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Abstract
Background Vascular invasion (VI) is closely related to the metastasis, recurrence, prognosis, and treatment of gastric 
cancer. Currently, predicting VI preoperatively using traditional clinical examinations alone remains challenging. This 
study aims to explore the value of radiomics analysis based on preoperative enhanced CT images in predicting VI in 
gastric cancer.

Methods We retrospectively analyzed 194 patients with gastric adenocarcinoma who underwent enhanced CT 
examination. Based on pathology analysis, patients were divided into the VI group (n = 43) and the non-VI group 
(n = 151). Radiomics features were extracted from arterial phase (AP) and portal venous phase (PP) CT images. The 
radiomics score (Rad-score) was then calculated. Prediction models based on image features, clinical factors, and a 
combination of both were constructed. The diagnostic efficiency and clinical usefulness of the models were evaluated 
using receiver operating characteristic (ROC) curves and decision curve analysis (DCA).

Results The combined prediction model included the Rad-score of AP, the Rad-score of PP, Ki-67, and Lauren 
classification. In the training group, the area under the curve (AUC) of the combined prediction model was 0.83 (95% 
CI 0.76–0.89), with a sensitivity of 64.52% and a specificity of 92.45%. In the validation group, the AUC was 0.80 (95% CI 
0.67–0.89), with a sensitivity of 66.67% and a specificity of 88.89%. DCA indicated that the combined prediction model 
might have a greater net clinical benefit than the clinical model alone.

Conclusion The integrated models, incorporating enhanced CT radiomics features, Ki-67, and clinical factors, 
demonstrate significant predictive capability for VI. Moreover, the radiomics model has the potential to optimize 
personalized clinical treatment selection and patient prognosis assessment.
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Background
Gastric cancer is one of the most common malignant 
tumors globally, ranking among the top five in incidence 
and mortality rates [1]. In particular, China accounts for 
50% of the worldwide incidence and mortality of gastric 
cancer [2]. For resectable gastric cancer, surgery is con-
sidered the optimal treatment modality [3]. However, 
gastric cancer is characterized by a high rate of recur-
rence after surgery, which remains the primary cause of 
elevated postoperative mortality in these patients [4, 5]. It 
is essential to identify gastric cancer patients at high risk 
of recurrence early and to develop individualized treat-
ment plans.

Vascular invasion (VI) is defined as the invasion of 
blood vessels by malignant tumor cells within the pri-
mary tumor and surrounding tissues [6].VI is closely 
related to the metastasis, recurrence, prognosis, and 
treatment of gastric cancer [7]. Therefore, accurately 
assessing preoperative VI status is crucial for optimal 
clinical decision-making and personalized treatment 
[8].Currently, predicting VI preoperatively using tra-
ditional clinical examinations alone remains challeng-
ing. Enhanced CT, a non-invasive diagnostic technique, 
enables visualization of tumor angiogenesis and is rou-
tinely performed as a preoperative examination [9]. With 
advancements in computer technology, radiomics based 
on enhanced CT has been widely used for differential 
diagnosis [10], staging [11, 12], preoperative evaluation 
[13, 14], and prognosis of gastric cancer [15, 16]. How-
ever, few radiomics studies focus on VI in gastric cancer 
[17]. Ki-67 is a nuclear non-histone protein expressed in 
all stages of cell proliferation except the G0 phase and can 
be used as a predictor of cell proliferation to predict the 
recurrence of gastric cancer [18]. Therefore, Ki-67 may 
be associated with the presence of VI in gastric cancer 
patients. In China, endoscopic biopsy before gastrectomy 
is a common clinical procedure, providing important 
information about the local part of the gastric tumor, 
such as Ki-67 and Lauren classification [19]. However, 
endoscopic biopsy has limitations as it cannot accurately 
reflect the biological behavior of the entire tumor.

This study aims to establish a radiomics prediction 
model based on preoperative enhanced CT combined 
with Ki-67 to explore its value in predicting VI in gastric 
cancer. This model aims to provide a new tool for evalu-
ating prognosis and optimizing individualized treatment 
for gastric cancer patients.

