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Abstract 

Purpose:  To develop a deep learning-based framework to improve the image quality of optical coherence tomog-
raphy (OCT) and evaluate its image enhancement effect with the traditional image averaging method from a clinical 
perspective.

Methods:  359 normal eyes and 456 eyes with various retinal conditions were included. A deep learning framework 
with high-resolution representation was developed to achieve image quality enhancement for OCT images. The 
quantitative comparisons, including expert subjective scores from ophthalmologists and three objective metrics of 
image quality (structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR) and contrast-to-noise ratio 
(CNR)), were performed between deep learning method and traditional image averaging.

Results:  With the increase of frame count from 1 to 20, our deep learning method always obtained higher SSIM and 
PSNR values than the image averaging method while importing the same number of frames. When we selected 5 
frames as inputs, the local objective assessment with CNR illustrated that the deep learning method had more obvi-
ous tissue contrast enhancement than averaging method. The subjective scores of image quality were all highest in 
our deep learning method, both for normal retinal structure and various retinal lesions. All the objective and subjec-
tive indicators had significant statistical differences (P < 0.05).

Conclusion:  Compared to traditional image averaging methods, our proposed deep learning enhancement 
framework can achieve a reasonable trade-off between image quality and scanning times, reducing the number of 
repeated scans.
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Introduction
Optical coherence tomography (OCT) is a noninva-
sive imaging technique which has been widely used to 
obtain a cross-sectional retinal structure in ophthal-
mology [1]. It brings a new revolution for the diagno-
sis of ophthalmic diseases [2]. However, image quality 
can affect the clinical interpretation and many efforts 
have been made to enhance OCT image quality [3]. 
Although spectral-domain OCT (SD-OCT) has signifi-
cant improvement in scanning speed, axial resolution 
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and signal-to-noise ratio [1, 3], the image quality 
still inevitably suffers from speckle noise brought by 
OCT intrinsic imaging principle [3]. For the evalua-
tion of retinal disease, the quality of OCT images is 
of great importance for accurate retinal disease detec-
tion. Taking paracentral acute middle maculopathy 
(PAMM) and retinal angiomatous proliferation (RAP) 
for examples, only OCT images with high quality and 
proper enhancement could facilitate an accurate diag-
nosis. Currently, the common enhancement method 
is image averaging, which is performed by obtaining 
multiple B-scan frames at the same location and then 
averaging them [4–6]. It is firstly used on time-domain 
OCT to achieve better visualization of retinal layers 
[4]. Then Sakamoto et  al. applies image averaging on 
SD-OCT images and achieved significant improve-
ment in both objective metrics and the ophthalmolo-
gists’ ability of distinguishing retinal lesions [5]. With 
subjective scoring, image averaging has been proved 
to be a statistically significant benefit for assessing the 
external limiting membrane (ELM) and outer nuclear 
layer (ONL) [7]. Then a detailed comparative experi-
ment indicates that OCT image quality improves with 
an increase in the number of frames averaged, and the 
optimal number is 20 while minimizing the examina-
tion time and maximizing the image quality [8]. How-
ever, image averaging requires multiple repeated scans 
at the same location while the subject is instructed to 
maintain steady fixation. Besides the increase of exami-
nation time, its performance is also affected by imper-
fect registration among repeated scans [9].

Recently, deep learning has achieved significant pro-
gress in medical images [10]. In the ophthalmic images, 
in addition to identifying disease features [11], there are 
some applications for OCT image enhancement [12–15]. 
Conventional neural networks [13–15] and generative 
adversarial networks [12] are selected to achieve OCT 
image enhancement as the image-to-image translation 
from low quality to high quality. Enhancement perfor-
mance is then evaluated by objective quantitative metrics 
such as peak signal-to-noise ratio (PSNR) and structural 
similarity index measure (SSIM) [13, 16]. Although these 
studies have shown deep learning can enhance image 
quality while reducing scanning times, there are some 
unsolved problems involving enhancement patterns 
and performance evaluation. Firstly, all existing studies 
perform image enhancement based on a single B-scan 
image and do not investigate whether image quality can 
improve continually while network inputs become mul-
tiple frames [12–15]. Secondly, performance evaluation 
is only performed with objective metrics rather than the 
subjective assessment from a clinical perspective, which 
has been conducted for image averaging [5, 8].

