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Relative abdominal adiposity is associated
with chronic low back pain: a preliminary
explorative study
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Abstract

Background: Although previous research suggests a relationship between chronic low back pain (cLBP) and
adiposity, this relationship is poorly understood. No research has explored the relationship between abdominal-
specific subcutaneous and visceral adiposity with pain and disability in cLBP individuals. The aim of this study
therefore was to examine the relationship of regional and total body adiposity to pain and disability in cLBP
individuals.

Methods: A preliminary explorative study design of seventy (n = 70) adult men and women with cLBP was
employed. Anthropometric and adiposity measures were collected, including body mass index, waist-to-hip ratio,
total body adiposity and specific ultrasound-based abdominal adiposity measurements. Self-reported pain and
disability were measured using a Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) questionnaires
respectively. Relationships between anthropometric and adiposity measures with pain and disability were assessed
using correlation and regression analyses.

Results: Significant correlations between abdominal to lumbar adiposity ratio (A-L) variables and the waist-to-hip
ratio with self-reported pain were observed. A-L variables were found to predict pain, with 9.1–30.5 % of the
variance in pain across the three analysis models explained by these variables. No relationships between
anthropometric or adiposity variables to self-reported disability were identified.

Conclusions: The findings of this study indicated that regional distribution of adiposity via the A-L is associated
with cLBP, providing a rationale for future research on adiposity and cLBP.
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Background
cLBP places a large economic burden on society, with
loss of income and treatment costs in Australia in excess
of $9 billion annually [1]. Low back pain (LBP) affects
10 % of the global population and is ranked as the 7th
leading disability in the world and the highest ranked for
years lived with the disability [2]. Obesity is also a costly
and prevalent health condition, which has been previ-
ously linked to cLBP [3–13]. In the past this relationship
has been demonstrated using body mass index (BMI) as
a measure of obesity [3, 6, 8, 10, 14], which has been

defined as an individual’s body weight divided by their
height squared [15]. Despite its common use, the simpli-
city of BMI and its disregard for body composition [12]
have led to its criticism and greater emphasis on alterna-
tive obesity measurements. This shift in focus is import-
ant because research suggests that adipose tissue may be
of consequence in the pathogenesis of chronic pain con-
ditions [12]. For example, increased adiposity (total
body, upper and lower limbs, trunk, android and gynoid)
is associated with higher levels of LBP intensity and dis-
ability [12]. Ultrasound (US) may be a suitable substitute
for BMI and other simplistic obesity measurements as
it is a valid and reliable measurement tool of asses-
sing adiposity when compared to gold standard* Correspondence: c.brooks@westernsydney.edu.au
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methods [16–21]. However, US has not yet been uti-
lized in cLBP research.
Although there is an established relationship between

adiposity and low back pain [12], the inconsistent and
poorly defined terminology used in the past makes pre-
vious research confusing and difficult to draw conclu-
sions from. Moreover, there is a lack of research on the
distribution of adiposity and its possible relationship
with pain and disability levels in cLBP. No studies have
investigated whether regionally accumulated abdominal
adiposity may be of more relevance than total body adi-
posity in a cLBP population. For example, visceral adi-
posity has been suggested to be more important than
total adiposity in the risk of developing obesity-related
disorders [20, 22]. Visceral adiposity has also been sug-
gested to be of greater consequence to the metabolic
profile [16, 23] and various medical pathologies [24]
than subcutaneous adipose tissue, on the basis of physio-
logical and metabolic differences such as adipocyte size
and lipolytic activity [25]. It may then be suggested that
the distribution of excess visceral adipose tissue could
also be associated with increased pain in cLBP individ-
uals. Several plausible mechanisms for a cLBP-visceral
adiposity relationship exist, including inflammatory pro-
cesses occurring from adipose tissue or increased mech-
anical load on the lumbar spine and surrounding
structures produced by excess adiposity [12]. However,
the cLBP-obesity relationship remains largely unknown,
since research on the relationship between adiposity, pri-
marily visceral, and cLBP is lacking.
In the exploration of the relative importance of re-