Patients and methods
Participants
The retrospective study was approved by our institutional 
review board, and the requirement for informed consent 
was waived. Data were collected retrospectively for 503 
gastric cancer patients admitted between January 2017 

and May 2021. The inclusion criteria were: (1) postop-
erative pathologically confirmed gastric adenocarcinoma; 
(2) standard preoperative enhanced CT scan of the abdo-
men, including non-contrast phase, arterial phase (AP), 
and portal venous phase (PP) CT images; and (3) no 
other treatment prior to the CT examination. Exclusion 
criteria were: (1) incomplete clinical data and CT images; 
(2) tumors with a minimum diameter of less than 5 mm, 
making it difficult to outline the region of interest (ROI); 
and (3) poor image quality. Ultimately, 194 patients with 
gastric adenocarcinoma, comprising 139 males and 55 
females, aged 29–86 years (mean age 61.44 ± 10.35), were 
included. The flowchart of this study is shown in Fig. 1. 
The data were randomly divided into 137 cases in the 
training group and 57 cases in the validation group at a 
7:3 ratio and were further divided into the VI group and 
the non-VI group based on pathology analysis. The train-
ing group included 31 VI cases and 106 non-VI cases, 
while the validation group included 12 VI cases and 45 
non-VI cases.

Clinical characteristics
Clinical data, including demographics and gastroscopic 
pathology, were gathered using picture archiving and 
communication systems (PACS). The demographic infor-
mation included gender and age.The T stage was evalu-
ated by the two senior radiologists with CT images. The 
gastroscopic pathological information included tumor 
location, Ki-67 labeling index (Ki-67), human epi-
dermal growth factor receptor 2 (HER2), and Lauren 
classification.

CT scanning protocol
Patients included in this study underwent abdominal 
CT examination after fasting for at least 6 h. Before the 
examination, patients were asked to drink an appropriate 
amount of water to expand the stomach. During the scan, 
patients were instructed to lie on their backs. A non-
contrast CT scan was followed by an enhanced scan after 
injecting 80  ml of contrast agent iodohexanol (350  mg/
ml) through the cubital vein at a flow rate of 3.0 ml/s, fol-
lowed by 20  ml of saline at a flow rate of 2.5  ml/s. The 
scanning parameters were as follows: 64 rows of detec-
tors; beam collimation 64 × 0.62  mm; spacing 0.983; 
120  kV/250–300  mA; scanning thickness 5  mm; scan-
ning spacing 5 mm. Contrast-enhanced CT scans in the 
AP and PP began at approximately 25–30 s and 60–70 s, 
respectively.

Pathological and immunohistochemical evaluation
Referring to the WHO classification of gastrointestinal 
tumors [20], preoperative and postoperative histopatho-
logical specimens were retrospectively analyzed by senior 
pathologists experienced in gastrointestinal pathology. 



Page 3 of 10Chen et al. BMC Cancer         (2024) 24:1020 

They assessed and recorded the vascular invasion status 
and Lauren classification of each patient’s lesion. Ki-67 
was assessed by calculating the percentage of positive 
nuclei relative to the total number of tumor nuclei in 
10 high power fields (HPFs) per specimen, with positive 
staining defined as more than 50% of nuclei being positive 
and negative staining as 50% or fewer. For HER2 assess-
ment, HER2 0 and HER2 1 + were defined as negative, 
and HER2 3 + as positive according to the guidelines [21]. 
Patients with HER2 2 + were excluded as they were not 
further analyzed by fluorescence in situ hybridization.

Radiomics analysis of CT images
Lesion segmentation
Two senior radiologists with experience in abdominal 
diagnosis evaluated the AP and PP CT images of each 
patient, assessing tumor size, location, and border, and 
reached a consensus. The AP and PP CT images of all 
patients were downloaded from the PACS and imported 
into ITK-SNAP software (Version 3.4.0, http://www.

itksnap.org/). The tumor was manually outlined layer by 
layer on the software platform by the two senior radiolo-
gists, using the location of the postoperatively recorded 
lesions as a guide. The ROI was kept as close as possible 
to the size of the lesion, with the outer edge maintained 
2–3 mm from the tumor margin to avoid the influence of 
the gastric lumen. The final 3D ROI of the entire tumor 
lesion was automatically segmented by the software 
(Fig. 2).

