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Abstract
Background  Although papillary thyroid cancer (PTC) patients are known to have an excellent prognosis, up to 30% 
of patients experience disease recurrence after initial treatment. Accurately predicting disease prognosis remains a 
challenge given that the predictive value of several predictors remains controversial. Thus, we investigated whether 
machine learning (ML) approaches based on comprehensive predictors can predict the risk of structural recurrence 
for PTC patients.

Methods  A total of 2244 patients treated with thyroid surgery and radioiodine were included. Twenty-nine 
perioperative variables consisting of four dimensions (demographic characteristics and comorbidities, tumor-related 
variables, lymph node (LN)-related variables, and metabolic and inflammatory markers) were analyzed. We applied five 
ML algorithms—logistic regression (LR), support vector machine (SVM), extreme gradient boosting (XGBoost), random 
forest (RF), and neural network (NN)—to develop the models. The area under the receiver operating characteristic 
(AUC-ROC) curve, calibration curve, and variable importance were used to evaluate the models’ performance.

Results  During a median follow-up of 45.5 months, 179 patients (8.0%) experienced structural recurrence. The non-
stimulated thyroglobulin, LN dissection, number of LNs dissected, lymph node metastasis ratio, N stage, comorbidity 
of hypertension, comorbidity of diabetes, body mass index, and low-density lipoprotein were used to develop the 
models. All models showed a greater AUC (AUC = 0.738 to 0.767) than did the ATA risk stratification (AUC = 0.620, 
DeLong test: P < 0.01). The SVM, XGBoost, and RF model showed greater sensitivity (0.568, 0.595, 0.676), specificity 
(0.903, 0.857, 0.784), accuracy (0.875, 0.835, 0.775), positive predictive value (PPV) (0.344, 0.272, 0.219), negative 
predictive value (NPV) (0.959, 0.959, 0.964), and F1 score (0.429, 0.373, 0.331) than did the ATA risk stratification 
(sensitivity = 0.432, specificity = 0.770, accuracy = 0.742, PPV = 0.144, NPV = 0.938, F1 score = 0.216). The RF model had 
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Background
Papillary thyroid cancer (PTC) is one of the most com-
mon types of differentiated thyroid cancer (DTC), 
accounting for more than 90% of DTC. Although the 
mortality rate for PTC patients is low, 10–30% of PTC 
patients will still experience recurrence or metastasis 
after initial treatment [1], which is the main cause of 
death in PTC patients. Therefore, accurate risk stratifica-
tion and individualized treatment and follow-up strate-
gies are essential for detecting recurrent disease early and 
improving the prognosis of PTC patients.

The 2009 American Thyroid Association (ATA) guide-
lines proposed a three-category system to estimate the 
likelihood of DTC patients developing structural recur-
rence during postoperative follow-up [2], and a revised 
ATA risk stratification system was proposed in 2015 [3]; 
this system has been widely used and validated in clini-
cal practice. Although the ATA system is flexible and 
can easily estimate risk based only on surgical/histologi-
cal findings, several prognostic factors in the system do 
not specify the cutoff values for risk stratification, espe-
cially considering heterogeneity among PTC patients; for 
example, thyroglobulin (Tg) is a specific product of thy-
roid follicular cells, and it has been demonstrated that a 
high level of postoperative thyroid stimulating hormone 
(TSH)-suppressed Tg is associated with a high risk of 
recurrent disease and mortality, with a wide range of sup-
pressed Tg cutoff values [3]. Moreover, the prognostic 
value of several prognostic factors remains controversial 
in PTC, such as metastatic lymph node (LN) features 
(i.e., the LN metastasis ratio and extranodal extension) 
[4–6], inflammation-based markers (i.e., the neutrophil-
to-lymphocyte ratio [NLR], the platelet-to-lymphocyte 
ratio [PLR], the lymphocyte-to-monocyte ratio [LMR], 
and the prognostic nutritional index [PNI]) [7–9], and 
metabolic-related markers (i.e., obesity and dyslipidemia) 
[10, 11], which therefore need to be confirmed.