gional versus total body adiposity, it is reasonable to be-
lieve that greater accumulation of adipose tissue in the
abdominal region when compared to the lumbar region
may also be of significance in the relationship to pain
and disability in cLBP. This abdominal to lumbar adi-
posity ratio may be important, as greater abdominal adi-
posity could have flow-on effects for cLBP sufferers
beyond that of an increase in body weight. For example,
increased abdominal adipose tissue may result in the
adoption of a compensatory hyperlordotic posture to
counteract the constant anterior flexion torque placed
on the lumbar spine. This excess anterior mass is worthy
of investigation, since an increase in compressive force
may predispose the spine to injury [26]. Irrespective of
the potential metabolic or biomechanical mechanisms
that may be responsible for such a relationship, the pa-
rameters of a possible association between adiposity and
cLBP should first be examined.
As a result of the inconsistencies of previous research

and the potentially important consequences of visceral
adiposity on the persistence of cLBP via metabolic fac-
tors such as the stimulation of inflammatory processes,
it is warranted to examine the significance of adiposity

distribution and particularly visceral adiposity on the
obesity-cLBP relationship. US may then be employed to
investigate the possible importance of visceral adipose tis-
sue, since it has been shown to be a valid and reliable
method of assessing abdominal adiposity [16–21]. There-
fore, the aim of this study was to examine the relationship
between regional and total body adiposity with pain and
disability in cLBP individuals. The experimental objectives
of this study were: 1) To use US-derived ratios to assess
abdominal adipose tissue distribution in individuals with
cLBP, 2) To perform correlation and regression analyses
to examine relationships between anthropometric and adi-
posity variables with self-reported pain and disability in
cLBP individuals, and 3) To perform the correlation and
regression analyses on pain and disability subgroups
within the cLBP dataset. The hypothesis of this study was
that greater abdominal adiposity, particularly visceral,
would be associated with increased self-reported pain and
disability in a cLBP population.

Methods
Study design
A preliminary explorative study design was employed to
examine the relationship between adiposity distribution
with pain and disability in a cLBP population. All par-
ticipant data was collected at a tertiary education facility
in Western Sydney, Australia, over a three-year period
with two cycles of participant recruitment and data
collection.

Study population
Seventy (n = 70) adult men and women aged 18–76 years
were included in the study and were recruited through
the use of media advertising and leaflet drops in the
local area. All included participants had cLBP (pain be-
tween the costal margin and gluteal fold for a minimum
of three months). Participants were excluded if they had
a history of spinal surgery, spinal fracture, diagnosed
lumbar disc herniation (and attained a positive result on
the straight leg raise test), existing bone, cardiac or ner-
vous system condition, diagnosed severe mental illness,
severe postural abnormality, pain radiating below the
knee or diagnosed inflammatory joint disease. Written
informed consent was provided by all participants. This
study had ethical approval for research on human sub-
jects by the Human Research Ethics Committee review
board on the basis of the Declaration of Helsinki.

Anthropometric measures
Height, weight, waist circumference (WC), hip circum-
ference, BMI and waist-to-hip ratio (WHR) were mea-
sured while participants were barefoot and wearing
lightweight clothing. Height was measured using a wall-
mounted stadiometer (Veeder-Root high speed counter,
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Elizabethtown, N.C.) and recorded to the nearest 0.1 cm.
Weight was measured using a calibrated digital scale
(A&D UC-321, A&D Co., Ltd) and recorded to the near-
est 0.1 kg. Waist circumference was measured using an
anthropometric tape measure (Lufkin Executive Diam-
eter Pocket Tape W606PM) at the narrowest point be-
tween the costal margin and the iliac crest and recorded
to the nearest 0.1 cm. Hip circumference was measured
at the widest point of buttocks approximately level with
the greater trochanters of the femur and recorded to the
nearest 0.1 cm. BMI was calculated as weight divided by
height squared (kg/m2) [15]. WHR was calculated as
WC divided by hip circumference.