Feature extraction
All 3D ROI data and the original DICOM files were 
imported into A.K. software (Artificial Intelligence Kit, 
AI kit) for feature extraction. A total of 396 radiomics 
features were extracted, including: (1) histogram features: 
uniformity, kurtosis, etc.; (2) grey level co-occurrence 
matrix (GLCM) features: entropy, variance, etc.; (3) grey 
level run length matrix (GLRLM) features: short run 
emphasis, gray level nonuniformity, etc.; (4) gray level 
size zone matrix (GLSZM) features: small area emphasis, 

Fig. 2 Sketch of the 3D segmentation of gastric cancer. (A) The sketch of manually delineating the region of interest (ROI) layer by layer in the arterial 
phase CT images by shrinking 2–3 mm along the tumor edge; (B) The sketch of manually delineating the region of interest (ROI) layer by layer in the portal 
venous phase CT images by shrinking 2–3 mm along the tumor edge; (C) 3D ROI of tumor

 

Fig. 1 Flowchart for selecting patients
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large area emphasis, etc.; (5) shape parameter features: 
spherical volume ratio, compactness, etc.

Feature preprocessing
The mean value of each feature obtained based on the 
3D ROI outlined by the two radiologists was calculated. 
Anomalous feature parameters that turned out to be nan 
or Inf were excluded and replaced by the mean value. 
Each feature was normalized.

Feature selection and Radiomics Model Building
The minimum redundancy maximum correlation 
(mRMR) algorithm was used to eliminate redundant 
and irrelevant features, retaining the top 30 features. 
The remaining features were then reduced and cross-
validated using the least absolute shrinkage and selection 
operator (LASSO) regression algorithm. The features 
were combined with their corresponding regression coef-
ficients in a weighted linear combination to calculate 
the radiomics score (Rad-Score). The clinical features 
and Rad-score were used to create a combined predic-
tion model using logistic multiple regression, and a 

nomogram and decision curve analysis (DCA) were com-
pleted. The study workflow is shown in Fig. 3.

Statistical analysis
Statistical analysis was performed using R software 
(https://www.r-project.org, version 4.1.3) and SPSS 24.0 
software (IBM, Armonk, NY, USA). P < 0.05 was consid-
ered statistically significant. Measurement data following 
the normal distribution were expressed as mean ± stan-
dard deviation (SD). The Mann-Whitney U-test was used 
to compare these variables. Categorical variables were 
expressed as median (first quartile, third quartile), and 
comparisons of categorical variables were made using 
the chi-squared test or Fisher’s exact test. The intra-
class correlation coefficient (ICC) was used to evaluate 
the consistency of outlining the ROI between the two 
senior radiologists. The ICC value was interpreted as 
follows: ICC < 0.20, slight agreement; ICC = 0.21–0.40, 
fair agreement; ICC = 0.41–0.60, moderate agreement; 
ICC = 0.61–0.80, substantial agreement; ICC = 0.81–1.0, 
almost perfect agreement. Clinical characteristics and 
radiomics parameters that were statistically significant 

Fig. 3 The workflow of the present study. (A) Contrast-enhanced CT imaging was acquired. The 3D segmentation were manually delineated around 
the entire tumor outline on each axial slice of arterial phase (AP) and portal venous phase (PP), and peritumoral shrinkage (2–3 mm) were automatically 
generated. (B) Feature selection was performed in the training cohort (AP and PP) based on the intraclass correlation coefficient (ICC) and least absolute 
shrinkage and selection operator (LASSO) binary logistic regression model. (C) Predictive models were constructed by multivariable logistic regression 
with the selected radiomics labels. (D) The AP and PP radiomics labels were selected to construct combined predictive model, followed by receiver op-
erating characteristic (ROC) curve analysis, nonogram analysis, and decision curve analysis
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were analyzed by multiple logistic regression. The diag-
nostic performance of each model was evaluated using 
receiver operating characteristic (ROC) curve analysis, 
and clinical benefit was assessed using decision curve 
analysis (DCA).