In this study, we propose a deep learning framework 
to enhance OCT images with multiple frame inputs, and 
compare its performance with traditional image averag-
ing using objective metrics and subjective expert assess-
ment. We perform our experiments on OCT images 
acquired from healthy individuals and patients with reti-
nal diseases.

Materials and methods
This observational study used OCT images from Peking 
Union Medical College Hospital, which were collected 
from 447 participants between August 2019 to March 
2020. There were 196 healthy individuals and 251 patients 
with retinal diseases. Prior to the OCT imaging, all 
patients underwent eye examination on a slit lamp along 
with an examination of the posterior segments using an 
ophthalmoscope. The exclusion criteria included patients 
with non-retinal conditions (i.e. glaucoma), media opac-
ity which unable OCT imaging to be performed, extreme 
ametropia and abnormal anterior segment (i.e. corneal 
haze, significant cataract). The study was approved by 
the Ethics Committee of Peking Union Medical College 
Hospital, Chinese Academy of Medical Sciences (No. 
HS-2174). The whole process adhered to the tenets of the 
Declaration of Helsinki, and written informed consent 
was obtained from each participant.

OCT scanning and image averaging
All images were scanned by a commercial SD-OCT sys-
tem (Mocean 3000 plus, Shenzhen Moptim Imaging 
Technique Co. Ltd., China, http://​www.​moptim.​com/). 
50 OCT frames were horizontal B-scans collected at the 
same position across the center of the macular region. 
The scanning range was 12 × 12 mm and the image reso-
lution was 4000 × 860. Before image averaging, we reg-
istered the original images by optimizing the mutual 
information between pixels in each single B-scan image. 
The scanning frequency of our OCT camera is 80,000 Hz 
and 20 OCT images per second can be obtained from the 
same position. The scanning speed is relatively fast and 
the eye movement can be considered as uniform move-
ment within 1/20 s, we therefore only performed rigid 
registration among them for most normal situations. The 
one with the strongest signal-to-noise ratio in scanned 
images was selected as the reference image. The rest 
images were rotated and rigidly changed to align with the 
baseline image. Then the enhanced image was obtained 
by averaging all the aligned images (Fig. 1). We recorded 
the time of image scanning and alignment based on sys-
tem time.

We excluded the OCT images with poor image qual-
ity caused by poor fixation. The definition of poor fixa-
tion was that the correlation coefficient between the 
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registered image and the reference image is lower than 
70% of the autocorrelation coefficient of the reference 
image. All the registration steps were implemented using 
the software provided by the OCT manufacturer of Mop-
tim. Finally, 815 sets of OCT images were collected, and 
each set corresponded to the collected images from each 
eye, consisting of 50 aligned OCT frames and 1 enhanced 
OCT image (called Avg-50) averaged from 50 aligned 
frames. We considered Avg-50 image as gold standard 
for the best quality. There were 359 image sets from nor-
mal eyes and 456 image sets from abnormal eyes. Among 
them, 610 sets (264 normal eyes and 346 abnormal eyes) 

were used for training deep learning enhancement model 
and 205 sets (95 normal eyes and 110 abnormal eyes) 
were used for performance evaluation.

