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Abstract
Purpose Lung adenocarcinoma (LUAD) significantly contributes to cancer-related mortality worldwide. The 
heterogeneity of the tumor immune microenvironment in LUAD results in varied prognoses and responses to 
immunotherapy among patients. Consequently, a clinical stratification algorithm is necessary and inevitable to 
effectively differentiate molecular features and tumor microenvironments, facilitating personalized treatment 
approaches.

Methods We constructed a comprehensive single-cell transcriptional atlas using single-cell RNA sequencing 
data to reveal the cellular diversity of malignant epithelial cells of LUAD and identified a novel signature through 
a computational framework coupled with 10 machine learning algorithms. Our study further investigates the 
immunological characteristics and therapeutic responses associated with this prognostic signature and validates the 
predictive efficacy of the model across multiple independent cohorts.

Results We developed a six-gene prognostic model (MYO1E, FEN1, NMI, ZNF506, ALDOA, and MLLT6) using the TCGA-
LUAD dataset, categorizing patients into high- and low-risk groups. This model demonstrates robust performance in 
predicting survival across various LUAD cohorts. We observed distinct molecular patterns and biological processes in 
different risk groups. Additionally, analysis of two immunotherapy cohorts (N = 317) showed that patients with a high-
risk signature responded more favorably to immunotherapy compared to those in the low-risk group. Experimental 
validation further confirmed that MYO1E enhances the proliferation and migration of LUAD cells.

Conclusion We have identified malignant cell-associated ligand–receptor subtypes in LUAD cells and developed 
a robust prognostic signature by thoroughly analyzing genomic, transcriptomic, and immunologic data. This study 
presents a novel method to assess the prognosis of patients with LUAD and provides insights into developing more 
effective immunotherapies.
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Introduction
Lung cancer remains a prevalent malignancy, ranking 
third in incidence and first in cancer-related mortality 
worldwide [1]. Lung adenocarcinoma (LUAD), the most 
common type of lung cancer, has seen a continuous rise 
in incidence [2]. Recent advances in targeted molecular 
therapies and immunotherapies have shown promising 
results in improving the prognosis of patients with LUAD 
[3–5]. However, the efficacy of immunotherapy is limited 
to specific subtypes, and patients with LUAD generally 
have a poor prognosis due to early metastasis [6]. There-
fore, gaining a deeper understanding of LUAD-related 
molecular mechanisms is essential for developing effec-
tive treatments.

Cancer cell characteristics and tumor microenviron-
ment (TME) play significant roles in tumor progression, 
a complex biological process [7]. Thus, a comprehensive 
analysis of the TME in LUAD cells may shed light on 
critical factors involved in tumor-induced immunological 
changes. While traditional bulk RNA sequencing (RNA-
seq) only reveals general tumor biology, it fails to capture 
intra-tumoral and inter-cellular heterogeneous features. 
Conversely, the emergence of single-cell RNA sequencing 
(scRNA-seq) provides a novel possibility to reveal hetero-
geneity among different cells and is essential for profiling 
TME, analyzing cell fate, exploring cellular interactions, 
and developing personalized therapeutic strategies [8]. 
scRNA-seq is widely used to study the cellular character-
istics of various tumors [9]. However, the single-cell pro-
file of LUAD has yet to be fully elucidated.

To better capture the heterogeneity of tumors and pre-
cisely stratify patients, we analyzed scRNA-seq data and 
identified malignant cells using CopyKAT. We combined 
pseudotime analysis, regulatory transcription factor (TF) 
analysis, and cellular communication revealed cancer 
heterogeneity, TME, and cell–cell interactions. Malig-
nant cell-associated ligand–receptor genes were screened 
and relevant molecular subtypes for accurate patient 
stratification were constructed [10]. Numerous research-
ers have exerted efforts to construct potential biomarkers 
for predicting prognoses and immune responses in tumor 
studies [11, 12]. In this study, we introduced a novel com-
putational framework that integrates ten diverse machine 
learning algorithms to develop a robust prognostic 
model for LUAD. The predictive efficacy of our model 
has been validated across multiple independent cohorts, 
demonstrating its reliability in clinical stratification and 
outcome prediction. This comprehensive and innova-
tive methodology marks a significant advancement in 
the personalized treatment and prognosis assessment of 
patients with LUAD. Finally, we performed experiments 

to validate the core gene (MYO1E) in our model, offer-
ing a new predictive biomarker and molecular target 
for treating patients with LUAD. The study workflow is 
depicted in Fig. 1.

Materials and methods
Data sources used for analysis
To explore the cellular composition of the TME in lung 
adenocarcinoma, we analyzed nine untreated LUAD 
samples from eight patients using scRNA-seq.  These 
samples were sourced from the Gene Expression Omni-
bus (GEO, https://www.ncbi.nlm.nih.gov/geo/) dataset 
GSE171145. Additionally, after excluding samples with 
incomplete clinical and pathological information, we uti-
lized gene expression profiles along with their associated 
clinical data from ten different datasets for constructing 
and validating a prognostic signature through integrative 
machine learning approaches. These datasets included 
TCGA-LUAD (N = 500), GSE31210 (N = 118), GSE36471 
(N = 107), GSE37745 (N = 106), GSE42127 (N = 171), 
GSE50081 (N = 181), GSE68465 (N = 435), GSE68571 
(N = 83), GSE72094 (N = 398), and GSE87340 (N = 50), 
sourced from the Cancer Genome Atlas (TCGA, https://
www.cancer.gov) and the GEO databases. All datasets 
are detailed in Supplementary Table 1. Moreover, single 
nucleotide variants (SNVs) in the TCGA-LUAD dataset, 
processed using the “mutect2” software, were retrieved 
from the TCGA database.

Cell cluster annotation
The “Seurat” R package was used to analyze an scRNA-
seq dataset [13, 14]. Quality control standards were set, 
and cells that did not meet the criteria of the comprehen-
sive dataset were excluded. First, scRNA-seq was filtered 
to include only cells expressing each gene in at least three 
cells, each containing a minimum of 250 genes. Next, 
mitochondria and rRNA were identified using the “Per-
centageFeatureSet” function, and each cell was required 
to contain between 100 and 5000 genes, less than 25% 
mitochondria, and at least 100 unique molecular iden-
tifiers (UMIs). After log-normalization, highly variable 
genes were identified using the “FindVariableFeatures” 
function. Data scaling was performed with the “Scale-
Data” function, followed by the principal component 
analysis (PCA) of 50 dimensions to determine anchor 
points [15]. The dimensionality of the data was further 
reduced using the “RunTSNE” function. The cell clusters 
were then annotated using classical markers of immune 
cells.
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Defining subpopulations of malignant cells
The CopyKAT algorithm, an integrated Bayesian 
approach with hierarchical clustering, was utilized to 
categorize cells based on copy number alterations [16]. 
Aneuploid cells were classified as malignant, while dip-
loid cells were classified as stromal or immune cells.