Results
Clinical characteristics
The clinical characteristics of the training and validation 
groups are summarized in Table  1. The VI group con-
sisted of 43 cases, with 32 males and 11 females; 4 cases 
were in stage T2, 8 in stage T3, and 31 in stage T4a. The 
non-VI group comprised 151 cases, with 107 males and 
44 females; 37 were in stage T1, 18 in stage T2, 34 in 
stage T3, and 62 in stage T4a. In this study, the intestinal 
and mixed types with better prognosis were combined 
into a group of 121 cases, and the diffuse type with worse 
prognosis was grouped into 73 cases. In patients with 
VI, Ki-67(+) and diffuse type were more common. There 
were no significant differences in age, gender, HER2, and 
tumor location between the VI and non-VI groups in 
both the training and validation groups.

Radiomics feature analysis
Three radiomics features were randomly selected for 
ICC analysis, resulting in values of 0.994, 0.968, and 
0.966, respectively, all with P < 0.001. After eliminat-
ing redundant and irrelevant features using the LASSO 
binary logistic regression algorithm, 4 features of AP and 

9 features of PP remained (Fig. 4A-D). The features and 
corresponding coefficients for each phase are shown in 
Table 2.

Table 2 Coefficient of selected radiomics characteristics
Group Radiomics characteristics Group Coefficient
Arterial 
phase 
group

Zone Percentage GLSZM 0.174
LongRunLowGreyLevelEmphasis_All-
Direction_offset2_SD

GLRLM 0.024

ClusterShade_AllDirection_offset8_SD GLCM -0.045
ShortRunLowGreyLevelEmphasis_All-
Direction_offset8_SD

GLRLM -0.058

Portal 
venous 
phase 
group

GLCMEntropy_angle135_offset7 GLCM -0.031
GLCMEntropy_angle135_offset4 GLCM -0.156
Low Intensity Small Area Emphasis GLSZM -0.113
Mean Deviation Histo-

gram
-0.143

Compactness1 Shape -0.275
ShortRunHighGreyLevelEmphasis_All-
Direction_offset2_SD

GLRLM -0.122

Voxel Value Sum Shape 0.038
ShortRunEmphasis_angle0_offset1 GLRLM 0.255
HaralickCorrelation_AllDirection_off-
set5_SD

GLCM -0.181

GLCM, grey level co-occurrence matrix; GLRLM, grey level run length matrix; 
GLSZM, gray level size zone matrix

Radiomics label model building and efficacy
Predictive models were constructed using multivariable 
logistic regression with the selected radiomics features. 

Table 1 Baseline characteristics of the patients in training and validation groups
Variable Training group (n = 137) Validation group (n = 57)

VI (+) VI (−) P value VI (+) VI (−) P value
(n = 31) (n = 106) (n = 12) (n = 45)

Age, mean ± SD, years 62.1 ± 10.27 61.14 ± 9.52 0.596 55.83 ± 14.09 63.13 ± 10.97 0.59
Gender, n (%) 0.637 1
 Male 23(74.2%) 74(69.8%) 9(75.0%) 33(73.3%)
 Female 8(25.8%) 32(30.2%) 3(25.0%) 12(26.7%)
Lauren classification < 0.001* 0.043*
 Diffuse type 22(71.0%) 29(27.4%) 8(66.7%) 14(31.1%)
 Intestinal and mixed type 9(29.0%) 77(72.6%) 4(33.3%) 31(68.9%)
Ki-67 0.005* 0.022*
 positive 22(71.0%) 45(42.5%) 8(66.7%) 13(28.9%)
 negative 9(29.0%) 61(57.5%) 4(33.3) 32(71.1%)
HER 2 0.442 0.261
positive 4(12.9%) 20(18.9%) 1(8.3%) 12(26.7%)
negative 27(87.1%) 86(81.1%) 11(91.7%) 33(73.3%)
Tumor location 0.358 0.12
 Cardiac fundus and lower esophagus 1(3.2%) 9(8.5%) 0(0%) 0(0%)
 Gastric curvature 9(29.0%) 33(31.1%) 2(16.7%) 20(44.4%)
 Large curvature of the stomach 2(6.5%) 9(8.5%) 0(0%) 4(8.9%)
 Gastric antrum and pylorus 13(41.9%) 47(44.3%) 9(75.0%) 17(37.8%)
 Full stomach 6(19.4%) 8(7.5%) 1(8.3%) 4(8.9%)
*P < 0.05; VI vascular invasion
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The AP and PP Rad-scores were calculated for each 
patient by linear combination of the selected radiomics 
features weighted by their respective coefficients in the 
predictive models. The predictive model based on AP 
images had an AUC value of 0.65 (95% CI 0.57–0.73) in 
the training group and 0.70 (95% CI 0.56–0.81) in the 
validation group. The predictive model based on PP 
images showed an AUC value of 0.73 (95% CI 0.65–0.80) 
in the training group and 0.72 (95% CI 0.58–0.83) in the 
validation group. A comparison of the two models in 