Deep learning image enhancement
We developed a deep learning architecture for OCT 
image enhancement as shown in Fig.  1. It was con-
structed based on the idea of U-net [17] which contained 
an encoding module and a decoding module. The encod-
ing module was implemented by two contracted convo-
lution blocks, while the decoding module included two 
extended convolution blocks. To enhance the ability to 

Fig. 1  The schematic diagram of traditional image averaging and the proposed deep learning-based OCT image enhancement method (A), and 
the quantitative comparisons for their generated images (B)
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express image details, we added the high-resolution rep-
resentation block [18] after the encoding module, and a 
side path was integrated to contact the features of decod-
ing modules with different resolutions. Feature maps 
were extracted from the input OCT images through the 
encoding convolution blocks, and then were gradually 
restored to a high-definition image through the decod-
ing convolution blocks. In particular, our network inputs 
were designed as multiple OCT frames in order to 
acquire more original scanned information during image 
enhancement. The number of network input ranged from 
1 to 20. One reason of choosing 1 to 20 is the considera-
tion of computation power, another reason is that a pre-
vious detailed comparative study has indicated that the 
optimal number was 20 while minimizing the examina-
tion time and maximizing the image quality [8]. Finally, 
the network output, namely the enhanced OCT image, 
was obtained by performing a weighted sum of the aver-
aged multiple inputs and the restored feature maps after 
the decoding module.

We used 460 sets (200 normal eyes and 260 abnormal 
eyes) from 610 sets as the training dataset, and the rest 
150 sets (64 normal eyes and 86 abnormal eyes) were 
used as the validation dataset. Each set composed 50 
aligned frames and an averaged image called Avg-50. The 
subsets of frames were selected as network inputs, while 
their corresponding Avg-50 was considered as network 
output. Such subsets were selected randomly from the 
whole 50 frames with many times to achieve offline data 
augmentation. During training, the cross-entropy and 
SSIM [16] were referred to the optimization loss. Adam 
optimizer was used to train the established network, and 
Xavier algorithm was used to initialize model weights. 
The learning rate was initialized to 0.001. If the loss did 
not decrease within 10 epochs, we applied a strategy 
that automatically decayed the learning rate by factor of 
0.9. All inputs and outputs were normalized to a range 
between 0 and 1. The deep learning network was imple-
mented in Python (https://​www.​python.​org/) with Keras 
(https://​keras.​io/). And all the training process was per-
formed on an NVIDIA Tesla P100 GPU.

Quantitative assessment
We performed quantitative assessments from objective 
and subjective perspectives. Three objective metrics were 
applied: SSIM [16] and PSNR [12] for the entire image 
and contrast-to-noise ratio (CNR) for selected regions of 
interest (ROIs) (Fig. 1B). And subjective assessment was 
performed by four ophthalmologists on 205 image sets.

We calculated SSIM and PSNR between a gold stand-
ard and each enhanced image by different methods. 
Besides, we paid special attention to the enhancement 
performance in some important retinal structures. 

Previous studies have applied CNR to evaluate the con-
trast between different tissue layers [5, 8, 13]. It was 
defined as CNR =

h−l
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 are the variance of the ROIs 

from the high-reflection layers and the low-reflection lay-
ers, respectively. The ROIs were selected from the follow-
ing retinal tissues: (1) inner plexiform layer (IPL); (2) 
inner nuclear layer (INL); (3) outer plexiform layer (OPL); 
(4) ONL; (5) ELM; (6) inner–outer segments junction 
(IS-OS); (7) inner retinal pigment epithelium (Inner-
RPE); (8) outer retinal pigment epithelium (Outer-RPE); 
(9) choroid; and (10) background. 50 pairs of ROIs with 
4 × 4 pixels were manually marked by an ophthalmologist 
from the corresponding tissues at equal intervals 
(Fig. 2D). The high-reflection layers were IPL, OPL, ELM, 
IS-OS, Outer-RPE and choroid, and the low-reflection 
layers were INL, OTL, Inner-RPE, and background. 
Therefore, we calculated the CNR values in pairs of IPL/
INL, OPL/ONL, ELM/ONL, IS-OS/Inner-RPE, Outer-
RPE/Inner-RPE, and choroid/background.