Analysis of TF activity
We employed the SCENIC algorithm to investigate 
interaction mechanisms among different cell types and 
computed a TF regulatory network [17]. The “calcRSS” 
function in the SCENIC algorithm was used to calculate 

Fig. 1 The workflow illustrating the schematic overview of single-cell sequencing and GSE171145 dataset analysis (upper) and prognostic model estab-
lishment (lower)
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regulon specificity scores (RSS), aiding in the identifica-
tion of TFs associated with malignant cells [18].

Pseudotime analysis
Single-cell pseudotime trajectories were constructed 
using Monocle 2, identifying specific TFs associated with 
malignant cells over time We used the “dispersionTable” 
function to select genes for trajectory inference, describ-
ing gene variance across cells by the mean. We also used 
the “reduceDimensions” function for DDRTree-dimen-
sionality reduction. Visualization of results was facili-
tated using the “plot pseudotime heatmap” and “plot cell 
trajectory” functions.

Analysis of cell–cell communication
We used the “cellchat” R package to infer differences and 
similarities between malignant and adjacent cells and 
established cell–cell communication networks [10, 19]. 
We used the “identifOverExpressedInteractions,” “com-
puteCommunProb,” and “computeCommunProbPath-
way” functions to calculate ligand–receptor interactions, 
compute communication probabilities, and infer cellular 
communication networks at the signaling pathway level, 
respectively.

Consensus clustering analysis of malignant cell-associated 
ligand–receptor genes
Based on the cell communication analysis results, we 
identified malignant cell-associated ligand–receptor 
genes and further screened them for prognostic rel-
evance by performing univariate Cox analysis. Next, we 
employed the “ConsensusClusterPlus” package in R for 
unsupervised consensus clustering to identify robust 
clusters relevant to LUAD.

Gene set variation analysis (GSVA)
To evaluate prognostic differences between molecular 
subtypes, we conducted a Kaplan–Meier survival analy-
sis. To clarify these distinctions, we performed a GSVA 
using the “c2.cp.kegg.v7.5.1.symbols” gene set obtained 
from the MSigDB database (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp).

Development and validation of the prognostic signature 
for LUAD
We used the “limma” R package to conduct differential 
analysis and identify genes associated with malignant 
cell-associated ligand–receptor subtypes [20]. To iden-
tify the functional enrichment of these genes, we utilized 
the “clusterProfiler” R package for Gene Set Enrichment 
Analysis (GSEA) [21]. Next, we conducted a univari-
ate Cox regression analysis to identify genes linked to 
prognosis, followed by a 10-fold cross-validation pro-
cess to assess 95 unique configurations originating from 

10 different machine learning algorithms. These algo-
rithms included CoxBoost, generalized boosted regres-
sion modeling (GBM), Lasso, Ridge, supervised principal 
components (SuperPC), survival support vector machine 
(survival-SVM), elastic network (Enet), stochastic sur-
vival forest (RSF), stepwise Cox, and partial least squares 
regression for Cox (plsRcox) [22]. For each method, we 
evaluated its C index across both the TCGA datasets and 
external validation datasets (GSE72094). Subsequently, 
we determined the predictive efficacy of these models 
by averaging their C indices. The selection of algorithm 
combination was based on its robustness in perfor-
mance and potential clinical applicability. Consequently, 
we developed a signature that could predict the over-
all survival in patients with LUAD. We then categorized 
LUAD patients into high- and low-risk groups based on 
the median risk score in the TCGA-LUAD cohort. To 
examine prognostic differences between these groups, we 
conducted Kaplan–Meier survival analysis. We assessed 
the predictive performance of the model by categoriz-
ing patients into different subgroups on the basis of 
age, tumor stage, and TNM stage. We used “survminer” 
and “timeROC” packages for time-dependent receiver 
operator characteristic (ROC) curve analysis. We used 
Kaplan–Meier survival and ROC curve analyses to assess 
the robustness of the model in nine distinct datasets. 
To balance the granularity of the analysis with practi-
cal clinical management and prognostic assessment, we 
grouped the T stage into T1–2 and T3–4, N stage into 
N0 and N1–3, and tumor stage into I-II and III-IV. This 
approach allowed us to ensure sufficient sample sizes for 
robust statistical analysis and derive meaningful insights 
applicable to broader patient groups. We then conducted 
a subgroup analysis by stratifying patients by age (≤ 65 
and > 65 years), gender (female and male), T, N, and M 
stages, and tumor stage, enabling us to explore variations 
in risk scores across clinical phenotypes and their corre-
lations with clinical characteristics.

Immunological characteristics and therapeutic responses 
of the Prognostic signature
We evaluated differences in immune checkpoint expres-
sion between the high- and low-risk groups. The subclass 
mapping (SubMap) method was computed to evaluate 
the immune checkpoint blockade (ICB) response in the 
two groups [23]. Moreover, two independent immuno-
therapy cohorts, namely GSE78220 (N = 24) and a phase 
II immunotherapy cohort applied to locally advanced or 
metastatic uroepithelial cancers (IMvigor210, N = 293), 
were further evaluated.

Drug sensitivity estimation
We obtained the cancer cell line (CCL) drug sensitivity 
metrics from three separate response databases: GDSC 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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[24], CTRP [25], and PRISM [26]. The CTRP and PRISM 
databases provide AUC values as indicators of drug sen-
sitivity, while GDSC reports IC50 values. Additionally, we 
gathered transcriptome profiling data for CCLs from the 
CCLE database [27]. The IC50 values for various com-
pounds in GDSC were determined using the “oncoPre-
dict” R package. The relationship between the risk score 
and the IC50 (or AUC) values suggests potential LUAD 
sample responses to specific compounds.

Mutation analysis
We used the “maftools” R package to perform tumor 
mutation burden (TMB) analysis and generated a water-
fall plot to characterize somatic mutations in patients 
with LUAD. We also examined differences in homolo-
gous recombination defects, fractions altered, segment 
numbers, and TMB by performing the Wilcox test [28].

Establishment of a nomogram scoring system
To quantify the risk evaluation of patients and improve 
the practicability of the model, we developed a nomo-
gram that combined age, N stage, and risk scores to 
predict the overall survival at 1, 3, and 5 years [29]. More-
over, we assessed the efficiency of the nomogram by deci-
sion curve analysis (DCA) and calibration plots.

Cell culture
The lung adenocarcinoma cell lines, A549 and H1299, 
were acquired from the American Type Culture Collec-
tion (ATCC; Rockville, MD, USA). These cells were main-
tained in RPMI 1640 medium (ProCell) enriched with 
10% fetal bovine serum (Gibco, Waltham, MA, USA) and 
were cultured under a humidified environment with 5% 
CO2 at a temperature of 37 °C.

RNA interference and transfection
The small interfering RNAs (siRNA) of MYO1E were 
obtained from Shanghai GenePharma Co. Ltd (Shang-
hai, China). A549 and H1299 cells were transfected with 
50 nmol/L siRNA using Lipofectamine 2000 (Thermo-
Fisher, Massachusetts, USA). The knockdown efficiency 
of MYO1E was evaluated by quantitative real time PCR 
(RT-qPCR) and western blot. The sequences of siRNA 
were: si-MYO1E-1: 5’- G C A C G C C A T G A A T G T G A T T-3’, 
si-MYO1E-2: 5’- G C A T C A A G T C G A A T A T T T G-3’.