Adiposity measures
Total body adiposity
Total body adiposity was measured using bioelectrical
impedance analysis (BIA) (Metagenics VLA50, variation
of ImpDF50, ImpediMed Limited, Eight Mile Plains,
QLD, 2005), which has been shown to be a valid and re-
liable method when compared to gold standard methods
[27–34]. Participants were required to refrain from food,
drink and exercise 2 hours prior to the test and avoid al-
cohol in the 12 hours prior. Immediately prior to the
test, participants emptied their bladder and lay supine
on a plinth for 5 minutes to stabilise body fluids. The
participant remained in this position with arms by their
sides for the duration of the test. Pairs of electrodes (Ag/
AgCl 3 cm diameter, Kendall Medi-Trace 100, Tyco
Healthcare Group LP, Mansfield, MA) were placed on
their hand and foot on the right side of the body. Prior
to electrode placement, the skin was adequately pre-
pared using a safety razor, fine abrasion tape and alcohol
swabs to remove excess hair and reduce impedance.
The hand electrodes were placed between the radial
and ulna styloid processes 1 cm proximal to the

metacarpophalangeal joint of the middle finger. The foot
electrodes were placed between the medial and lateral
malleoli of the tibia and fibula, respectively, and 1 cm
proximal to the metatarsophalangeal joint of the middle
toe. Each electrode pair was a minimum of 10 cm apart.
Resistance and reactance was recorded from the BIA de-
vice and then used to calculate total body adiposity per-
centage from the BIA software.

Regional adiposity
Regional adiposity (including lumbar, supra-iliac and
multiple abdominal sites) was measured with US using
previously validated and reliable methods [16]. Five (5)
subcutaneous adiposity and two (2) visceral adiposity
measurements were conducted over five (5) anatomical
locations on the surface of the skin in the trunk region
of each participant, of which five (5) have been described
elsewhere [16]. Details and images of each measurement
are listed in Table 1 and shown in Figs. 1 and 2 respect-
ively. Participants were required to lie supine for a
period of 10 minutes prior to US testing to allow body
fluids to stabilise. Each measurement required the use of
conductive gel to gain a clear image.

Adiposity ratios
The adiposity ratios calculated from ultrasound-derived
adiposity thickness measurements are defined in Table 2,
of which one has been previously described [16]. Such
ratios were worthy of inclusion as past research has
questioned simplistic anthropometric measurements
such as BMI and WHR due to their lack of sensitivity
and specificity [12, 35, 36]. Additionally, existing evi-
dence implies a relationship between adiposity and pain
that may be complex and multifactorial [12]. Conse-
quently, the examination of adiposity relative to the

Table 1 Ultrasound measurements

Measurement Probe Anatomical location Method used for measurement

msA Linear Just below the xiphoid process of the sternum Minimum distance between the fat-skin barrier and the
anterior surface of the linea alba

MppA Linear Just below the surface of the xiphoid process of the
sternum (same anatomical position as the minimum
subcutaneous adiposity measurement)

Maximum distance between the posterior surface of the
linea alba and the anterior surface of the peritoneum
covering the liver

MsA Linear (A) 2 cm above the umbilicus and (B) 2 cm below
the umbilicus

Maximum distance between the fat-skin barrier and
the anterior surface of the linea alba

MiA Convex 2 cm above the umbilicus (same anatomical position
as maximum subcutaneous abdominal adiposity A)

Maximum distance between the posterior surface of
the rectus abdominis muscle and the anterior wall of
the abdominal aorta

MsSI Linear Just above the iliac crest on the mid-axillary line Maximum distance between the fat-skin barrier and the
anterior surface of the external oblique muscle

MsL Linear Level of L4/L5 directly over the lumbar erector
spinae muscle

Maximum distance between the fat-skin barrier and the
anterior surface of the lumbar erector spinae muscle

MsA minimum subcutaneous abdominal adiposity, MppA maximum pre-peritoneal abdominal adiposity, MsA maximum subcutaneous abdominal adiposity, MiA
maximum intra-abdominal adiposity, MsSI maximum subcutaneous supra-iliac adiposity, MsL maximum subcutaneous lumbar adiposity
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individual may be crucial to better understanding the re-
lationship between adiposity and cLBP.