For subjective assessment, each set included an original 
single frame, enhanced image with the traditional aver-
aging, enhanced image with deep learning and Avg-50 
image. They were displayed for assessment simultane-
ously. The top one and the bottom one were the original 
single frame and Avg-50 image, respectively. To avoid 
possible misleading, the enhanced images with tradi-
tional averaging and deep learning were displayed in the 
middle random order.

Before the assessment, all the reviewers completed 
a training course to learn the scoring criteria with 10 
images. They were instructed to assign scores for com-
parative image quality using the 5-point scale. 1 point 
was assigned to a single frame as a lower limit, while 5 
points were assigned to Avg-50 image as an upper limit. 
And 2, 3, 4 points were scored to different enhanced 
images according to their visual observation compared 
to upper and lower limits. For normal OCT images, oph-
thalmologists evaluated the overall clarity of anatomical 
structures. For abnormal images, the reviewers also rated 
different scores for different lesions, respectively. There 
were 11 common retinal lesions shown in Table 1. When 
multiple lesions with the same type were present in one 
image, we would make a comprehensive assessment for 
each type. We applied the weighted Cohen’s kappa statis-
tics to assess the degree of agreement within individual 
graders. The average scores of four reviewers were used 
as final subjective scores. Then paired sample t-tests 
were applied to compare the scores between each pair of 
enhanced images for retinal anatomical structures and 
different retinal lesions, respectively. P < 0.05 was consid-
ered as the statistical significance.

https://www.python.org/
https://keras.io/
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Results
We investigated the influence of a different number of 
inputs on image enhancement results with traditional 
averaging and our proposed method. Figure  4A, B 
showed the relationships between quantitative metrics 
(SSIM/PSNR) and the number of frames used in two 

methods. With the increase of frame count from 1 to 20, 
SSIM values were increased from 0.83 to 0.97 for deep 
learning method, and from 0.47 to 0.95 for traditional 
averaging. Meanwhile, PSNR values were increased from 
30.23 to 40.1 for deep learning method, and from 23.93 
to 39.4 for averaging method. We could observe that 
deep learning method obtained higher SSIM and PSNR 
values than averaging method while importing the same 
number of frames. Based on these objective metrics, we 
could infer that deep learning method had a better abil-
ity to improve OCT image quality than traditional aver-
aging. Of note, the rapid growth of SSIM occurred while 
the number of frames was less than 5 for both methods. 
Deep learning method with 5 frames could achieve the 
comparable SSIM with the averaging method with 16 
frames. In order to investigate the performance of image 
quality with few scanned images as possible, we therefore 
selected 5 frames as inputs of different methods for fol-
lowing quantitative comparisons from both subjective 
and objective perspectives.

Figures 2 and Fig. 3 showed the representative results 
scanned from a normal eye and an abnormal eye, respec-
tively. The compared images included the original single 
frame, the enhanced images by averaging 5 frames (Avg-
5) and 50 frames (Avg-50), and the enhanced image by 
deep learning method with 5 frames (DL-5). Compared 

Fig. 2  A representative OCT image scanned from a healthy eye. A is original single-frame; B is the enhanced OCT image (Avg-5) by averaging 
5 frames; C is the enhanced OCT image (DL-5) generated by deep learning method with 5 frames; D is the enhanced OCT image (Avg-50) by 
averaging 50 frames. Regions with red rectangle are zoomed for visual examination. As shown in (D), in order to measure the CNR, we marked 
manually 50 pairs of regions of interest with size 4 × 4 pixels in different retinal tissues

Table 1  The statistics of retinal lesions included in 110 abnormal 
eyes for quantitative comparison of image enhancement

ARPE Atrophy of retinal pigment epithelium, CNV Choroidal neovascularization, 
ERM Epiretinal membrane, IRF Internal retinal fluid, ME Macular edema, PED 
Pigment epithelium detachment, SHRM Subretinal hyperreflective material, SRF 
Sub-retinal fluid