RT-qPCR
The total RNA in cells and tissues were extracted with 
Trizol reagent (Vazyme, Nanjing, China, R411-01) and 
reverse-transcribed using the HiScript III RT Super-
Mix (Vazyme, China, R323). RT-qPCR analysis was per-
formed using Universal SYBR Green Fast qPCR Mix 
(ABclonal, Hong Kong, China, RK21203), and the results 
were calculated using the 2(−ΔΔCt) method with the 

GADPH serving as the internal control reference [30]. 
The primer sequences were: GAPDH, F-5′- G G C T G T T 
G T C A T A C T T C T C A T G G-3′, R-5′-  G G A G C G A G A T C C 
C T C C A A A A T-3′. MYO1E, F-5′-  A A G G A G C G G C A C A 
G T A T G A A A-3′, R-5′- T C A C C A C T G A T A A T G A C G C A 
C-3′.

Clone formation tests
Cells transfected with control and siRNA were plated in 
6-well plates. After 2 weeks, the cell colonies were fixed 
using 4% paraformaldehyde for 30 min, followed by stain-
ing with 0.1% crystal violet for another 30 min [31]. High-
definition photographs of the colonies were captured and 
subsequently analyzed with ImageJ software.

Edu assay
Cells transfected with either control or siRNA were 
seeded into 24-well plates. After 48 h, Edu was added to 
the cells, which were then incubated for an additional 2 h. 
Cells were fixed with 4% paraformaldehyde for 30  min, 
and nuclei were stained with DAPI. A Nikon microscope 
was used for imaging, and the number of Edu-positive 
cells was quantified using ImageJ software.

Wound-healing assay
Cells were plated in 6-well plates and a scratch was cre-
ated using a sterile plastic pipette tip. Cells were then 
cultured in FBS-deficient medium. Images were taken 
with an electron microscope at 0 and 24 h to capture the 
wound area. Cell migration was assessed by measuring 
the change in wound size.

Cell migration assay
The migration capability of LUAD cells was assessed 
using a transwell membrane (Corning 3422, 8  μm pore 
size) without Matrigel coating. In brief, 2–4 × 104 cells 
were seeded into the upper chamber in 200 µL of FBS-
free medium, while the lower chamber was filled with 
600 µL of medium supplemented with 10% FBS. Fol-
lowing 24  h of incubation at 37  °C, the chambers were 
rinsed with PBS and fixed with 4% paraformaldehyde for 
approximately 30 min. Non-migratory cells on the upper 
membrane surface were removed using a cotton swab. 
The membrane was stained with crystal violet for about 
30 min at room temperature, rinsed with PBS, air-dried, 
and then imaged.

Statistical analysis
Data are presented as the mean ± SD. Statistical dia-
grams were generated using the ggplot2 package in R 
and GraphPad Prism 8. A P-value of less than 0.05 was 
considered statistically significant. Each experiment was 
conducted in triplicate to ensure reproducibility.
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Results
Dimensionality reduction clustering of LUAD single-cell 
data
After filtering the scRNA-seq data, a total of 43,851 cells 
were obtained. The data quality was evaluated using the 
following three parameters: total UMI count, number of 
genes detected, and the ratio of mitochondrial gene UMI 
count to total UMI count. A significant positive corre-
lation between UMI count and mRNA and a weak cor-
relation between UMI/mRNA and mitochondrial gene 
content are presented in Fig. S1A. Violin plots show dif-
ferences before and after the quality control analysis (Fig. 
S1B). Next, the data was normalized using log normal-
ization, followed by identifying variable features on the 
basis of variance stabilization transformation to discover 
highly variable genes. Scaling was then performed using 
the “ScaleData” function for all genes, followed by PCA 
downsizing using “RunPCA” to identify anchor points, 
with dim = 50 selected. Clustering performed on the cells 
(Resolution = 0.6) resulted in a total of 27 clusters (Fig. 
S1C). Moreover, t-SNE dimensionality reduction analysis 
was performed on the 43,851 cells. Some classical mark-
ers of immune cells were used to annotate the cells in 27 
clusters: clusters 0, 1, 3, 4, 5, 8, 10, 14, 19, 26, and 27 were 
classified as T/NK cells (CD4, CD3D, CD3E, CD8A); clus-
ters 6, 17, and 21 were classified as B/plasma cells (CD19, 
CD79A, MS4A1, JCHAIN); clusters 7, 9, 12, 15, 16, 22, 
and 25 were classified as epithelial cells (EPCAM, KRT19, 
KRT18, PROM1, ALDH1A1, CD24); cluster 20 and 23 
were classified as fibroblasts (DCN, COL1A2, PDGFRA, 
COL1A1, FGF7); cluster 24 was classified as endothe-
lial cells (expressing PECAM1, VWF, CDH5); clusters 2 
and 11 were classified as monocytic cells (CD14, CD68, 
CD163, C1QA, CD1C); cluster 13 was classified as neu-
trophil cells (S100A9, CSF3R, FCGR3B); and cluster 18 
was classified as mast cells (MS4A2, CPA3, TPSB2), as 
shown in Fig. S2.

To identify distinctions among various patients, we per-
formed cell clustering based on their origin. The diversity 
of cells across these patients indicated high inter-tumor 
heterogeneity (Fig. 2A). Figure 2B shows the distribution 
of the 27 clusters, and Fig. 2C shows the t-SNE plot after 
cell annotation. The “FindAllMarkers” function was used 
to identify markers for each cell cluster, setting the fol-
lowing thresholds: log2FC > 0.25 and min.pct > 0.25. Fig-
ure  2D illustrates the top five marker genes expression 
for each cell type. Based on copy number alterations in 
LUAD samples identified using the CopyKAT algorithm, 
malignant cells were distinguished from non-malignant 
cells. Despite the presence of heterogeneity, almost all 
malignant cells showed chromosome 13 deletions and 
chromosome 1, 8, and 21 amplifications (Fig. S3). The 
predicted aneuploid cells were deduced to be malignant 
cells, whereas diploid cells were deduced to be normal 

cells. In total, we inferred 11,227 malignant cells and 
24,701 normal cells (Fig.  2G). Finally, we calculated the 
percentages of the nine cell types and the numbers of 
cells in the nine samples (Fig. 2E, F).

Analysis of malignant cell-associated TFs
We used the SCENIC platform to investigate TF regula-
tory networks in malignant cells. The “runSCENIC_3_
scoreCells” function was used for computing the area 
under the curve (AUC) of a regulon in each cell and the 
AUC threshold for each regulon was determined. The 
cells were then downscaled and clustered using a regu-
lon AUC matrix, which is presented in a heatmap plot 
(Fig.  3A). The steady state of the cells was visualized 
using the “bkde2D” function (Fig. 3B). A heatmap of the 
top-ranked active TFs for the nine cell types showed dis-
tinct transcriptional regulation patterns (Fig.  3C). The 
RSS was computed for each cell clusters, and the top five 
TFs and all identified TFs are shown in Fig. 3D and Fig. 
S4, respectively. We used t-SNE to show the expression of 
the top five regulon TFs, their regulatory activity, the reg-
ulon AUC, and the regulon AUC distribution in all cells 
(Fig. S5). Subsequently, we plotted ridge and violin maps 
to visualize the TFs in the nine cell types (Fig. S6). These 
findings identify potential targets for inhibiting cells pos-
sessing malignant characteristics.