Pain and disability
Self-reported pain was measured using a VAS, with ‘no
pain’ on the left anchor and ‘worst pain imaginable’ on
the right anchor, whereby the participant rated their
current cLBP on a 100 mm line [37, 38]. Self-reported
disability was measured using the ODI questionnaire,
whereby participants filled in a 10-item questionnaire
that was scored and converted to a percentage [37–39].
VAS and ODI have been previously shown to be valid
and reliable methods of measuring self-reported pain
and disability respectively in pain research, including
cLBP populations [40–45].

Statistical analysis
Statistical analyses were performed using SPSSv23 (IBM
Corp., 2015). Mean and standard deviation were pre-
sented for characteristics of the study sample. Normal
distribution of data was assessed by Kolmogorov-
Smirnoff and Shapiro-Wilk tests, and examination of Q-
Q plots, frequency histograms and standard errors of
skewness and kurtosis. Variables not normally distrib-
uted were log transformed and parametric methods of
analysis were then used. Three (3) datasets were used

for statistical analysis; the total sample of participants
(n = 70) to avoid the potential for detection bias, a VAS
subgroup with a minimum level of pain as indicated by
2.0 or greater on the VAS scale (n = 42), and an ODI sub-
group with a minimum level of disability as indicated by
10.0 % or greater on the ODI questionnaire (n = 52).
Pearson correlation coefficients were used to identify rela-
tionships between anthropometric and adiposity variables
with self-reported pain and disability. Stepwise regression
analyses were performed to explain relationships between
anthropometric and adiposity variables with pain and dis-
ability, as well as determine the proportion of variance in
pain and disability explained by such variables. Adjusted R
square values were reported for significant relationships.
Predictor variables included in the regression analysis
were determined by the results of the correlation analysis,
where only variables found to be correlated with pain or
disability were included in the regression models to reduce
the potential effect of confounding variables. The variance
inflation factor (VIF) was used to determine the effect of
collinearity of prediction variables on regression analyses.
A VIF > 5 for any two variables was used to indicate collin-
earity, in which case the variable with the higher VIF was
removed from the prediction model. Missing data were
addressed through exclusion of the incomplete variable/s
for a given participant from the analysis model. The study

Fig. 1 Examples of abdominal US measurements (i) minimum subcutaneous abdominal adiposity (ii) maximum pre-peritoneal abdominal adiposity (iii)
maximum subcutaneous abdominal adiposity A (iv) maximum subcutaneous abdominal adiposity B

Fig. 2 Examples of intra-abdominal, supra-iliac and lumbar US measurements (v) maximum intra-abdominal adiposity (vi) maximum subcutaneous
supra-iliac adiposity (vii) maximum subcutaneous lumbar adiposity
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size was arrived at with the use of post-hoc calculations of
statistical power. Statistical significance was set at p < 0.05.

Results
A total of n = 122 individuals were screened for inclusion
and n = 70 cLBP individuals were eligible and chose to
participate in the study. The characteristics of the study
sample are summarised in Tables 3, 4 and 5. One (1)
participant had missing data of the minimum subcutane-
ous lumbar adiposity measurement.

Relationship between anthropometric and adiposity
measures to pain and disability
Correlations between anthropometric and adiposity
measures with pain are shown in Table 6. There were no
significant correlations observed between self-reported

disability and anthropometric or adiposity variables in
any of the analysis models. ODI was found to be corre-
lated to VAS in the total sample (r = 0.264, p = 0.028),
but not in either of the subgroup analysis models.
Stepwise regression showed that 9.1 % (p = 0.007) of the

variance in pain was explained by A-L alone in the total
sample analysis (n = 70), which was increased to
15.7 % (p = 0.001) when ODI was added to the model.
Results of the stepwise regression for the VAS sub-
group indicated that 30.5 % of the variance in pain
could be explained by A-L/WHR (p < 0.001). Similar
results were observed in the ODI subgroup regression
analysis, as 24.7 % of the variance in pain was ex-
plained by A-L/BMI (p < 0.001). No regression ana-
lysis was performed on self-reported disability on the
basis of no significant correlations to anthropometric
or adiposity variables in any of the analysis models.
Post-hoc results revealed an achieved statistical
power of β = 0.75 for the variance in pain explained
by A-L/WHR.

