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Abstract 

Depression is a mental disease involving complex pathophysiological mechanisms, and there are many ways to estab-
lish depressive mouse models. The purpose of this study is to comprehensively compare the behavioral changes and 
its mechanism induced by two different models. This study established two depressive mouse models by maternal 
separation (MS) or lipopolysaccharide (LPS) administration, and added fluoxetine treatment group respectively for 
comparison. MS induced more apparent anxiety-like behavior while LPS induced more apparent depressive-like 
behavior. LPS increased peripheral inflammatory factors more apparent, which were mitigated by fluoxetine. MS 
inhibited the 5-HT system more obviously and was relieved by fluoxetine. LPS triggered stronger immune response in 
the hippocampus and prefrontal cortex (PFC). MS significantly reduced the expression of neurotrophic proteins and 
was alleviated by fluoxetine. Overall, LPS induced stronger system inflammation, while MS impaired the function of 
HPA axis and 5-HT system. Our results will contribute to a deeper understanding of the pathophysiology of different 
stress-induced depression and will also help researchers select appropriate models of depression for their own needs.
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Background
Major depressive disorder (MDD) is a common men-
tal disorder characterized by depressed mood, despair 
and anhedonia [1]. It is estimated that 5% of adults suf-
fer from depression disorder all over the world [2]. As a 
complex mental disease, the pathophysiological causes 
of depression remain unclear. The onset of depression 
involves the changes in multiple organs or systems. Etio-
logical hypotheses such as changes in HPA axis activity 
[3], neurogenesis and plasticity [4], aggravated neuro-
inflammation [5], abnormal DNA methylation [6] have 
been proposed. Unfortunately, none of these theories can 

fully explain the pathophysiological process of depres-
sion. Risk factors contributing to depression include a 
family history of depression, abuse or neglect in early 
life, recent life stressors, and medical illness, especially 
those related to metabolic and autoimmune disorders [5]. 
Therefore, the selection of appropriate depressive model 
to simulate the risk factors and pathophysiological pro-
cess of clinical patients is of great significance for the 
mechanism research of depression and the development 
of treatment drugs.

Early exposure to stress, such as deprivation, neglect 
and abuse [7, 8], have long-term effects, not only on 
brain function, but also on emotional development, and 
increase the risk of developing stress-related psychopa-
thology in late adulthood [9, 10]. MS-induced depressive 
model was designed to mimic early human experiences of 
childhood neglect or abuse. The MS mouse model, which 
is widely popular, involves the pups being separated from 
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their mother for a period of time every day after birth 
until the mice are weaned. Mice suffered MS tended to 
show cortical damage [11] or abnormal HPA axis func-
tion [12].

Numerous studies have shown a significant association 
between neuroinflammation and depression. Elevated 
levels of proinflammatory cytokines, including IL-1β, 
IL-6 and TNF-α, have been observed in MDD patients 
[13–15]. Elevated proinflammatory cytokines were also 
detected in brain samples from MDD patients who had 
committed suicide [16]. In addition, psychoneuroim-
munology suggests that neuroinflammation could lead 
to depressive syndrome [17]. LPS, the major compo-
nent of the outer membrane of Gram-negative bacte-
ria, is widely used to induce depressive-like behavior in 
rodents, mimicking depressive symptoms in humans in 
acute infectious illness. LPS was reported to trigger sys-
temic immune activation and immune response in brain, 
including production of proinflammatory cytokines [18], 
activation of microglia [19] and accumulation of reactive 
oxygen species (ROS) [20].

Given the differences in molecular mechanisms 
involved in different depressive models, they may also 
respond differently to drug therapy. Fluoxetine, a selective 
serotonin-reuptake inhibitor, is a traditional antidepres-
sant [21]. In this study, fluoxetine treatment was intro-
duced as a control to explore the responses of different 
depressive models to antidepressants. Multiple behavior 
tests were used to comprehensively compare the differ-
ences of the two models on motor capacity and emo-
tion of mice. The peripheral and central inflammatory 
response, status of HPA axis, function of 5-HT system 
and expression of neurotrophic proteins were compared 
by Western blot, ELISA and immunofluorescence.