Trajectory analysis performed using the Monocle 2 
algorithm revealed dynamic changes in three states and 
the pseudotime profiles of these malignant cells (Fig. 3E, 
F). Given the role of tissue-specific TFs in regulating cel-
lular differentiation [32], we examined variations in 67 
specific TFs over time in the malignant cells (Fig. 3G).

Cell–Cell Interaction
The fundamental processes of cellular biological activ-
ity depended on cell–cell interactions. To further elabo-
rate on the role of malignant cell types in LUAD genesis, 
we analyzed cellular communication between these cell 
types using the “cellchat” R package. The findings are 
summarized in Supplementary Table 2. Notably, a strong 
correlation was observed between malignant and mono-
cytic cells in the nine cell types regarding the number and 
strength of ligand–receptor interactions (Fig. 4A, B, Fig. 
S7). The malignant cell types also played an essential role 
as ligands in multiple TME-related pathways (Fig.  4C). 
These results provide preliminary insight into the poten-
tial interactions between these cell types, which may help 
us further explore the role of malignant cells in LUAD 
development.

Identification of malignant cell-associated ligand–receptor 
subtypes of LUAD
To investigate the clinical significance of tumor hetero-
geneity and clarify the role of malignant cell-associated 
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ligand–receptor genes in bulk RNA sequencing data, 
108 ligand–receptor genes from malignant cell types 
were extracted using a cell–cell communication analysis 
approach. We identified 47 genes that correlated with the 
prognosis of LUAD through performing univariate Cox 
regression analysis (p < 0.05, Fig.  4D). We then used the 
“ConsensusClusterPlus” R package, using the K-means 
algorithm with “spearman” distance, to optimally clus-
ter these genes. The results indicated that k = 2 was the 
optimal approach for classifying the cohort into cluster1 
(N = 446) and cluster2 (N = 274) (Fig.  4E-G). According 
to the results of Kaplan–Meier survival analysis, it was 
found that cluster1 exhibited a more favorable progno-
sis than did cluster2 (p < 0.05, Fig.  4H). Supplementary 
Table 3 provides data on the TCGA dataset subtypes. To 
explore the reasons behind these differences, we plotted 
bar proportional charts and a Sankey diagram to analyze 
clinicopathological distinctions between the two clusters. 
The results indicated that the proportions of TNM stage 
and age were variable, with the incidence of late-stage 

clinicopathological outcomes tending to increase in clus-
ter2 (Fig. S8).

GSVA of molecular subtypes
To detect biological behavioral differences between the 
two clusters, we conducted a GSVA enrichment analy-
sis. We calculated the significance of pathway scores for 
two clusters using the Kruskal test method and screened 
critical pathways (p < 0.001, Fig. S9). Cluster2 showed sig-
nificant enrichment in pathways related to the cell cycle, 
base excision repair, nucleotide excision repair, DNA rep-
lication, and mismatch repair compared to cluster1.

Genomic Variance Analysis
Single nucleotide variants from the TCGA dataset were 
analyzed using the mutect2 tool. The somatic muta-
tion landscapes depicted in Fig. S10A illustrate distinct 
genomic profiles for the two clusters. Comparisons 
showed that homologous recombination defects, altered 
fractions, segment numbers, and TMB were higher 

Fig. 2 Definition of cell clusters. (A) The t-distributed stochastic neighbor embedding (t-SNE) plot of nine samples in the GSE171145 dataset, colored to 
indicate sample names. (B) The t-SNE plot of the distribution of 27 clusters, colored to indicate cell clusters. (C) The t-SNE plot of eight cell types after cell 
annotation, colored to indicate cell types. (D) Dot plots of the top five marker genes contributing to the clusters, x-axis: cell types, y-axis: marker genes, 
dot colors: average expression (blue represents low expression and red represents high expression), and dot size: percent expressed cells in the cluster. (E 
and F) Numbers and proportions of cell types in each sample after annotation, x-axis: cell numbers and proportions and y-axis: cell types. (G) The t-SNE 
plot of aneuploid and diploid cells, colored to indicate aneuploid and diploid cells
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Fig. 3 Transcription factor regulatory networks in malignant tumor subpopulations and trajectory analysis of malignant cells in lung adenocarcinoma. 
(A) Heatmap with regulon area under the curve (AUC) matrix of scaled AUC values (columns) detected in different cell types (rows). Blue represents low 
expression, yellow represents moderate expression, and red represents high expression. (B) Density map of steady-state cells. The darker color represents 
more steadiness. (C) Heatmap of transcriptional regulatory activity (columns) of nine cell types (rows). Blue represents low expression and red represents 
high expression. (D) Point plots of the top five regulon specificity scores. X-axis: rank and y-axis: regulon specificity scores. (E and F) Monocle 2 trajectory 
plots showing state dynamics and pseudotime curves. Each dot represents a singlet and the color gradient represents the pseudotemporal order. States 
1–3 are labeled in the same topology. (G) Heatmap hierarchical clustering of differentially expressed transcription factor genes (columns) along the pseu-
dotime curve (rows). Blue represents low expression, gradient represents moderate expression, and red represents high expression
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Fig. 4 Cell–cell communication analysis and identification of molecular subtypes. (A and B) Circle plots showing the number and strength of cell type 
interactions. The ligand–receptor expressed by each cell type, the thicker the lines, the greater the number/intensity of ligand–receptor. Dot size repre-
sents the number of cells in the subpopulation. (C) Enrichment of tumor microenvironment-related pathways inputs and outputs among cell types. (D) 
Hazard ratio distribution plot for univariate Cox analysis of malignant cell ligand–receptor-related gene sets. X-axis: cox coefficient and y-axis: −log10(p-
value), colored to indicate cell states. (E) Cumulative distribution function (CDF). X-axis: consensus index and y-axis: CDF, colored to indicate clustering 
number. (F) Delta area curve for The Cancer Genome Atlas cohort samples. X-axis: k and y-axis: relative change in area under CDF curve. (G) Heatmap of 
sample clustering when k = 2. (H) Kaplan–Meier survival analysis comparing the prognosis of two subtypes. X-axis: years and y-axis: survival probability
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in cluster2 than in cluster1 (Wilcoxon rank-sum test, 
p < 0.001, Fig. S10B).