the training and validation groups is shown in Table  3; 
Fig. 5A-B.

Combined predictive model construction and efficacy
A univariate regression analysis model of clinical param-
eters was performed to determine VI risk factors, iden-
tifying Ki-67 and Lauren classification as candidates. 
Although the AUC value of the AP prediction model 
was lower than that of the PP prediction model, the 
Rad-score of the AP prediction model was stable and 

Table 3 Performance of the individualized prediction models
Models AUC 95% CI Sensitivity Specificity PPV NPV

Training cohort
A 0.65 0.57–0.73 77.42% 50% 60.76% 68.89%
P 0.73 0.65–0.80 54.84% 81.13% 74.40% 64.24%
C 0.76 0.68–0.83 67.74% 74.53% 72.67% 69.79%
P + C 0.83 0.76–0.89 64.52% 89.62% 86.14% 71.64%
A + P + C 0.83 0.76–0.89 64.52% 92.45% 89.50% 72.27%

Validation cohort
A 0.70 0.56–0.81 83.33% 48.89% 61.98% 74.57%
P 0.72 0.58–0.83 75.00% 68.89% 70.68% 73.37%
C 0.76 0.63–0.87 58.33% 84.44% 78.94% 66.96%
P + C 0.80 0.67–0.89 83.33% 68.89% 72.82% 80.52%
A + P + C 0.80 0.67–0.89 66.67% 88.89% 85.72% 72.73%
Note A and P indicate the predicted model based on arterial phase images and portal venous phase images, respectively. C indicates the predicted model based on 
the combination of Ki-67 and Lauren classification. CI Confidence Interval

Fig. 4 Radiomics feature selection based on the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (A) Ten-fold 
cross-validation via minimum criteria was used for tuning the parameter (lambda) in the LASSO model. The relationship between the binomial deviance 
and log (lambda) was plotted of arterial phase. (B) The LASSO coefficient profiles of the 396 radiomics features. A vertical line was drawn at the value 
selected using 10-fold cross-validation, where the optimal lambda resulted in 4 nonzero coefficients of arterial phase. (C) Ten-fold cross-validation via 
minimum criteria was used for tuning the parameter (lambda) in the LASSO model. The relationship between the binomial deviance and log (lambda) 
was plotted of portal venous phase. (D) The LASSO coefficient profiles of the 396 radiomics features. A vertical line was drawn at the value selected using 
10-fold cross-validation, where the optimal lambda resulted in 9 nonzero coefficients of portal venous phase
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had high sensitivity. Therefore, the Lauren classification 
and Ki-67 were combined with the Rad-scores (AP and 
PP) to construct a combined prediction model via mul-
tivariable logistic regression analysis. Nomogram was 
plotted based on the multiple logistic regression analysis 
(Fig. 6A) to quantitatively predict vascular invasion.