Lesion No. of Images

IRF 21

ARPE 20

Choroid change 20

SRF 17

ERM 16

CNV 13

SHRM 12

Hyper-reflective Foci 11

Macular Hole 11

PED 10

ME 10
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Fig. 3  A representative OCT image scanned from an abnormal eye with hyper-reflective foci, internal retinal fluid and sub-retinal fluid. A is 
original single-frame; B is the enhanced OCT image (Avg-5) by averaging 5 frames; C is the enhanced OCT image (DL-5) generated by deep 
learning method with 5 frames; D is the enhanced OCT image (Avg-50) by averaging 50 frames. Regions with red rectangle are zoomed for visual 
examination

Fig. 4  The results of quantitative assessment for image enhancement. A and B are the relationships (means and covariances in 205 images) 
between quantitative metrics and number of frames used in traditional averaging (blue lines) and deep learning method (red lines). C is CNR 
comparisons (means and covariances in 205 images) between image averaging (blue bar, Avg-5) and deep learning method (red bar, DL-5). D is 
subjective scoring (means values in 205 images) for image quality enhanced by traditional averaging (blue line, Avg-5) and deep learning method 
(red line, DL-5) for normal retinal structure and retinal lesions
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to a single frame, all enhanced images (Avg-5, DL-5 and 
Avg-50) had the clearer retinal layer structures and ana-
tomical abnormalities such as hyper-reflective foci, inter-
nal retinal fluid and sub-retinal fluid. DL-5 had a more 
similar visualization with Avg-50 relative to Avg-5. These 
visual findings were confirmed by objective metrics. In 
the evaluation dataset of 205 images, the averaged SSIM 
and PSNR values were both higher in our method than 
those in traditional averaging (0.92 ± 0.03 and 0.78 ± 0.04 
for SSIM of DL-5 and Avg-5, respectively whilst the 
PSNR for DL-5 and Avg-5 were 35.01 ± 1.25 and 
30.70 ± 0.85, respectively). Figure 4C showed the average 
CNR performance for paired ROIs. For all ROIs, there 
were significant statistically differences between our pro-
posed method and the traditional method (DL-5 vs Avg-
5: 1.23 ± 0.04 vs 1.11 ± 0.06 for IPL/INL; 1.97 ± 0.06 vs 
1.80 ± 0.07 for OPL/ONL; 0.92 ± 0.02 vs 0.83 ± 0.04 for 
ELM/ONL; 1.17 ± 0.12 vs 0.82 ± 0.10 for IS-OS/Inner-
RPE; 1.51 ± 0.11 vs 1.25 ± 0.08 for Outer-RPE/Inner-RPE; 
and 1.81 ± 0.08 vs 1.66 ± 0.07 for choroid/background).

The Cohen’s Kappa value was 0.71 for the subjective 
scoring, which meant that four reviewers reached the 
substantial agreement according to Landis and Koch’s 
scale (Landis et  al. 1977). Figure  4D showed the aver-
aged values of subjective scoring for DL-5 and Avg-5, 
respectively. The results indicated that subjective scores 
were all higher in deep learning method than in tradi-
tional averaging for normal structure and lesions. There 
were all significant statistical differences (P < 0.05). For 
normal retinal structure, the subjective scores were 
4.50 ± 0.27 for our method and 2.65 ± 0.59 for traditional 
averaging. For retinal lesions, the average scores of deep 
learning method and averaging method were 4.03 ± 0.32 
vs 2.84 ± 0.41 for choroidal neovascularization (CNV), 
4.14 ± 0.53 vs 2.97 ± 0.42 for choroid change, 4.27 ± 0.41 
vs 2.98 ± 0.60 for epiretinal membrane (ERM), 4.07 ± 0.61 
vs 2.53 ± 0.89 for hyper-reflective foci, 4.20 ± 0.48 vs 
2.82 ± 0.78 for internal retinal fluid (IRF), 4.50 ± 0.27 
vs 2.65 ± 0.59 for macular edema (ME), 4.21 ± 0.51 vs 
2.76 ± 0.57 for macular hole, 4.41 ± 0.46 vs 2.76 ± 0.68 
for pigment epithelium detachment (PED), 4.20 ± 0.45 
vs 2.82 ± 0.53 for atrophy of retinal pigment epithelium 
(ARPE), 4.07 ± 0.31 vs 2.54 ± 0.58 for subretinal hyper-
reflective material (SHRM) and 4.45 ± 0.57 vs 2.95 ± 0.65 
for sub-retinal fluid (SRF), respectively.