Assessment of TME and differences in immunotherapy
To further investigate the functional role of malignant 
cell-associated ligand–receptor genes in the TME, we 
performed the “ESTIMATE” R package to evaluate 

Fig. 5 (See legend on next page.)
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stromal, immune, and “ESTIMATE” scores. We observed 
that cluster1 was closely associated with higher immune 
(p < 0.001), ESTIMATE (p < 0.001), and stromal scores 
(p < 0.001, Fig.  5D). We then utilized the ssGSEA algo-
rithm to quantify the levels of immune cell infiltration 
within the TME in the two clusters. The findings indi-
cated that cluster1 exhibited a greater degree of the 
infiltration of effector memory CD8 + T cells, activated 
CD8 + T cells, effector memory CD4 T + cells, acti-
vated CD4 + T cells, monocytes, and activated B cells 
(p < 0.001, Fig.  5A). We identified 47 immune check-
points that exhibited significant differential expression 
between the two clusters; cluster1 showed the higher 
expression of these 45 inhibitory checkpoints, except for 
CD276 and TNFSF9 (Fig.  5B). Moreover, we assessed 
the ICB response using the tumor immune dysfunction 
and exclusion (TIDE, http://tide.dfci.harvard.edu/) algo-
rithm. The findings revealed that the higher TIDE scores, 
exclusion scores, and expression of TAM.M2 and MDSC 
in cluster2, while Cluster1 exhibited higher interferon-
gamma and dysfunction scores (p < 0.01, Fig. 5C). Taken 
together, the malignant cell-associated ligand–receptor 
subtypes could effectively differentiate tumor charac-
teristics and TME and were essential to stratify patients 
with LUAD.

Screening and functional enrichment analysis of malignant 
cell-associated ligand–receptor genes
Using the “limma” R package, we identified 1107 malig-
nant cell-associated ligand–receptor subtype-derived 
genes (false discovery rate [FDR] < 0.05 and |log2(Fold 
Change)| > 1, Fig. 5E). We then performed Gene Ontol-
ogy (GO) enrichment and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses. The findings 
showed that genes differentially expressed between clus-
ter1 and cluster2 were enriched in processes regulating 
cell–cell adhesion and T-cell activation (Fig. 5F, G).

Construction of a prognosis signature based on integrative 
machine learning
To develop a robust signature, we initially conducted 
univariate Cox regression analysis to screen 37 genes 

identified as significant prognostic markers in TCGA-
LUAD. Subsequently, these genes were integrated into an 
ensemble framework for comprehensive machine learn-
ing-based survival analysis. Employing a diverse set of 95 
different machine learning algorithms, we constructed 
a predictive model within the TCGA dataset. A tenfold 
cross-validation approach was employed to determine 
the concordance index (C index) for all training and vali-
dation groups (Fig.  6A). Among these models, the top 
five, ranked by their mean C index, were developed using 
the Random Survival Forest (RSF) algorithm. These mod-
els demonstrated impressive outcomes in the training 
cohort but exhibited subpar performance in the valida-
tion cohort, with C indices below 0.6. This discrepancy 
highlighted a considerable tendency for overfitting to the 
training data. Consequently, these models were excluded 
from our final selection. Following a comprehensive 
evaluation process, the Lasso algorithm was selected as 
a highly accurate and clinically relevant predictive model. 
After performing Lasso Cox regression analyses, a six-
gene signature was constructed, including FEN1, NMI, 
ZNF506, ALDOA, MLLT6, and MYO1E. The signature 
includes two low-risk genes (hazard ratio [HR] < 1), spe-
cifically ZNF506, which is up-regulated in normal tissues. 
Conversely, four high-risk genes (HR > 1) are MYO1E, 
FEN1, ALDOA, and NMI, all up-regulated in tumor tis-
sues within the TCGA-LUAD cohort (Fig.  6B, C and 
Fig. S11). The risk score was computed using the follow-
ing formula: 𝑅𝑖𝑠𝑘𝑆𝑐𝑜𝑟𝑒 = [(0.253 × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
FEN1) + (0.119 × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 NMI) + [(− 0.466) 
× 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ZNF506] + (0.158 × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ALDOA) + [(− 0.244) × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 
MLLT6] + (0.302 × 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 MYO1E)]. The 
risk scores were standardized using the Z-score nor-
malization method, dividing the samples into high- and 
low-risk groups. Kaplan–Meier survival analysis showed 
that the low-risk group had a more favorable prognosis 
compared to the high-risk group (Fig. 6D). Based on the 
ROC analysis, the AUC values of the risk score for pre-
dicting overall survival (OS) at 1-year, 3-year, and 5-year 
time points were 0.7, 0.7, and 0.64, respectively (Fig. 6E). 
To assess the accuracy and robustness of the signature, 

(See figure on previous page.)
Fig. 5 Immune infiltration analysis in molecular subtypes and differential expression of malignant cell-associated ligand–receptor genes (A) Relative 
abundance of immune cells infiltrating the tumor microenvironment between molecular subtypes, x-axis: infiltrating immune cells and y-axis: score, 
colored to indicate different cell clusters, red, cluster1; green, cluster2. (B) Differences in stromal, immune, and “ESTIMATE” scores in molecular subtypes. 
X-axis: immune scores and y-axis: score, colored to indicate different cell clusters, red, cluster1; green, cluster2. (C) Expression levels of 47 immune check-
points between molecular subtypes. X-axis: genes and y-axis: expression, colored to indicate different cell clusters, red, cluster1; green, cluster2. (D) Dif-
ferences of TIDE, IFNG, MDSC, Exclusion, Dysfunction, and TAM.M2 in molecular subtypes. X-axis: cluster and y-axis: immune suppressive score, colored 
to indicate different cell clusters, red, cluster1; green, cluster2. (E) The volcano plot of differentially expressed genes was identified between cluster1 and 
cluster2 (false discovery rate [FDR] < 0.05). X-axis: log2(FoldChange), y-axis: −log10(FDR), color of bubbles: red, considerably upregulated, and blue, consid-
erably downregulated. (F) Bar chart of top five terms showing pathway enriched in biological process, cellular component, and molecular function. X-axis: 
gene counts in the enriched pathway and y-axis: pathway, colored to indicate enriched − log10(p-value). (G) Top 15 terms of the Kyoto Encyclopedia of 
genes and genomes (KEGG) pathways enrichment visualized via a bubble chart. X-axis: gene ratio in the enriched pathway and y-axis: pathway, colored 
to indicate enriched − log10(p-value), and the bubble size indicates the count of enriched genes

http://tide.dfci.harvard.edu/
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Fig. 6 (See legend on next page.)
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the GSE31210 dataset was utilized as an external vali-
dation set. Kaplan–Meier survival analysis results were 
consistent with those observed in the TCGA dataset 
(p < 0.05, Fig.  6F). It is noteworthy that there were no 
events (death) recorded in the first year of the GSE31210 
dataset, resulting in an AUC value of 0 for the 1-year 
prediction. By shifting the focus to 2, 3, and 5 years, we 
demonstrate the robust predictive power of the model 
over these longer intervals, where sufficient event data 
are available to support meaningful analysis. Supple-
mentary Table 4 provides a comprehensive view of the 
survival status and times for each sample in the valida-
tion set, enhancing our understanding of the dataset’s 
dynamics over extended periods. Furthermore, ROC 
analysis showed the risk score demonstrated a robust 
prognostic value for 2-year OS with an AUC of 0.93, 
3-year OS with an AUC of 0.72, and 5-year OS with an 
AUC of 0.85 (Fig. 6G). We conducted Kaplan–Meier sur-
vival and ROC analyses to validate the reliability of the 
prognostic gene signature in eight independent exter-
nal validation datasets, namely GSE36471, GSE37745, 
GSE42127, GSE87340, GSE50081, GSE68465, GSE68571, 
and GSE72094. The Kaplan–Meier analysis indicated 
that the low-risk group had a better prognosis compared 
to the high-risk group. Additionally, the AUC of the risk 
score showed excellent predictive performance of the 
signature across all cohorts (Fig. S12). The subgroup 
analysis findings indicated that among individuals on 
the basis of criteria, including age > 65, age ≤ 65, female, 
male, M0, N1-N3, stage I-II, T1-2, and T3-4, the high-
risk group had an inferior OS compared to the low-risk 
group (p < 0.05; Fig. S13). Furthermore, we conducted a 
comparison between the clinicopathological characteris-
tics of the high-risk and low-risk groups and found signif-
icant differences in clusters, T-stage, N-stage, and stage 
(Fig.  6H). The rise of next-generation sequencing tech-
nologies has led to a surge in reported gene expression-
based prognostic signatures. To thoroughly evaluate how 
our model compares to existing signatures, we conducted 
an exhaustive review of the literature on prognostic mod-
els, identifying 44 relevant publications (Supplementary 
Table 5) [33–35]. These models correlate with various 
biological processes, including response to immunother-
apy, oxidative stress, and pyroptosis. The results showed 
that our gene signature outperformed all other models 