Table 2 Ultrasound-derived adiposity variables

Measure Calculation Definition

A-L (MsAa + MiA)/MsL Abdominal-to-lumbar adiposity ratio (total subcutaneous and visceral abdominal
adiposity thickness relative to lumbar adiposity thickness)

S-M (MsAa + MsSI + MsL)/weight Subcutaneous adiposity to mass ratio (total subcutaneous trunk adiposity thickness
relative to overall body mass)

V-M (MppA +MiA)/weight Visceral adiposity to mass ratio (total visceral trunk adiposity thickness relative to overall
body mass)

MAR-A MsAa/MiA Maximal abdominal ratio A (ratio between subcutaneous and visceral abdominal adiposity)

A-L/BMI [(MsAa +MiA)/MsL]/[weight/(height x height)] Abdominal-to-lumbar adiposity ratio to BMI (ratio between abdominal and lumbar
adiposity thickness relative to overall body mass index

A-L/WHR [(MsAa +MiA)/MsL]/(waist circumference/hip
circumference)

Abdominal-to-lumbar adiposity ratio to WHR (ratio between abdominal and lumbar
adiposity thickness relative to the ratio between waist and hip circumferences)

TC-TBA (MsAa + MsSI + MsL)/total body adiposity
percentage

Total circumference to total body adiposity ratio (total trunk circumference thickness
relative to total body adiposity percentage)

MppA maximum pre-peritoneal abdominal adiposity, MsAa maximum subcutaneous abdominal adiposity A, MiA maximum intra-abdominal adiposity, MsSI
maximum subcutaneous supra-iliac adiposity, MsL maximum subcutaneous lumbar adiposity

Table 3 Demographic characteristics of the study sample (n = 70)

Age (yrs) 39.57 ± 11.01

cLBP (yrs) 9.84 ± 8.60

Gender (M/F) 30 M, 40 F

Height (m) 1.70 ± 0.08

Weight (kg) 79.66 ± 17.44

BMI (kg/m2) 27.49 ± 5.63

WC (cm) 87.72 ± 14.68

HC (cm) 104.94 ± 10.03

WHR 0.83 ± 0.09

TBA 29.99 ± 10.87

ODI 16.66 ± 9.65

VAS 2.38 ± 1.78

SD data mean ±
cLBP chronic low back pain, BMI body mass index, WC waist circumference, HC
hip circumference, WHR waist-to-hip ratio, TBA total body adiposity percentage,
ODI oswestry disability index, VAS visual analogue scale

Table 4 Absolute ultrasound measurements (mm) of the study
sample (n = 70)

msA 12.34 ± 7.79

MppA 13.36 ± 4.53

MsAa 20.19 ± 9.69

MsAb 19.60 ± 9.90

MiA 49.77 ± 23.01

MsSI 14.40 ± 7.69

MsL 8.36 ± 6.90

Data mean ± SD
msA minimum subcutaneous abdominal adiposity, MppAmaximum pre-
peritoneal abdominal adiposity, MsAamaximum subcutaneous abdominal
adiposity A, MsAbmaximum subcutaneous abdominal adiposity B, MiA maximum
intra-abdominal adiposity, MsSI maximum subcutaneous supra-iliac adiposity, MsL
maximum subcutaneous lumbar adiposity
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Discussion
It was hypothesised that greater abdominal adiposity,
particularly visceral, would be associated with increased
self-reported pain and disability in cLBP individuals.
This study’s findings showed a relationship between an-
thropometric and adiposity measures to self-reported
pain in cLBP, but not disability. More specifically, A-L
relative to the size of the individual was the best pre-
dictor of self-reported pain.
The results of this study support previous suggestions

that visceral adiposity may be more important than sub-
cutaneous adiposity in the relationship to pain. For ex-
ample, the overflow of adipocytes into excess visceral
and ectopic stores may initiate a process of metabolic
dysfunction [46] resulting from the disrupted equilib-
rium between energy intake and lipid oxidation [36].
Consequently, this overflow may promote the release of
adipocyte-derived pro-inflammatory cytokines [47] con-
tributing to insulin resistance and end-stage disease
[46, 47], but also to hyperalgesia and central sensitisation