In our experimental OCT device, it took an average of 
1.7 min to scan and generate the enhanced image (Avg-
50) with the best image quality by averaging 50 frames. 
Meanwhile, it took an average of 30 s to scan and align 5 
frames, and an additional time of 50 milliseconds to gen-
erate the enhanced image (DL-5) through a deep learn-
ing network. Therefore, our deep learning method only 
required about 30.5 s to generate an enhanced image with 

acceptable image quality, which reduced the scanning 
time drastically by more than 3 folds.

Discussion
We presented a new deep learning algorithm with 
high-resolution representation to achieve OCT image 
quality enhancement, and performed the quantitative 
comparison with image averaging. Dataset for com-
parison included normal images and abnormal OCT 
images with retinal lesions. The comparison results were 
reported on two levels: objective metrics of image qual-
ity and subjective scores from ophthalmologists. We 
revealed that image quality would be better with the 
increase of the number of input frames in both image 
enhancement methods. Our proposed deep learning 
method could improve OCT image quality more effec-
tively than traditional averaging while importing the 
same number of frames, which was assessed by both 
objective and subjective indicators. Our deep learn-
ing model of 5 frames achieved a comparable image 
enhancement with the averaging method of 10 frames 
and even more. Therefore, our method could enhance 
the OCT image while reducing the scanning time, which 
had an obvious advantage over traditional averaging 
methods. The Kappa value 0.71 was of substantial agree-
ment in our study, while for ERM and normal cases, the 
graders achieved the lowest agreement. This was reason-
able as the features of ERM and normal retina could all 
be clearly displayed on OCT images, thus the evaluation 
between the graders might not be unified.

Compared to previous deep learning-based methods 
used in OCT image enhancement [12–15], our method 
has two innovations, one is network input, another is net-
work architecture. Firstly, most previous methods only 
selected a single B-scan frame as network input, while 
our method attempted multiple B-scan frames. In theory, 
multiple frames provided more information than a single 
frame that could be a benefit for image enhancement [5]. 
Our experimental results demonstrated that better image 
quality was obtained with the increase of frame num-
ber. Secondly, our network architecture included a high-
resolution representation block [18]. Using this network 
architecture, we can utilize more image detailed informa-
tion effectively to enhance OCT image quality while sup-
pressing image noise.