in terms of the C-index within the TCGA-LUAD cohort 
(Fig. S14). These findings further showed that the gene 
signature exhibited a robust predictive performance.

The relationship between risk score and TME
We used the CIBERSORT algorithm to calculate the pro-
portions of 22 immune cell types, we found significant 
differences in the infiltration scores of 17 immune cell 
types between the high- and low-risk groups (Fig.  7A). 
There were variations in immune checkpoint expression 
between the groups, specifically lower CTLA4 expression 
in the high-risk group compared to the low-risk group 
(Wilcox.test; Fig.  7B). Additionally, the SubMap analy-
sis indicated a pronounced propensity for the high-risk 
group to respond positively to ICB therapy (Fig. S15A). 
The link between the risk score and ICB response was 
verified in two independent immunotherapy cohorts. 
We found that patients with complete and partial ICB 
responses exhibited a higher risk score compared to those 
with stable and progressive disease (p < 0.05, Fig. S15B, 
C). The findings indicate that the gene signature plays an 
essential role in regulating the microenvironment of the 
immune system and has the potential to act as a valuable 
predictor of the effectiveness of immunotherapy.

Drug sensitivity analysis
In our drug sensitivity analysis, we focused on pinpoint-
ing potential therapeutic targets and agents that exhibit a 
robust correlation with the risk score, aiming to enhance 
treatment strategies for LUAD patients. To achieve this, 
we analyzed IC50 values for 198 compounds from the 
GDSC database, applying these against each sample 
from the TCGA dataset. Subsequently, a Spearman cor-
relation analysis was conducted to identify the relation-
ship between these IC50 values and the LUAD patients’ 
risk scores. Notably, two compounds, AZD3759 and 
Gefitinib, displayed the most pronounced negative cor-
relation with the risk scores and were identified as 
EGFR inhibitors, as illustrated in Fig.  7C. Furthermore, 
we examined the signaling pathways and therapeutic 
properties of the candidate compounds, with findings 
elaborated in Fig. S16. We also assessed AUC values for 
compounds within the CTRP and PRISM databases for 
each TCGA sample, followed by a Spearman correlation 
analysis between these AUC values and the risk scores. 

(See figure on previous page.)
Fig. 6 Identification of prognostic gene signature. (A) 95 predictive models using diverse machine learning techniques, employing a tenfold cross-vali-
dation method. The C-index for each model was computed, covering both the TCGA-LUAD and GSE72094 cohorts. (B) Lambda trajectory of differentially 
expressed genes. X-axis: −In (lambda) and y-axis: coefficients, colored to indicate genes. (C) Confidence interval under lambda. X-axis: In (lambda) and 
y-axis: partial likelihood deviance, colored to indicate genes. (D) Kaplan–Meier survival analysis in The Cancer Genome Atlas (TCGA) dataset. X-axis: years 
and y-axis: survival probability. (E) Receiver operator characteristic (ROC) curve analysis-based evaluation of the prediction performance of gene signature 
in TCGA. X-axis: false positive fraction and y-axis: true positive fraction, colored to show time site. (F) Kaplan–Meier survival analysis in GSE31210. X-axis: 
years and, y-axis: survival probability. (G) ROC curve analysis-based evaluation of the prediction performance of gene signature in GSE31210. X-axis: false 
positive fraction and y-axis: true positive fraction, colored to show time site. (H) Pie plot of the difference in clinical characteristics between high- and 
low-risk groups (Wilcox test, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001)
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Fig. 7 Immune infiltration analysis and drug sensitivity analysis in high- and low-risk groups. (A) Comparison of 28 immune cell scores in high- and low-
risk groups. (B) Comparison of immune checkpoint expression in high-and low-risk groups. (C) Analyzing the association between IC50 values and the risk 
scores in patients with lung adenocarcinoma. (D-G) Analysis of correlation and differences in sensitivity to drugs among potential medications derived 
from the CTRP and PRISM datasets
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The top five compounds exhibiting the strongest negative 
correlations from both databases were illustrated in dot-
line plots, including SB − 743,921, paclitaxel, GSK461364, 
KX2 − 391, and leptomycin B from the CTRP database, 
and ispinesib, cabazitaxel, D − 64,131, ganetespib, and 
docetaxel from the PRISM database (Fig.  7D, F). The 
comparison of their estimated AUC values across vary-
ing risk score groups was detailed in Fig. 7E, G. In con-
clusion, the identified compounds consistently showed 
a significant negative correlation with the risk score and 
had lower estimated AUC values in the high-risk group, 
suggesting their potential therapeutic efficacy in LUAD 
treatment.

Clinical application of the prognostic risk model
Univariate and multivariate Cox regression analyses were 
conducted to assess the independent prognostic value 
of the risk-scoring model for LUAD. The univariate Cox 
regression analysis revealed the HR of the risk score was 
2.718 with a 95% confidence interval (CI) of 2.067–3.575 
(p < 0.001). In the multivariate Cox regression analy-
sis, the HR for the risk score was 2.217 with a 95% CI 
of 1.652–2.976 (Fig. 8A, B). These findings indicate that 
the risk score is a crucial predictive factor independent 
of multiple clinical parameters. A nomogram compris-
ing T stage, N stage, stage and risk score was developed 
in the TCGA cohort to quantitatively assess the risk and 
predict the patient survival probability (Fig. 8F). The cali-
bration curves indicated that the nomogram was reliable 
and accurate because the predicted probabilities for 1-, 
3-, and 5-year OS aligned closely with the actual observa-
tions (Fig. 8D). The AUC analysis showed that both the 
risk score and nomogram exhibited outstanding predic-
tive accuracy (Fig.  8C). Additionally, the DCA analysis 
was used to evaluate the predictive value of the nomo-
gram in clinical decision-making (Fig.  8E). These find-
ings indicate that the gene signature and nomogram are 
highly reliable regarding LUAD management.