In the age of precision medicine, there is considerable 
enthusiasm for estimating prognosis by relying on mod-
els that can simultaneously consider many factors and 
provide an estimate of absolute risk [12]. Machine learn-
ing (ML) provides a novel approach to achieve this goal 
and has advantages in incorporating a larger number of 

multidimensional variables with more dynamic interac-
tions than traditional prognostic tools [13]. Briefly, ML 
accounts for partial, nonlinear relationships, or multiple 
coexistent states between variables and outcomes, and 
each variable in an ML model can have a variable weight 
according to the changes in other variables; therefore, it 
can realize more individual predictions [14].

ML approaches have already proven to be effective pre-
dictive tools for various types of tumors [15–17]; thus, 
ML models may also prove useful in PTC risk stratifica-
tion. However, to the best of our knowledge, only a few 
studies have developed ML models for predicting death 
or recurrence in patients with thyroid cancer [18–23]. In 
addition, previous studies were partially limited by the 
lack of large datasets, single algorithms, inadequate vari-
ables, and incomplete model evaluation [18–23], which 
hindered clinicians from better understanding the appli-
cation of ML in prognosis prediction for PTC. Thus, this 
study aimed to develop and validate multiple ML models 
to predict structural recurrence in PTC patients based on 
a large sample of PTC patients with comprehensive clini-
cal variables.

Methods
Study design and population
The electronic medical records of patients with thyroid 
cancer treated at West China Hospital, Sichuan Uni-
versity, were fully screened to retrospectively review all 
PTC patients treated and followed up. We restricted our 
analyses to PTC patients who underwent thyroid surgery 
(with or without lymph node dissection) and radioiodine 
(131I) therapy at West China Hospital, Sichuan University 
between January 2009 and December 2018 (n = 6220). 
We excluded patients with unresected tumors (n = 275), 
initial distant metastasis (n = 152), or other malignancies 
combined (n = 46), patients with unavailable information 
about the 8th edition of the AJCC TNM staging system 
[24] or the 2015 ATA risk stratification [3] (n = 1081), 
patients with a positive TgAb (> 40 IU/mL) [25] or miss-
ing data on postoperative non-stimulated Tg (TSH < 30 
µIU/ml) (n = 1592), and patients with a follow-up period 
shorter than 1 year (n = 830). Finally, a total of 2244 
patients were included in the prediction models (Fig. 1A).

generally consistent calibration compared with the other models. The Tg and the LNR were the top 2 important 
variables in all the models, the N stage was the top 5 important variables in all the models.

Conclusions  The RF model achieved the expected prediction performance with generally good discrimination, 
calibration and interpretability in this study. This study sheds light on the potential of ML approaches for improving 
the accuracy of risk stratification for PTC patients.

Trial registration  Retrospectively registered at www.chictr.org.cn (trial registration number: ChiCTR2300075574, date 
of registration: 2023-09-08).

Keywords  Papillary thyroid cancer, Recurrence, Machine learning, Prediction model
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This study was conducted following the basic principles 
of the Declaration of Helsinki and was approved by the 
West China Hospital Clinical Trials and Biomedical Eth-
ics Committee, Sichuan University (Approval in 2020, 
No. 678). Written informed consent was waived given the 
retrospective nature of the study.