Materials and methods
Animals
Female C57BL/6 mice (12 weeks old, weighing 21–25 g) 
were purchased from the Laboratory Animal Center 
of China Medical University. Mice were housed with 
free access to water and food. The indoor temperature 
was controlled at 21 ± 1 °C, the relative humidity was 
50% ± 10%, and the light cycle was 12 hours (8,00–20:00). 
All animal procedures were approved by the Animal Eth-
ics Committee of Shengjing Hospital of China Medical 
University. All experimental procedures were performed 
according to the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals (NIH Publica-
tions No. 8023, revised 1978) and the ARRIVE guide-
lines on the Care and Use of Experimental Animals. 
Fifteen pregnant female mice were individually housed 
and observed daily for parturition, deemed as postna-
tal day (PD) 0. The entire cage was treated as one, and 

the 15 cages were randomly divided into a control (Con) 
group, a maternal separation (MS) group, a maternal 
separation + fluoxetine (MS + Flu) group, an LPS-treated 
(LPS) group and an LPS-treated + fluoxetine (LPS + Flu) 
group. Eight male pups from each group were randomly 
selected as experimental subjects on PD17. The body 
weight of mice was measured on PD31 before the behav-
ioral tests. The experimental design and drug treatment 
schedule are shown in Fig. 1A.

Maternal separation (MS)
Pups in MS group and MS + Flu group received mater-
nal separation between PD2 and PD17. The method is 
improved according to the previous description [22]. 
Pups were separated from their mothers twice for 
3 hours every day, during which time the mice should be 
observed and kept warm. Each cage of mice was removed 
in two batches in rotation to reduce the enhancement of 
maternal care. When the mice were transferred, some of 
the bedding with the mother’s scent was also transferred.

LPS and fluoxetine administration
Mice in LPS group and LPS + Flu group were treated 
with LPS (2 mg/kg, L2880, Sigma–Aldrich, St. Louis, 
MO, USA) by i.p. injection for 5 consecutive days. Mice 
in MS + Flu group and LPS + Flu group were treated with 
fluoxetine hydrochloride (10 mg/kg, 343,290, Sigma–
Aldrich) by i.p. injection for 14 consecutive days. Both 
LPS and fluoxetine were dissolved in normal saline. Mice 
in the Con group and MS group were treated with saline 
by i.p. injection during PD17 to PD31, and that in the 
LPS group were treated with saline by i.p. injection dur-
ing PD22 to PD31.

Behavior tests
Behavior tests were performed after drug administra-
tion and two tests were conducted daily in the following 
order: open field test, elevated plus-maze, forced swim-
ming test and tail suspension test. Mice were acclimated 
to the testing room for 2 h before testing. Behavior test 
data were recorded by the SMART™ tracking software 
program (San Diego Instruments, San Diego, CA, USA).

Open field test (OFT)
The OFT was used to evaluate the depressive-like 
behaviors of mice performed as previously reported 
[23]. The OFT consisted of an empty square arena 
(40 × 40 × 30 cm) constructed of plastic with a white 
base. The central region is 20 × 20 cm. Mice were placed 
individually in the corner of the OFT apparatus, and 
spontaneous activities were recorded for 10 min using the 
SMART™ tracking program. After each test, the arena 
was cleaned with 75% ethanol to eliminate odor cues.
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Elevated plus‑maze (EPM)
The EPM test was carried out as previously reported to 
evaluate the anxiety-like behaviors of mice [24]. Mice 
were tested in a cross-shaped maze consisting of two 
open arms (50 × 10 cm), two closed arms (50 × 10 cm) 
and a central region (10 × 10 cm). Each mouse was placed 
in the central region of the maze and allowed to explore 
for 5 min. The time spent in each arm was recorded using 
the SMART™ tracking program. After each test, the 
arena was cleaned with 75% ethanol to eliminate odor 
cues.

Forced swimming test (FST)
The FST was performed as previously reported [25]. The 
test device consisted of a transparent cylindrical glass 
container (10 cm in diameter, depth of 22 cm) filled with 
water (23 °C to 25 °C) and a video camera in front of the 
container. The mice could not touch the bottom of the 
container with their hind legs. The test was conducted for 
6 min: the first 2 min was an adaptation phase, after which 
the immobility of the mouse in the water was recorded 
for 4 min (immobility refers to the mouse’s body floating 
with the absence of any movement except for those nec-
essary for keeping the nose above water). FST data were 
recorded by the SMART™ tracking software program.