Most previous deep learning studies only performed 
the objective assessment for image quality enhance-
ment [12–15], and did not conduct the subjective expert 
assessment from a clinical perspective. Here, our quan-
titative comparisons included not only objective assess-
ment and but also subjective assessment for both normal 
eyes and abnormal eyes. Compared to traditional aver-
aging, we could find that our deep learning achieved 
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higher similarity to the gold standard with fewer frames 
(Fig. 4A). Similar assessment results for the whole image 
could be found by PSNR (Fig.  4B). Furthermore, the 
local assessment with CNR illustrated that deep learning 
method had more obvious tissue contrast enhancement 
than averaging method (Fig.  4C). The most enhanced 
CNR occurred in the pairs of IS-OS/Inner-RPE and 
Outer-RPE/Inner-RPE. Previous studies demonstrated 
that the multiple frame averaging method and single 
frame based deep learning denoising method could 
increase CNR values in various retinal tissues [5, 13], 
which were consistent with our experimental results. 
Higher CNR represents more distinguishable and rec-
ognizable among different retinal cell layers. In addition 
to helping clinical reading, such image quality enhance-
ment could improve the accuracy of segmentation for 
retinal layer boundaries [19]. For subjective assessment, 
the average scores assigned by four experienced ophthal-
mologists illustrated our method achieved better image 
quality than traditional averaging (Fig. 4D). When 1 point 
was defined to single frame and 5 points were defined to 
Avg-50, the average scores were between 4 points and 
5 points for deep learning enhanced images (DL-5) and 
were between 2 points and 3 points for enhanced images 
by averaging method (Avg-5). Particularly, we found that 
the scores of some low-reflection retinal lesions (e.g. ME, 
PED, and SRF) were higher than that of other lesions 
by deep learning method. These subjective assessments 
demonstrated that our method provided better visualiza-
tion results than averaging method under various retinal 
conditions.

Our method significantly reduced the number of scan-
ning frames at the same location while enhancing OCT 
image quality. For patients who have difficulty in main-
taining pupil dilation for a long time, our method can 
reduce the patient’s cooperation requirements, thereby 
avoiding additional clinical auxiliary support. Another 
advantage of fewer repeat scans at the same location is 
that they reduce the effect of eye movement on image 
quality. Although an eye tracking device has been used, 
the effects of eye movement cannot be completely elimi-
nated and registration errors will occur [9]. A direct and 
effective way is to reduce the number of repeated scans, 
because patients can better control eye movements in a 
shorter time. With our method, we can reduce the num-
ber of scans at the same location and provide more capa-
bilities to achieve a wider range of 3D volumetric scan.

Several limitations need to be strengthened in the 
future. Firstly, our method was designed to improve the 
image quality while reducing the number of repeated 
scans, and its performance was compared with tradi-
tional image averaging methods. It cannot be used to deal 
with the problems of image quality evaluation and quality 

control (e.g. signal loss, mirror artifact and motion arti-
fact). Our previous study [20] and other researchers [21] 
have applied deep learning methods to achieve OCT 
image quality evaluation and automatic quality control. 
Further work includes how to solve image enhancement 
and quality control at the same time. Secondly, we evalu-
ated the image quality based on subjective and objec-
tive indicators directly. Poor image quality could lead to 
incorrect tissue measurement [22] and then incorrect 
clinical decisions [23]. Assuming the improved visualiza-
tion of retinal layers and anatomical abnormalities after 
image enhancement, it might bring some benefits for 
automatic analysis, including more accurate segmenta-
tion and diagnosis for retinal diseases [24]. Therefore, we 
can perform such indirect comparative experiments of 
different image enhancement methods to evaluate their 
effectiveness. Thirdly, we validated the effectiveness of 
our deep learning-based image quality enhancement 
method on Mocean 3000 plus, since we could only obtain 
the original scanned frames from this device with the 
technical help of the manufacturer. Although the trained 
deep learning model cannot be used to other OCT 
devices, we think our proposed image enhancement algo-
rithm can be generalized when we collect the dataset and 
retrain the model from other OCT devices with the same 
imaging principle of SD-OCT. At last, OCT angiography 
(OCTA) can provide a highly detailed view of the retinal 
microvascular morphologic features noninvasively [25]. 
Recent studies have demonstrated that image averaging 
is also a powerful tool for enhancing OCTA image qual-
ity [6, 26–28]. A further step of our research could be 
an application of the similar deep learning algorithm to 
verify the potential improvement of the quality of OCTA 
images.

In summary, our deep learning algorithm achieved 
better image enhancement for retinal tissues and their 
abnormal changes than the traditional image averaging 
method while importing the same number of scanned 
OCT frames. Our quantitative assessment suggests that 
a deep learning enhancement framework can improve 
OCT image quality for clinical diagnosis with less scan-
ning times.
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