[48]. In addition to metabolic dysfunction, there is grow-
ing evidence for the pathophysiological consequences on
bone and skeletal muscle integrity and function from ab-
normal lipid accumulation [36]. The result may then be
chronic low-grade systemic inflammation [46, 47] and
therefore the persistence of a chronic pain state [48]. For
example, increased levels of C-reactive protein, a sensitive
acute-phase protein associated with body adiposity mea-
sures [49], has been linked to greater odds of reporting
LBP symptoms, particularly in those measured as obese
by BMI or WC [49]. It has been suggested that increased
C-reactive protein may be indicative of early signs of low-
grade chronic systemic inflammation [49]. Consequently,
it may validate the implication of pro-inflammatory cyto-
kines in the complex pathways of musculoskeletal pain
[49] and further support the use of visceral adiposity mea-
surements, such as US, in the research of cLBP and other
chronic pain pathologies.
This study’s findings may also support a theorised

metabolic mediation in the adiposity-pain relationship
[12]. Since pain was found to be significantly correlated
with A-L relative to BMI or WHR, visceral adiposity
relative to body size and shape may be an important
consideration for future research. For example, the dis-
tribution of A-L may be just as important as the overall
representation of body size and mass distribution.
Therefore, it may be the accumulation of body mass
coupled with greater levels of relative adiposity that puts
an individual in an increased or more persistent cLBP
state.
The moderate to strong correlations and prediction

models between pain and A-L relative to WHR and BMI
may advocate a possible physiological or biomechanical
mediation between obesity and cLBP. For instance,
WHR measures an individual’s anatomical circumference
of the waist compared to the hips to assess adiposity dis-
tribution [50] and the associated risk of deviating from
optimal body morphology for physical health. In turn,
BMI is a measure of overall body size as a relative asso-
ciation between height and weight [15], with an
optimum balance to achieve the ‘healthy’ range. Conse-
quently, coupling WHR and BMI with the A-L/pain re-
lationship may further support a physiological or
biomechanical mediation. It is reasonable to believe that
the body can only manage a degree of anterior-to-
posterior load, but is also functionally limited by waist-
to-hip load and overall body load. For example, perhaps
an individual with a high A-L, large WHR and elevated
BMI may be in greater pain than someone with the same
A-L but lower WHR and BMI. It may be the accumula-
tion of the overall body mass and weight distribution in-
cluding adiposity that acts as a pain catalyst, but is the
A-L that is most instrumental in observable and measur-
able biomechanical changes. For instance, it is plausible

Table 6 Significant correlations between anthropometric and
adiposity variables with self-reported pain

Analysis model Variable r p

Total sample (n = 70) A-L 0.323 0.007

A-L/WHR 0.315 0.008

A-L/BMI 0.303 0.011

VAS subgroup (n = 42) A-L 0.566 <0.001

A-L/WHR 0.568 <0.001

A-L/BMI 0.546 <0.001

ODI subgroup (n = 52) A-L 0.493 <0.001

A-L/WHR 0.438 0.001

A-L/BMI 0.5111 <0.001

WHR 0.287 0.039

VAS visual analogue scale, ODI oswestry disability index, A-L abdominal to
lumbar adiposity ratio, A-L/WHR abdominal to lumbar adiposity ratio to WHR,
A-L/BMI abdominal to lumbar adiposity ratio to BMI WHR, waist-to-hip ratio

Table 5 Relative ultrasound measurements and ratios of the
study sample (n = 70)