Tail suspension test (TST)
The TST test was performed as previously described 
to assess depressive-like behavior [26]. Mice were sus-
pended by their tail (50 cm distance from the floor) using 
adhesive tape at 1 cm from the tip of the tail. The TST test 
was conducted for 6 min, and the duration of immobility 
in the last 4 min was recorded. TST data were recorded 
by the SMART™ tracking software program.

Animal tissue extraction
After completing the behavior tests, mice were anesthe-
tized with isoflurane, and blood from portal vein and 
vena cava was centrifuged as previously reported [27] and 
serum samples were stored in a − 80 °C freezer. Mice were 
then decapitated after cervical dislocation. The right hip-
pocampus was separated and stored in a − 80 °C freezer.

Protein extraction and quantification
As previously reported [28], the extracted mouse tissue 
were detergent-extracted on ice using radioimmunopre-
cipitation assay (RIPA) lysis buffer (P0013B, Beyotime, 
Shanghai, P R China) with 1 mM phenylmethanesulfo-
nyl fluoride (ST506, PMSF, Beyotime), disrupted on ice 
for 30 min, and then fragmented with ultrasonication. 
The lysates were collected and centrifuged at 21000 g for 
15 min. Total proteins were quantified using a BCA pro-
tein assay kit (P0012, Beyotime).

Elisa
ELISA was performed as previously reported [28]. The 
levels of IL-1β, IL-6, TNF-α, 5-HT, ACTH and CORT 
were investigated using assay kits (Tab S2) and following 
the manufacturer. Each sample (5× dilution) was used 
50 μl for detection, and the absorbance at 450 nm was 
measured. The concentration was calculated according to 
the standard curve (Fig. S1-S6).

Western blotting
Western blotting was performed as previously reported 
[25]. Equal amounts of protein (up to 30 μg) from the 
treated mice were separated by 10% SDS–PAGE and 
transferred to PVDF membranes. Transferred blots were 
blocked with nonfat milk for 2 hours and then incubated 
overnight at 4 °C with primary antibody (1:1000). Blots 
were subsequently washed and incubated with goat anti-
rabbit (ZB-2301, Zsgb-Bio, 1:5000) and goat anti-mouse 
(ZB-2305, Zsgb-Bio, 1:5000) secondary antibodies for 
2 hours. The antibodies were listed in Table S1. Protein 
bands were detected with ECL reagent (WBKLS0500, 
Merck Millipore). Chemiluminescent signals were 
detected and analyzed using a Tanon-5500 chemilumi-
nescent imaging system (Tanon Science and Technol-
ogy Co., Ltd., Shanghai, P R China). The intensity of the 
bands was analyzed using ImageJ 1.49 software (National 
Institutes of Health, Bethesda, MD, USA). Full-length 
blots/gels are presented in Supplementary Fig. S7.

Immunofluorescence
Thirty μm thick brain tissue sections were washed with 
PBS. Then the sections were blocked by 8% BSA for 2 h 
and then treated overnight at 4 °C with primary antibody 
(Iba1, 1:200, Wako, Osaka, Japan). Brain sections were 
subsequently washed and incubated with Alexa Flour 
488 (1:500, Thermo Fisher, Waltham, MA, USA) for 2 h. 
Sections were washed and incubated with DAPI (Absin, 
Shanghai, P R China) for 5 min. After washing, the sec-
tions were transferred to slides, and glass coverslips were 
mounted using mounting medium. Images were captured 
using Leica TCS SP8 laser scanning confocal micro-
scope. The number of microglia was determined by parti-
tion counting, and the cell size was determined by Sholl 
analysis.

Sholl analysis
Sholl analysis was performed as previously reported [29]. 
Projected z-stack image with orthogonal views were 
obtained by Leica TCS SP8 laser scanning confocal micro-
scope in 1 μm steps. The z-stack images were split into single 
channels using Fiji and stored as 8-bit images. The estimated 
geometric centre was marked using the point tool in Fiji and 
the image was analysed with the Fiji plugins Bitmap Sholl 
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Analysis (http://​fiji.​sc/​Sholl_​Analy​sis, version 3.6.8). The 
manual method was carried out by digitally tracing rings 
centred at the soma centre and intersections counted. All 
Sholl analyses were carried out at 2 μm intervals to a maxi-
mum radius of 24 μm.