Potential input variables
To include as many predictive variables as possible and 
ensure the availability and representation of variables 
from the database. We used 29 potential input variables 
consisting of four dimensions in this study: (1) demo-
graphic characteristics and comorbidities, including 
age, sex, race, smoking status, alcohol drinking status, 
comorbidity of diabetes status, comorbidity of hyperten-
sion status, and comorbidity of Hashimoto’s thyroiditis; 
(2) tumor-related variables, including histology, tumor 
diameter, tumor foci, tumor location, external thyroid 
invasion (ETE), BRAF (V600E) mutation, and postopera-
tive non-stimulated Tg; (3) LN-related variables, includ-
ing LN dissection, number of LNs dissected, extranodal 
extension (ENE), lymph node metastasis ratio (LNR), 
and N stage; and (4) metabolic and inflammatory mark-
ers, including body mass index (BMI), triglyceride, cho-
lesterol, low-density lipoprotein (LDL), high-density 

lipoprotein (HDL), neutrophil–lymphocyte ratio (NLR), 
platelet–lymphocyte ratio (PLR), lymphocyte–monocyte 
ratio (LMR), and prognostic nutritional index (PNI).

The missing values of potential input variables are rep-
resented as a category when the missing value was ≥ 20%, 
and multiple imputations were used when the missing 
value was < 20%, as previously reported [26, 27] (Supple-
mentary Data 1). Receiver operating characteristic (ROC) 
curve analysis was performed, and the Youden index was 
used to determine the cutoff value for continuous vari-
ables [28]. The details of the potential input variables are 
shown in Supplementary Data 2.

Definition of structural recurrence
The outcome of this study was structural recurrence that 
occurred during follow-up after initial thyroid surgery. 
According to the 2015 ATA guidelines [3], patients were 
considered to have structural recurrent disease if any of 
the following conditions were met: (1) structural disease 
confirmed by cytology/histology; (2) highly suspicious 
lymph nodes or thyroid bed nodules on neck ultrasound; 
or (3) highly suspicious metastatic disease on whole-body 
131I scintigraphy, 18fluorodeoxyglucose positron emission 
tomography scans, or other cross-sectional imaging. The 
last follow-up date of this study was July 31, 2021.

Fig. 1  Flowchart of the study (A) and the analytic steps (B). PTC, papillary thyroid cancer; Tg, thyroglobulin; TgAb, anti-thyroglobulin antibody; LASSO, 
least absolute shrinkage and selection operator; LR, logistic regression; XGBoost, eXtreme gradient boosting; SVM, support vector machine; RF, random 
forest; NN, neural network; AUCs, area under the receiver operating characteristic curves
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Dataset split and resampling
Figure 1B shows the analysis steps of this study. Patients 
were randomly divided into a training dataset and a test 
dataset according to a 4 to 1 ratio. The training dataset 
was used to develop and optimize the models (n = 1795), 
and the test dataset was used to validate and compare the 
models (n = 449). To ensure that the models can effec-
tively predict the outcome (minority class), one-sided 
selection (OSS) under-resampling method was used to 
establish a balanced training dataset [29] (Supplementary 
Data 3).

Variable selection
Spearman correlation analysis was used to evaluate the 
correlation of all variables with each other. Spearman’s 
correlation coefficients range from -1 to 1, and values of 
coefficients close to -1 or 1 represent stronger relation-
ships than values closer to zero. Then, the least absolute 
shrinkage and selection operator (LASSO) method was 
used to select the input variables. LASSO formulates 
curve fitting as a quadratic programming problem, where 
the objective function penalizes the absolute size of the 
regression coefficients based on the value of a tuning 
parameter λ involved in the maximum AUC value [30]. 
Thus, LASSO can perform automatic variable selection 
by driving the coefficients of irrelevant variables to zero.

Development and optimization of the models
Five-fold cross-validation was used to avoid training 
overfitting, and the training dataset was divided into 
5 equal parts, this process was repeated 5 times. In the 
first step, the first part was used for validation, and the 
remaining parts were used for training. Similarly, the sec-
ond part was used for validation in the second fold, and 
this process was continued for the rest of the folding. Five 
popular ML algorithms were applied to develop models 
based on selected variables, including logistic regression 
(LR), support vector machine (SVM) [31], eXtreme gra-
dient boosting (XGBoost) [32], random forest (RF) [33], 
and neural network (NN) [34]. The hyperparameters for 
the five models were optimized via Bayesian optimization 
(BO), and the models were trained on a training set for 
optimization and validated on a validation set for each 
hyperparameter configuration. The ideal parameter setup 
provided the highest AUC values [35] (Supplementary 
Data 4). Finally, the relative importance of the variables 
of each model was ranked, which can reflect the contri-
bution of each variable when predicting structural recur-
rence (Supplementary Data 5).