A-L 12.42 ± 9.12

S-M 0.54 ± 0.24

V-M 0.78 ± 0.20

MAR-A 0.46 ± 0.25

A-L/BMI 0.47 ± 0.38

A-L/WHR 14.44 ± 10.11

TC-TBA 1.44 ± 0.52

Data mean ± SD
A-L abdominal to lumbar adiposity ratio, S-M subcutaneous adiposity to mass
ratio, V-M visceral adiposity to mass ratio, MAR-A maximum abdominal ratio A,
A-L/BMI abdominal to lumbar adiposity ratio to BMI, A-L/WHR abdominal to
lumbar adiposity ratio to WHR, TC-TBA total circumference to total body
adiposity ratio
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that greater anterior mass may result in increased com-
pensatory lordosis during normal daily posture, manifest
by spinal hyperextension, and thereby excess abdominal
adiposity may result in increased magnitude or repeti-
tion of compression loading, which is a known precursor
for risk of intervertebral disc injury [26]. Moreover, pre-
vious research suggests that both vertebral joint com-
pression and postural deviation may impact upon shear
injury potential [51]. Irrespective of these yet uncon-
firmed inferences, it is known that obesity and cLBP are
linked [3–13] and that simplistic measurements like
BMI are unrelated to cLBP [52] and lack the sensitivity to
detect excessive adiposity in non-obese individuals [36].
Therefore, future research may need to explore more
comprehensive measurements such as A-L to further
quantify and explain the adiposity-cLBP relationship.
The hypothesis that greater abdominal adiposity would

be associated with increased disability was not sup-
ported, as no correlations were found between an-
thropometric and adiposity variables with disability. This
finding was not supported or refuted by previous re-
search, since no other studies to the authors’ knowledge
have examined the relationship between adiposity and
disability associated with cLBP. An earlier study report-
ing a relationship between adiposity and disability asso-
ciated with LBP [12] was not specific to cLBP and
assessed adiposity and disability using different methods
to those used in this study. Therefore, further research
may be necessary to confirm that adiposity and disability
are unrelated in cLBP.
The novelty of this research lends itself to potential

constraints, such as the use of absolute and relative adi-
posity ratios not previously studied. The removal of vari-
ables to eliminate collinearity during statistical analysis
may have excluded potentially relevant variables from
the prediction models. However, any variables removed
were those with the least impact on the prediction
models. Correlation analysis between each variable with
pain and disability also ensured all relevant relationships
between variables were explored. It may be irrelevant
which A-L variables were left in the regression analyses,
since all A-L variables were found to have strong corre-
lations to pain. The use of WHR instead of WC may be
a limitation since adipose tissue deposits in the abdom-
inal versus gluteofemoral region may have different bio-
logical mechanisms and therefore altered health risk
implications [50]. For this reason, future studies into the
A-L/cLBP relationship may benefit more from the use of
WC instead of WHR. The selection of VAS and ODI
cutoff values may have excluded potentially relevant
data, but since the majority of existing research explored
the minimum level of clinically meaningful change over
time no previous consensus on normative scores for
minimal pain or disability levels in cLBP was found.

Therefore, values were set from collaborative evidence of
minimal important change values in VAS ranging from
1.5–2.0 [53] and a normative score of 10.19 for ODI of
‘normal’ populations [42], which was deemed appropri-
ate based on available evidence. The study results can
only be generalised to adult cLBP populations.

Conclusions
The results of this study demonstrated significant rela-
tionships between abdominal adiposity and cLBP. A-L
combined with increased WHR and BMI was a predictor
of pain variance. Therefore, an individual’s adiposity dis-
tribution relative to their body or trunk mass may be of
greater importance in the cLBP-obesity relationship than
single measurements alone. These findings support the
use of US-based methodologies for future cLBP re-
search. Until the mechanisms responsible for the
adiposity-cLBP relationship are better understood, at-
tempts to manipulate it through pain or adiposity reduc-
tion treatment may be of little benefit. For this reason,
additional research into possible physiological, metabolic
and biomechanical mediators between adiposity distribu-
tion and pain manifestation in cLBP is warranted.
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