Statistical analysis
All data are expressed as the mean ± standard deviation 
(SD). Statistical analysis of data was performed using one-
way analysis of variance (ANOVA) and Tukey′s multiple 

comparisons test. A P value of < 0.05 was considered 
significant. GraphPad Prism 8 (GraphPad Software, San 
Diego, CA, USA) was used for statistical analysis. All 
detailed statistical data are provided in Table S3.

Results
MS induced more apparent anxiety‑like behavior while LPS 
induced more apparent depressive‑like behavior
After 5 days of LPS injection, the mice showed significant 
body weight loss, while there was no statistical difference 

Fig. 1  Experimental design and behavioral changes of mice after MS/LPS and fluoxetine administration. A Experimental design. B Body weight 
of mice on PD31. C Distance traveled in the OFT. D Time in the central area of the OFT. E Representative tracks of mice in the OFT. F Time spent in 
the open arms of the EPM. G Immobility time in the FST. H Immobility time in the TST. *, compared with the Con group; #, compared between the 
groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. (n = 8 per group)

http://fiji.sc/Sholl_Analysis
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between the MS and the Con group (Fig. 1B). There was no 
significant difference in the total distance traveled by each 
group in the OFT (Fig.  1C), indicating that the behavio-
ral differences were not caused by impaired motor ability. 
Compared with the Con group, mice in the MS and LPS 
group showed less preference in the central region of the 
OFT (Fig. 1D, E) and the open arms of the EPM (Fig. 1F), as 
well as the increased immobility time in the FST (Fig. 1G) 
and the TST (Fig. 1H). When compared with the MS group, 
mice in LPS group spent more time in the central region 
of the OFT (Fig.  1D, E) and the open arms of the EPM 
(Fig. 1F), and more immobility time in the FST (Fig. 1G) and 
the TST (Fig. 1H). These results suggested that both MS and 
LPS treatment could lead to anxiety-like and depressive-like 
behavior. MS induced more apparent anxiety-like behavior 
while LPS induced more apparent depressive-like behavior.

The anti‑anxiety and anti‑depressive effects of fluoxetine 
were more obvious in MS‑induced depressive model
Fluoxetine effectively increased the residence time of MS-
treated mice in the central region of OFT (Fig. 1D) and 

the open arms of EPM (Fig. 1F), and reduced the immo-
bility time in FST (Fig. 1G) and TST (Fig. 1H). When it 
comes to LPS-treated mice, fluoxetine only reduces the 
immobility time in FST (Fig. 1G). These results indicate 
that fluoxetine is effective for both two depressive mod-
els, but is more obvious in the MS-induced depressive 
model.

LPS increased peripheral inflammatory factors more 
apparent, which were mitigated by fluoxetine
Serum IL-1β (Fig. 2A) and TNF-α (Fig. 2C) of mice in the 
MS group were moderately increased. After LPS treat-
ment, serum IL-1β (Fig.  2A), IL-6 (Fig.  2B) and TNF-α 
(Fig. 2C) were significantly increased than other groups. 
Fluoxetine was only weakly mitigating LPS-induced ele-
vation of serum IL-6 (Fig. 2B) and TNF-α (Fig. 2C).

MS activated the HPA axis which was receded by fluoxetine
The activity of the HPA axis was reflected by the levels 
of ACTH (Fig. 3A) and CORT (Fig. 3B) in serum. There 
was no significant difference in serum ACTH and CORT 

Fig. 2  The levels of inflammatory cytokines in serum after MS/LPS and fluoxetine administration. A Serum IL-1β levels. B Serum IL-6 levels. C Serum 
TNF-α levels. *, compared with the Con group; #, compared between the groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. (n = 8 per group)

Fig. 3  MS induced activation of HPA axis. A Serum ACTH levels. B Serum CORT levels. *, compared with the Con group; #, compared between the 
groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. (n = 8 per group)
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levels between LPS group and Con group, indicating that 
LPS administration had no effect on the HPA axis. Serum 
ACTH and CORT concentration in MS group were sig-
nificantly higher than that in Con group and LPS group. 
Fluoxetine significantly alleviated the elevation of serum 
ACTH and CORT induced by MS, but had no effect on 
the other groups.