Evaluation and comparison of the models
We evaluated the predictive performance of each model 
in the test dataset (Fig.  1B). First, we evaluated the dis-
crimination of the models by using the area under the 

receiver operating characteristic (AUC-ROC) curve [12]. 
We also compared the AUC values of the ML models and 
the AUC values of the ATA risk stratification by using 
the DeLong test [36], and a 2-tailed test with P < 0.05 
was considered to indicate statistical significance. We 
used the Youden index as the threshold to calculate the 
sensitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), and F1 score 
[37]. Second, we evaluated the calibration of the models 
by using calibration curves, which represent the accuracy 
of the absolute recurrent risk estimates of the models 
[12]. Finally, we analyzed the interpretability of the ML 
models by using the rank of variable importance. Sta-
tistical analyses were performed using python (version 
3.6.10, https://www.python.org) and R software (version 
4.2.2, https://www.r-project.org/).

Results
Characteristics of the study population
The median age of the 2244 patients was 42.0 years, and 
1489 (66.4%) patients were female. During a median 
follow-up of 45.5 months (range: 12.0 to 142.7 months), 
179 patients (8.0%) experienced structural recurrence 
(Table  1). The median tumor diameters of ≤ 10  mm, 10 
to 20 mm, 20 to 40 mm, and > 40 mm were documented 
in 1093 (48.7%), 777 (34.6%), 322 (14.3%), and 52 (2.3%) 
patients, respectively. Multifocality was observed in 
577 (25.7%) patients. Extensive ETE was observed in 
584 (26.0%) patients. The median non-stimulated Tg 
was 0.24 ng/mL with median TSH was 0.46 µIU/ml. A 
total of 1537 (68.5%) patients and 698 (31.1%) patients 
underwent central LN dissection and lateral LN dis-
section, respectively. A total of 1173 (52.3%) and 564 
(25.1%) patients had N1a and N1b disease, respectively. 
The median LNR was 28.57%. A total of 328 (14.6%), 
1334 (59.4%), and 582 (25.9%) patients were classified as 
low risk, intermediate risk, and high risk, respectively, 
according to the ATA risk stratification.

Patients with recurrent disease were more likely to be 
older, male, be smokers, be drinkers, have comorbidities 
of diabetes, hypertension and Hashimoto’s thyroiditis, 
have larger, multifocal and bilateral tumors, have ETE, 
have higher levels of Tg, have undergone lateral dissec-
tion with a higher number of LN dissected and LNR, 
have ENE and more advanced N stage, have higher levels 
of BMI, cholesterol, LDL and NLR, and have lower levels 
of triglyceride, PLR, LMR and PNI.

Performance of the models
The heatmap of the Spearman correlation analysis 
showed no significant or weak correlation between the 
majority of the input variables (Supplementary Data 6). 
The LASSO method selected nine variables for develop-
ing prediction models (Supplementary Data 7), including 

https://www.python.org
https://www.r-project.org/
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Characteristics N (%) or median (Q1, Q3)
Patients without recurrent 
disease (N = 2065)

Patients with recurrent 
disease (179)

Overall 
(N = 2244)

Demographic characteristics and comorbidities
Age, years 41.00 (33.00, 50.00) 44.00 (35.50, 52.00) 42.00 (33.00, 

50.00)
≤ 42.0 1127 (54.6) 83 (46.4) 1210 (53.9)
> 42.0 938 (45.4) 96 (53.6) 1034 (46.1)