The ROC curves showed that in the combined predic-
tion model based on clinical features and PP Rad-score 
(Fig.  5C-D), the AUC value for the training group was 
0.83 (95% CI 0.76–0.89), with a sensitivity of 64.52% (95% 
CI 0.454–0.808) and specificity of 89.62% (95% CI 0.822–
0.947); the AUC value for the validation group was 0.80 
(95% CI 0.67–0.89), with a sensitivity of 83.33% (95% CI 

Fig. 6 Nomogram and decision curve analysis curve of the combined prediction model based on arterial phase and portal venous phase CT images. (A) 
Nomogram; (B) Decision curve analysis curve, showing that the prediction model with radiomics features obtained more clinical benefits than without

 

Fig. 5 The efficiency of prediction models. (A) Receiver operating characteristics(ROC) curves for the radiomics label prediction model based on arterial 
phase(AP) and portal venous phase(PP) CT images respectively in the training cohort. (B) ROC curves for the radiomics label prediction model based on 
AP and PP CT images respectively in the validation cohort. (C) ROC curves for the radiomics label and clinical label prediction models and the ROC curves 
for the combined models in the training cohort. (D) ROC curves for the radiomics label and clinical label prediction models and the ROC curves for the 
combined models in the validation cohort
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0.516–0.979) and specificity of 68.89% (95% CI 0.534–
0.818). The ROC curves also showed that the combined 
prediction model with the AP Rad-score was more stable 
than without it (Fig. 5C-D). The sensitivity and specific-
ity for the training group were 64.52% (95% CI 0.454–
0.808) and 92.45% (95% CI 0.857–0.967), respectively; 
for the validation group, the sensitivity and specificity 
were 66.67% (95% CI 0.349–0.901) and 88.89% (95% CI 
0.759–0.963), respectively. The performance of the com-
bined nomogram in the training cohort was significantly 
superior to that of the clinical model (AUC, 0.833 vs. 
0.761, P = 0.048), while there was no significant difference 
between the models in the validation cohort (AUC, 0.800 
vs. 0.763, P = 0.228). The DCA showed that the combined 
predictive model combining AP Rad-score and PP Rad-
score had a greater net clinical benefit than the single 
clinical model (Fig. 6B).

Discussion
The presence of vascular invasion (VI) is associated with 
worse clinical outcomes in patients with gastric cancer. 
In this study, we developed and validated a combined 
model based on enhanced CT images, Ki-67, and Lau-
ren classification for the preoperative prediction of VI. 
We found that radiomics features based on arterial phase 
(AP) and portal venous phase (PP) CT images, converted 
into a quantitative Rad-score, could be independent 
predictors of VI. The combined model performed well 
in the prediction of VI (AUC = 0.83), thereby providing 
an effective tool for prognosis prediction and clinical 
decision-making.

VI is associated with recurrence of gastric cancer, and 
the survival rate of patients with early recurrence is lower 
than that of patients with late recurrence [22]. Therefore, 
early detection of VI is crucial. However, obtaining and 
quantifying VI with conventional tools is challenging, as 
subjective assessment of images or pathological sampling 
biopsies can only assess a small part of the tumor [23]. In 
recent years, radiomics, aided by computer technology, 
has made it possible to detect internal tumor heteroge-
neity non-invasively and accurately [24]. Radiomics pro-
vides an objective and quantitative assessment of tumor 
heterogeneity by analyzing the values, distribution, and 
relationships of pixel or voxel grey levels in images [25, 
26]. In our study, we developed two radiomics models 
based on AP images and PP images, respectively. We 
found that the prediction model based on PP images 
had better performance than the prediction model based 
on AP images, suggesting that radiomics features based 
on PP images might be more correlated with VI in gas-
tric cancer, consistent with the findings of Fan et al. [27]. 
Despite this, the AP prediction model exhibited high sen-
sitivity and stability. Incorporating the AP Rad-score into 
the combined predictive model improved its stability.