MS inhibited the 5‑HT system more obviously which 
was alleviated by fluoxetine
In MS-induced depressive model. 5-HT levels in hip-
pocampus (Fig. 4A) and PFC (Fig. 4B) were significantly 
reduced, which were effectively restored by fluoxetine 
(Fig. 4A, B). While in the LPS-induced depressive model, 
5-HT was decreased only in the hippocampus (Fig. 4A), 
and fluoxetine treatment has no significant effect on this 
model (Fig. 4A, B).

LPS triggered stronger immune response 
in the hippocampus and PFC
In LPS-treated mice, the expression of TLR4 (Fig. 5A, B), 
IDO1 (Fig. 5A, C) and levels of inflammatory cytokines 
IL-1β (Fig. 5D), IL-6 (Fig. 5E), TNF-α (Fig. 5F) were sig-
nificantly increased, both in hippocampus and PFC. In 
addition, the number (Fig.  6A, B) and cell bodies size 
of microglia in PFC increased (Fig.  6A, C), cell com-
plexity (Fig. 6E) and total length of microglial processes 
(Fig. 6D) decreased, indicating that microglia were acti-
vated in PFC. The same changes could be observed in 
the MS-induced depressive model, while these changes 
are slightly compared with the LPS-induced depressive 
model (Figs.  5 and 6). Fluoxetine did not significantly 
improve the immune response in either model, only 
mitigating LPS-induced TLR4 elevation (Fig. 5A, B) and 
MS-induced IDO1 elevation (Fig. 5A, C), in addition to 
a slight inhibition of microglial activation in PFC (Fig. 6).

MS significantly reduced the expression of neurotrophic 
proteins and was alleviated by fluoxetine
LPS reduced the expression of BDNF and NGF in hip-
pocampus (Fig.  4C, E), as well as the expression of 
ERK1/2 and BDNF in PFC (Fig. 4D, F). MS significantly 
reduced the expression of ERK1/2, BDNF and NGF in 
hippocampus (Fig. 4C, E) and PFC (Fig. 4D, F) of mice. 
Compared with the LPS group, MS induced a more 
significant decrease in ERK1/2 and BDNF in the hip-
pocampus of mice (Fig. 4C, E). Fluoxetine only restored 

the reduction of ERK1/2 and BDNF in the hippocampus 
induced by MS (Fig. 4C, E), but had no significant effect 
on the reduction of neurotrophic protein in the PFC 
induced by MS and LPS (Fig. 4D, F).

Discussion
In this study, MS and LPS depressive model were estab-
lished to simulate two types of stress in humans, child-
hood neglect and inflammation stress. Behavioral tests 
showed that both methods were sufficient to obtain 
model mice with anxiety-like and depressive-like behav-
iors. However, when the two models were compared, it 
was found that there were significant differences in the 
degree of changes between them in the tests. These find-
ings are consistent with many clinical or animal studies.

In this study, MS model was established based on the 
previously report with our modifications, because it is 
quite difficult to establish MS model in mice because the 
3-hour separation period usually leads to an increase in 
maternal care [22]. In this study, we modified the MS 
method commonly used in rats by increasing the num-
ber of separations per day and moved offspring in two 
batches. The results of behavioral tests can confirm the 
avoiding of enhancement of maternal care and validity of 
the MS model.

In LPS-induced depressive model, the major changes 
were almost entirely in the activation of the systemic 
immune system. Inflammation is the result of the 
immune system activation. Many types of immune 
cells and mechanisms help maintain homeostasis, but 
immune disorders often lead to disease. There is increas-
ing evidence that MDD is associated with the activation 
of systemic immunity. MDD patients have significantly 
increased proinflammation cytokines in their circula-
tion and immune disorders in brain, also known as neu-
roinflammation. Inflammation cytokines are produced 
primarily by immune cells, including microglia in the 
central nervous system.