Sex Male 677 (32.8) 78 (43.6) 755 (33.6)
Female 1388 (67.2) 101 (56.4) 1489 (66.4)

Race Han 1983 (96.0) 171 (95.5) 2154 (96.0)
Others 82 (4.0) 8 (4.5) 90 (4.0)

Smoking No 1787 (86.5) 147 (82.1) 1934 (86.2)
Yes 278 (13.5) 32 (17.9) 310 (13.8)

Alcohol drinking No 1702 (82.4) 139 (77.7) 1841 (82.0)
Yes 363 (17.6) 40 (22.3) 403 (18.0)

Comorbidity of diabetes No 2000 (96.9) 165 (92.2) 2165 (96.5)
Yes 65 (3.1) 14 (7.8) 79 (3.5)

Comorbidity of hypertension No 1424 (69.0) 96 (53.6) 1520 (67.7)
Yes 641 (31.0) 83 (46.4) 724 (32.3)

Comorbidity of Hashimoto’s thyroiditis No 1898 (91.9) 161 (89.9) 2059 (91.8)
Yes 167 (8.1) 18 (10.1) 185 (8.2)

Tumor-related variables
Histology PTC 2029 (98.3) 178 (99.4) 2207 (98.4)

FV-PTC 36 (1.7) 1 (0.6) 37 (1.6)
Tumor diameter, mm ≤ 10 1026 (49.7) 67 (37.4) 1093 (48.7)

10 to 20 707 (34.2) 70 (39.1) 777 (34.6)
20 to 40 289 (14.0) 33 (18.4) 322 (14.3)
> 40 43 (2.1) 9 (5.0) 52 (2.3)

Tumor foci Unifocality 1550 (75.1) 117 (65.4) 1667 (74.3)
Multifocality 515 (24.9) 62 (34.6) 577 (25.7)

Tumor location Isthmus 9 (0.4) 0 (0.0) 9 (0.4)
Left 788 (38.2) 64 (35.8) 852 (38.0)
Right 902 (43.7) 73 (40.8) 975 (43.4)
Bilateral 366 (17.7) 42 (23.5) 408 (18.2)

ETE No 1385 (67.1) 112 (62.6) 1497 (66.7)
Minimal 151 (7.3) 12 (6.7) 163 (7.3)
Extensive 529 (25.6) 55 (30.7) 584 (26.0)

BRAF mutation Negative 256 (12.4) 24 (13.4) 280 (12.5)
Positive 543 (26.3) 49 (27.4) 592 (26.4)
Unknown 1266 (61.3) 106 (59.2) 1372 (61.1)

Tg, ng/mL 0.22 (0.08, 0.71) 0.99 (0.12, 4.14) 0.24 (0.09, 0.79)
< 1.08 1715 (83.1) 90 (50.3) 1805 (80.4)
≥ 1.08 350 (16.9) 89 (49.7) 439 (19.6)

LN-related variables
LN dissection No 9 (0.4) 0 (0.0) 9 (0.4)

Central dissection 1443 (69.9) 94 (52.5) 1537 (68.5)
Lateral dissection 613 (29.7) 85 (47.5) 698 (31.1)

Number of LN dissected 10 (5, 20) 13 (7, 30) 10 (5, 20)
< 21 1579 (76.5) 108 (60.3) 1687 (75.2)
≥ 21 486 (23.5) 71 (39.7) 557 (24.8)

ENE No 1985 (96.1) 160 (89.4) 2145 (95.6)
Yes 80 (3.9) 19 (10.6) 99 (4.4)

LNR, % 27.78 (8.69, 50.00) 35.71 (23.31, 55.05) 28.57 (9.63, 
50.00)

Table 1  Characteristics of the patients in this study
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Tg, LN variables (LN dissection, number of LNs dis-
sected, LNR, and N stage), comorbidities and meta-
bolic-related variables (comorbidity of hypertension, 
comorbidity of diabetes, BMI, and LDL).