Knockdown of MYO1E inhibited LUAD cell proliferation 
and migration
To assess the biological role of a previously unreported 
model gene (MYO1E) in LUAD, we employed two siR-
NAs to knocked down its expression in A549 and H1299 
cells. RT-qPCR analysis confirmed the effective suppres-
sion of MYO1E by these siRNAs (Fig. 9A). Knockdown of 
MYO1E expression led to a decrease in both cell prolifer-
ation and colony formation capability in A549 and H1299 
cell lines, as evidenced by the data presented in Fig. 9B. 
Furthermore, Edu staining revealed a significant reduc-
tion in cell proliferation in LUAD following MYO1E 
knockdown (Fig.  9C). Additionally, transwell assays 
demonstrated that the silencing of MYO1E impaired the 
migratory capabilities of A549 and H1299 cells (Fig. 9D). 

The wound-healing assays further supported these find-
ings, showing a slowed wound closure rate in cells defi-
cient in MYO1E (Fig. 9E). Collectively, these observations 
suggest that MYO1E plays a crucial role in promoting cell 
proliferation and migration in LUAD, positioning it as a 
promising therapeutic target for LUAD treatment.

Discussion
Lung cancer has the highest mortality rate among all 
cancer types, with a 5-year survival rate of approxi-
mately 22% [36]. LUAD represents a large proportion 
of lung cancer cases and many patients already present 
with metastases at diagnosis, resulting in a poor progno-
sis. ICB therapy is effective for patients with recurrent 
lung cancer [37–39]. However, intra-tumoral hetero-
geneity increases the probability of malignant cells sur-
viving standard chemotherapy and radiotherapy, thus 
significantly affecting the efficacy of various immuno-
therapies, especially ICB, leading to poor therapy out-
comes for most patients. Additionally, the role of TME 
in cancer progression and metastasis has been demon-
strated in various cancers [7]. Investigating the cellular 
and molecular mechanisms involved in the TME has the 
potential to establish a foundation for drug discovery, 
especially regarding targeted immunotherapy. Therefore, 
understanding LUAD tumor heterogeneity can enable 
more reliable and accurate presurgical molecular testing, 
facilitate stratification, and enable personalized precision 
therapy for recurrence risk. Owing to the advancements 
in high-throughput sequencing technology, the combina-
tion of multiomics data analysis has become an effective 
method for thoroughly elucidating disease heterogeneity, 
predicting disease prognosis, and identifying new thera-
peutic targets.

This study incorporated scRNA-seq from nine LUAD 
samples and bulk RNA sequencing data from 618 
patients. We found considerable heterogeneity among 
patient-derived tumor cells, demonstrating that tumor 
cell cluster-related differences were primarily attrib-
uted to tumor heterogeneity. After quality control and 
downscaling clustering, 27 clusters and nine cell types 
were annotated, and an integrated Bayesian segmenta-
tion method (CopyKAT) was used to identify malignant 
cells by inferring large-scale copy number alterations 
from single-cell expression profiles. The TF regulatory 
network was analyzed in a subset of malignancies using 
SCENIC to obtain the top five specific TFs. Furthermore, 
the high heterogeneity of malignant cells was explored by 
determining three different differentiation fates of malig-
nant cells based on developmental trajectory analysis 
and using a heatmap to visualize the changes in specific 
TFs over time. We employed cell communication analy-
sis to assemble multiple ligand-receptor pairs and char-
acterize the regulatory network in the LUAD TME. To 
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Fig. 8 Construction of nomogram. (A) Univariate Cox regression analysis of LUAD patients. (B) Multivariate Cox regression analysis of LUAD patients. (C) 
AUC analysis of risk score, nomogram, stage, T stage, and N stage. (D) Calibration curve of the nomogram. (E) Decision curves of “risk score”, “nomogram”, 
“T stage”, “N stage”, “stage”, “all”, and “None” models. (F) Nomogram for predicting the 1-, 3-, and 5-year survival rates based on the risk score
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further explore the clinical significance of tumor hetero-
geneity and clarify the role of malignant cell-associated 
ligand-receptor genes in bulk RNA-sequencing data, we 
categorized the patients into two clusters based on the 
unsupervised clustering of those genes. Kaplan–Meier 

survival analysis revealed that cluster1 had a better prog-
nosis than those in cluster2. We explored the under-
lying mechanisms behind these results from multiple 
dimensions, including functional enrichment analysis, 
TME cell infiltration, somatic mutation landscapes, and 

Fig. 9 MYO1E promotes proliferation and migration of LUAD cells. (A) RT-qPCR analyse confirmed MYO1E knockdown in A549 and H1299 cells using 
two siRNAs (B) Colony formation of A549 cells and H1299 cells transfected with control or si-MYO1E was measured by ImageJ. (C) Edu assay assessed the 
cell proliferation of control cells compared to MYO1E knockdown cells. (D) Transwell assay demonstrated the cell migration of control cells compared to 
MYO1E knockdown cells. (E) Wound healing assay showed the cell migration of control cells compared to MYO1E knockdown cells
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immunotherapy. The T, N, and overall stages were dif-
fered, and the incidence of advanced clinicopathologi-
cal features tended to increase in cluster2. We analyzed 
biological cancer features between the two clusters and 
found that cluster2 was considerably enriched in the cell 
cycle, base excision repair, DNA replication, nucleotide 
excision repair, and mismatch repair signaling pathway 
compared with cluster1. These biofunctions and signal-
ing pathways are important in promoting tumor devel-
opment. Dysregulation of the cell cycle is fundamental 
to the proliferation of tumor cells and derangement of 
cell cycle checkpoints facilitates genetic instability [40]. 
Sen et al. reported that cyclin-dependent kinase (CDK)1 
inhibition could induce PD-L1 and promote the immune 
response against tumors via stimulator of interferon 
genes-mediated T-cell activation in small-cell lung can-
cer [41]. Rooney and Jerby-Arnon et al. found that the 
inhibition of CDK4 and CDK6 has the potential to aug-
ment T-cell activity, reverse T-cell exclusion patterns, 
and result in a better response to ICB therapy [42, 43]. 
These studies indicated that cell cycle inhibitors inten-
sify ICB responses and cell cycle-related pathways mainly 
contribute to the worse prognosis of cluster2, suggest-
ing that patients in cluster2 may benefit from cell cycle 
inhibitors. Additionally, mutations in DNA mismatch 
repair are related to genomic instability, susceptibil-
ity to certain cancers, and resistance to specific chemo-
therapeutic drugs [44]. Further analyses of mutations in 
molecular subtypes to understand intra-tumoral het-
erogeneity showed higher homologous recombination 
defects, fraction alterations, number of segments, and 
TMB in cluster2. Somatic mutations drive cancer and 
guide diagnosis and therapies. Homologous recombina-
tion mutations increase genomic instability and lead to 
more error-prone DNA damage responses [45]. Further-
more, DNA damage response plays multiple roles in pro-
moting the growth of cancer cells by accumulating driver 
mutations, generating tumor heterogeneity, and evading 
apoptosis [46, 47]. TMB serves as a potentially valuable 
biomarker in predicting response to ICB therapy. Mul-
tiple studies have indicated a correlation between TMB 
and the response rate to ICB therapy in various tumor 
types [48, 49]. These results show that malignant cell-
associated ligand–receptor genes have a complex interac-
tion with somatic mutation.