Moreover, TLR4, a ligand of LPS, activates the 
immune process through the NF-κB or JNK/SAPK 
pathways [30]. And activation of IDO1 is critical for 
LPS-induced microglia activation [31]. LPS-induced 
depressive model well mimic inflammatory stress in 
patients, which may account for the poor response to 
fluoxetine therapy. The antidepressant effect of fluox-
etine is mainly through inhibiting the reuptake of 
5-HT in central nervous system. Although fluoxetine 

Fig. 4  The 5-HT levels and expression of neurotrophic proteins in PFC and hippocampus. A 5-HT levels in hippocampus. B 5-HT levels in PFC. 
C Representative blot showing the expression of neurotrophic proteins in hippocampus. D Representative blot showing the expression of 
neurotrophic proteins in PFC. E Western blot analysis for neurotrophic proteins in hippocampus. F Western blot analysis for neurotrophic proteins 
in PFC. *, compared with the Con group; #, compared between the groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. Full-length blots/gels are 
presented in Supplementary Fig. S7. (n = 8 per group)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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has been shown to modulate immune activation, it is 
still controversial. In this study, fluoxetine also allevi-
ated LPS-induced increased proinflammatory cytokine 
and activation of microglia, but the overall effect was 
not ideal. There was no significant change in TLR4 and 
IDO1 in PFC, so it is of reference significance to explore 
causes of elevated inflammatory factors. Therefore, we 
explored the activation state of microglia only in PFC, 
which is a limitation of this study.

The MS-induced depressive model was completely dif-
ferent, with less neuroinflammation and more mecha-
nism involved. Childhood adversity is associated with 
an increased risk of depression, anxiety and substance 
disorders, and the molecular mechanisms behind these 
adverse effects are not well understood. Paraventricular 
nucleus of the hypothalamus (PVN) secretes corticotro-
phin-releasing hormone (CRH) and arginine vasopres-
sin (AVP), which activate the anterior pituitary to induce 

Fig. 5  LPS triggered stronger immune response in the hippocampus and PFC. A Representative blot showing the expression of TLR4, IDO1 in 
hippocampus and PFC. B,C Western blot analysis for the expression of TLR4, IDO1 in hippocampus and PFC. D-F ELISA showing the levels of IL-1β, 
IL-6, TNF-αin hippocampus and PFC. Data are expressed as the mean ± SD. Statistical analysis used one-way ANOVA, *, compared with the Con 
group; #, compared between the groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. Full-length blots/gels are presented in Supplementary Fig. 
S7. (n = 8 per group)
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Fig. 6  State of microglia in PFC. A IF showing the morphology of microglia in PFC (scale bar = 50 μm). B Microglia counts. C Bodies size of microglia. 
D Total length of microglial processes. (E) Sholl analysis of microglia. Data are expressed as the mean ± SD. Statistical analysis used one-way ANOVA, 
*, compared with the Con group; #, compared between the groups. * / #, P < 0.05; ** / ##, P < 0.01; *** / ###, P < 0.001. (n = 20 per group)
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ACTH secretion. ACTH ultimately activates the adrenal 
cortex to release corticosteroids, cortisol in humans and 
CORT in rodents [10]. The hyperactivity of HPA axis is 
thought to be involved in the pathogenesis of depres-
sion. In this study, increased serum ACTH and CORT 
indicated the hyperactivity of HPA axis. It has long 
been reported that stress in early life increases HPA axis 
activity [32, 33], and recent research demonstrated that 
such changes may be mediated by dysregulation of gut 
microbiota [34]. The changes in gut microbiota were not 
detected in our study, which is a limitation and will be 
explored in future.

5-HT, also known as serotonin, is an important neu-
roregulatory transmitter, and dysfunction of the 5-HT 
system can lead to depressive symptoms. Fluoxetine, 
because of its ability to inhibit 5-HT reuptake, is also used 
as an antidepressant. 5-HT system also regulates expres-
sion of neurotrophic proteins [35], including ERK and 
BDNF, and neuroplasticity, especially in early life [36]. In 
our study, MS significantly reduced the 5-HT levels and 
the expression of neurotrophic proteins in brain, and 
showed better improvement after fluoxetine treatment. 
These results suggested that an important pathophysi-
ological changes in the MS-induced depressive model 
is inhibition of the 5-HT system. LPS had no significant 
effect on 5-HT system, but decreased the expression of 
neurotrophic proteins, which may be caused by neuroin-
flammation. MS-induced depressive model is more suit-
able for HPA axis and 5-HT system related research.

Conclusions
Overall, LPS induced stronger system inflammation, 
while MS impaired the function of HPA axis and 5-HT 
system. Our results will contribute to a deeper under-
standing of the pathophysiology of different stress-
induced depression and will also help researchers select 
appropriate models of depression for their own needs.
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