcapotzalco, 2) Coyoacán, 3) Cuajimalpa de
Morelos, 4) Gustavo A. Madero, 5) Iztacalco, 6) Iztapalapa, 7) La Magdalena Contreras, 8) Milpa Alta, 9) Acolmán, 10) Amecameca, 11) Alvaro
Obregón, 12) Tláhuac, 13) Tlalpan, 14) Xochimilco, 15) Benito Juárez, 16) Cuauhtémoc, 17) Miguel Hidalgo, 18) Venustiano Carranza, 19) Apaxco,
20) Atenco, 21) Atizapán de Zaragoza, 22) Atlautla, 23) Axapusco, 24) Ayapango, 25) Coacalco de Berriozábal, 26) Cocotitlán, 27) Coyotepec, 28)
Cuautitlán, 29) Chalco, 30) Chiautla, 31) Chicoloapan, 32) Chiconcuac,33) Chimalhuacán,34) Ecatepec de Morelos, 35) Ecatzingo, 36) Huehuetoca,
37) Hueypoxtla, 38) Huixquilucan, 39) Isidro Fabela, 40) Ixtapaluca, 41) Jaltenco, 42) Jilotzingo, 43) Juchitepec, 44) Melchor Ocampo, 45) Naucalpan
de Juárez, 46) Nezahualcóyotl, 47) Nextlalpan, 48) Nicolas Romero, 49) Nopaltepec, 50) Otumba, 51) Ozumba, 52) Papalotla, 53) La Paz, 54) San
Martín de las Pirámides, 55) Tecámac, 56) Temamatla, 57) Temascalapa, 58) Tenango del valle, 59) Teoloyucan, 60) Teotihuacan, 61) Tepetlaoxtoc,
62) Tepetlixpa, 63) Tepotzotlán, 64) Tequixquiac, 65) Texcoco, 66) Tezoyuca, 67) Tlalmanalco, 68) Tlalnepantla de Baz, 69) Tultepec, 70) Tultitlan, 71)
Villa del Carbón, 72) Zumpango, 73) Cuautitlán Izcalli, 74) Valle de Chalco Solidaridad and 75) Tonanitla. Source: Own elaboration using data
from INEGI
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