We used 10 machine learning algorithms into more 
than 90 combinations. The selection of the most opti-
mal algorithm was based on the average C-index derived 
from two LUAD cohorts. This process facilitated the 
development of a robust and effective prognostic sig-
nature, crucial for evaluating the prognosis of tumor 
patients. After thorough evaluation, the Lasso algo-
rithm emerged as the superior method for creating a 
novel prognostic model centered around genes linked to 

ligand-receptor interactions in malignant cells, includ-
ing MYO1E, FEN1, NMI, ZNF506, ALDOA, and MLLT6. 
FEN1 is a vital endonuclease gene, whose protein plays 
multiple roles in DNA replication and damage repairs. 
FEN1 overexpression has been observed in multiple 
cancer types, such as testicular, brain, lung, and breast 
cancers [50]. He et al. discovered that FEN1 promotes 
tumor progression and contributes to cisplatin resistance 
development in NSCLC [51]. NMI encodes a protein 
(N-MYC) that interacts with two members of the Myc 
family of oncogenes. Meng et al. indicated that a high 
NMI expression was linked to unfavorable prognosis and 
increased tumor growth in glioblastoma [52]. NMI inhib-
its Wnt/β-catenin signaling by increasing the Dkk1 level, 
which blocks breast tumor growth. Low NMI expression 
leads to epithelial–mesenchymal transition in breast can-
cer [53, 54]. Wang et al. demonstrated the tumor-sup-
pressive potential of NMI in lung cancer by inhibiting 
multiple signaling pathways, such as phosphoinositide-
3-kinase/protein kinase B, MMP2/MMP9, COX-2/PGE2, 
and p300-mediated nuclear factor-κB acetylation, and 
indicated that NMI as promising therapeutic target for 
lung cancer [55]. ZNF506 encodes an important com-
ponent of the signaling pathway that involves γH2AX, 
which detects and repairs damaged DNA. Nowsheen et 
al. found that the ZNF506 protein could help recruit the 
EYA protein, forming a feedback loop with H2AX and 
MDC1 that amplifies the DNA damage response. Muta-
tions in ZNF506 are associated with cancer and can be 
involved in its pathogenesis [56]. ALDOA encodes a class 
I fructose-bisphosphate aldolase protein family member. 
Chang et al. revealed the molecular process by which 
ALDOA increases the spread of lung cancer by pro-
lyl hydroxylase domain-dependent stabilization of the 
hypoxia-inducible factor-1α and consequent MMP9 acti-
vation [57]. Myeloid/lymphoid or mixed-lineage leuke-
mia translocated to 6 (MLLT6) is crucial for cancer cells 
to efficiently express and present PD-L1 protein on their 
cell surface. Sreevalsan et al. reported that the deple-
tion of the MLLT6 protein leads to decreased inhibition 
of CD8 + cytotoxic T cell-mediated cytolysis. Moreover, 
cancer cells that do not express MLLT6 exhibit impaired 
signal transducer and activator of transcription 1 signal-
ing, resulting in reduced responsiveness to interferon-
γ-induced stimulation of indoleamine 2,3-dioxygenase 
1, guanylate binding protein 5, CD74, and major his-
tocompatibility complex class II genes [58]. Myosin 1e 
(MYO1E), a widely expressed myosin identified through 
proteomic studies as a key element in cell-substrate 
adhesions, plays a critical role in cancer progression [59, 
60]. Its expression levels have been linked to a poorer 
prognosis in individuals with invasive breast cancer, 
where it contributes to increased malignancy by promot-
ing tumor cell proliferation and driving de-differentiation 
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of tumor cells [61, 62]. Moreover, high levels of MYO1E 
expression are similarly indicative of a poor prognosis 
in patients suffering from LUAD and pancreatic adeno-
carcinoma, underscoring its significance across different 
cancer types [63, 64]. These studies suggested that the 
genes identified in the signature could serve as potential 
targets for in vitro experimental designs for elucidat-
ing LUAD-related molecular mechanisms. This study 
showed that the six-gene risk model was more effective 
in predicting prognosis in TCGA (N = 500) and nine inde-
pendent GEO (N = 1649) datasets. This conclusion was 
drawn based on time-dependent ROC curves and sur-
vival analysis. Despite the different trends of AUC val-
ues across these datasets, which may be attributed to the 
statistical power and sample size of each dataset, future 
research will benefit from the ongoing advances in bio-
informatics. This will allow for the expansion of cohort 
sample sizes and the use of self-test data cohorts to fur-
ther validate the robustness of the model. The signature 
also demonstrated good predictive performance across 
different clinical subgroups. Specifically, our study found 
that knockdown of MYO1E inhibited LUAD cell prolifer-
ation and migration through multiple experiments. This 
suggests that MYO1E may serve as an important poten-
tial target for the treatment of LUAD.

The risk score and two immunotherapy cohorts, 
including patients with skin cutaneous melanoma 
(N = 24) and bladder urothelial carcinoma (N = 293) were 
used to assess the variance in response to immuno-
therapy of the signature. Our subclass mapping analysis 
further demonstrated an improved response to immu-
notherapy in patients identified as high-risk, consistent 
with our earlier results. This suggests that the risk score 
could be a valuable tool for early detection of individu-
als who are more likely to benefit from immunotherapy. 
Furthermore, our analysis involved identifying potential 
therapeutic targets and compounds for LUAD patients 
categorized as high-risk by our prognostic model. From 
this investigation, AZD3759 and Gefitinib emerged as 
the most promising compounds. Interestingly, both 
compounds are classified as EGFR inhibitors and were 
selected from the GDSC drug response database. We 
developed a nomogram to increase the precision of clini-
cal decision-making for predicting the OS of patients 
with LUAD. ROC curve analysis, calibration, and DCA 
were used to assess the effectiveness of the nomogram. 
These data suggest that the new prognostic model has the 
potential for clinical use and could provide a promising 
therapeutic target for patients with LUAD.

This study had some limitations. First, the essential 
genes identified have not been thoroughly validated 
through in vivo and in vitro experiments, and the spe-
cific mechanisms remain unclear. Second, our prognostic 

model requires validation in real clinical samples, which 
was not performed and is the focus of our future study.

Conclusion
In this study, we employed consensus clustering based 
on the expression of malignant cell-associated ligand–
receptor genes and classified the cohort into two clusters 
using the scRNA-seq and bulk RNA sequencing data. 
These genes were found to differ significantly in their 
immune and molecular features and in the TME, mak-
ing them crucial for the stratification of patients with 
LUAD. This classification may enhance the understand-
ing of the correlation between tumor cell subtypes and 
their response to immunotherapy. We also developed a 
risk-scoring model that effectively predicts the prognosis 
and response to immunotherapy for patients with LUAD 
across various testing datasets. The findings of this study 
provide a theoretical foundation for developing person-
alized treatments for these patients. Furthermore, we 
investigated the role of a previously unreported gene, 
MYO1E, which may serve as a new therapeutic target for 
treating LUAD.
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