Previous studies have demonstrated that a high Ki-67 
expression level is a risk factor for high survival risks [28]. 
Our results support this view. Meier A et al. [29] revealed 
that deep learning features based on enhanced CT images 
correlated with Ki-67 expression levels. Lauren classi-
fication of gastric cancer divides tumors into intestinal, 
diffuse, and mixed types based on histopathological char-
acteristics, with the diffuse type having a worse prognosis 
[30]. Li et al. reported that Lauren classification is a risk 
factor for gastric cancer recurrence [31]. In our study, the 
Rad-score based on PP images achieved an AUC of 0.73, 
similar to the Clinical model (AUC = 0.76). To improve 
the assessment and prediction of VI in gastric cancer, we 
combined pathological immunohistochemical indicators 
Ki-67 and Lauren classification with radiomics features 
to develop a combined predictive model. By incorporat-
ing Ki-67 and Lauren classification, the overall predic-
tive ability was strong in both the training and validation 
groups, with AUCs of 0.83 and 0.80, respectively. Qiong 
et al. [23] developed radiomics and deep transfer learn-
ing prediction models based on contrast-enhanced CT 
imaging, yielding AUCs of 0.755 and 0.725 in the training 
and testing datasets. Both values were lower than those 
achieved by our combined prediction model.

HER2 overexpression initiates various signaling path-
ways leading to cellular proliferation and tumorigenesis 
[32]. In our study, there was no statistically significant 
difference in HER2 between the VI and non-VI groups, 
whereas a statistically significant difference in Ki-67 was 
observed between the groups. This discrepancy may be 
because Ki-67 expression serves as an indicator of active 
tumor cell proliferation. Stimulation of vascular endo-
thelial growth factor causes small vessels to proliferate, 
increasing tumor vascular invasion. Consequently, Ki-67 
is more sensitive than HER2 in detecting vascular inva-
sion. Previous studies have also found Ki-67 to be asso-
ciated with T stage, recurrence, and disease-free survival 
of gastric cancer [33, 34]. The Nomogram showed that 
higher Ki-67, Lauren classification as diffuse type, and 
higher Rad-score were associated with a greater likeli-
hood of vascular invasion in gastric cancer.

We used 3D ROI for tumor segmentation in this study, 
which can comprehensively capture the biological char-
acteristics of the whole tumor. 3D ROI is more compre-
hensive and accurate than 2D ROI [35]. In this study, 
meaningful, highly stable, and reproducible radiomics 
features such as GLCM, GLRLM, and shape parameters 
were screened out. GLCM features reflect the spatial 
correlation of image gray, and GLRLM features mainly 
reflect the directionality and roughness of image texture, 
indirectly indicating the heterogeneity of pathological 
changes [36]. These features could avoid subjective image 
interpretations by radiologists and serve as effective 
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auxiliary parameters in diagnosing vascular invasion in 
gastric cancer.

Chen et al. [37] described that the specificity of pre-
dictive models based on PP images was higher than the 
sensitivity. What’s more, their work also showed that the 
specificity and sensitivity of predictive models based on T 
stage also had the same performance (specificity = 0.816, 
sensitivity = 0.480). Similarly, our combined prediction 
models showed high specificity and lower sensitivity. In 
our study, the specificity in the validation cohort of the 
combined predictive model based on PP Rad-score and 
clinical labels was 0.896, while it was 0.689 in the training 
cohort. We speculate this may be due to Ki-67 expression 
levels being associated with the T stage of gastric cancer 
or related to the unbalanced sample size between the VI 
and non-VI groups in this study [33]. In the subsequent 
research, we plan to enlarge the sample size to further 
validate the predictive model. We believe that specificity 
is more important for vascular invasion in gastric cancer, 
as it ensures the true-positive rate of prediction, prevent-
ing the inclusion of false-positive patients, and is more 
conducive to personalized clinical treatment.

There are some limitations in this study. Firstly, this 
study is retrospective and thus subject to selection bias. 
Secondly, it is a single-center and small sample study, and 
further validation with a large sample size and multiple 
centers is required in the future. Additionally, this study 
only considered the value of Lauren classification, Ki-67, 
HER2, and imaging features in predicting VI and did not 
consider the predictive value of tumor markers and other 
clinical indicators, which should be investigated further 
by including more indicators in the future.

Conclusion
In conclusion, this study demonstrates the potential role 
of preoperative assessment of vascular invasion in gas-
tric cancer through the application of radiomics analysis 
based on enhanced CT images, Ki-67, and Lauren classi-
fication. The integration of these imaging and pathologi-
cal features into a combined predictive model enhances 
the accuracy and utility of preoperative evaluations, sup-
porting more informed and tailored clinical decision-
making for gastric cancer patients.
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