As shown in Table 2; Fig. 2, five models had adequate 
discrimination in differentiating patients at greater risk 
of recurrence from those at lower risk, and the AUCs 
of the five models ranged from 0.738 to 0.767 in the 

test dataset (LR: AUC = 0.738, 95% CI = 0.636–0.820; 
SVM: AUC = 0.752, 95% CI = 0.666–0.841; XGBoost: 
AUC = 0.741, 95% CI = 0.609–0.840; RF: AUC = 0.766, 
95% CI = 0.702–0.845; NN: AUC = 0.767, 95% CI = 0.675–
0.843). All models showed better discrimination than 
did the ATA risk stratification (AUC = 0.620, 95% 
CI = 0.534–0.670; DeLong test: P < 0.01; Supplementary 
Data 8). The SVM, XGBoost, and RF model showed 

Characteristics N (%) or median (Q1, Q3)
Patients without recurrent 
disease (N = 2065)

Patients with recurrent 
disease (179)

Overall 
(N = 2244)

< 22.70 891 (43.1) 42 (23.5) 933 (41.6)
≥ 22.70 1174 (56.9) 137 (76.5) 1311 (58.4)

N stage N0 484 (23.4) 23 (12.8) 507 (22.6)
N1a 1093 (52.9) 80 (44.7) 1173 (52.3)
N1b 488 (23.6) 76 (42.5) 564 (25.1)

Metabolic and inflammatory markers
BMI, kg/m2 < 18.5 120 (5.8) 6 (3.4) 126 (5.6)

18.5 to 24.0 1141 (55.3) 91 (50.8) 1232 (54.9)
24.0 to 28.0 637 (30.8) 55 (30.7) 692 (30.8)
≥ 28.0 167 (8.1) 27 (15.1) 194 (8.6)

Triglyceride, mmol/L 1.70 (1.70, 2.58) 1.63 (1.14, 2.43) 1.70 (1.70, 2.57)
< 2.30 1428 (69.2) 126 (70.4) 1554 (69.3)
≥ 2.30 637 (30.8) 53 (29.6) 690 (30.7)

Cholesterol, mmol/L 6.12 (5.32, 6.97) 6.34 (5.47, 7.17) 6.14 (5.34, 6.97)
< 6.20 1091 (52.8) 85 (47.5) 1176 (52.4)
≥ 6.20 974 (47.2) 94 (52.5) 1068 (47.6)

LDL, mmol/L 3.61 (3.01, 4.28) 3.82 (3.07, 4.35) 3.62 (3.01, 4.28)
< 4.10 1423 (68.9) 110 (61.5) 1533 (68.3)
≥ 4.10 642 (31.1) 69 (38.5) 711 (31.7)

HDL, mmol/L 1.55 (1.27,1.87) 1.58 (1.30, 1.94) 1.55 (1.27, 1.88)
< 1.00 164 (7.9) 13 (7.3) 177 (7.9)
≥ 1.00 1901 (92.1) 166 (92.7) 2067 (92.1)

NLR 1.59 (1.25, 2.08) 1.60 (1.22, 2.06) 1.59 (1.25, 2.08)
< 2.32 1741 (84.3) 146 (81.6) 1887 (84.1)
≥ 2.32 324 (15.7) 33 (18.4) 357 (15.9)

PLR 88.66 (67.61, 113.45) 86.42 (67.98, 112.78) 88.41 (67.58, 
113.43)

< 116.18 1580 (76.5) 144 (80.4) 1724 (76.8)
≥ 116.18 485 (23.5) 35 (19.6) 520 (23.2)

PNI 55.85 (52.85, 58.85) 55.75 (53.33, 58.95) 55.83 (52.85, 
58.90)

< 56.15 1076 (52.1) 96 (53.6) 1172 (52.2)
≥ 56.15 989 (47.9) 83 (46.4) 1072 (47.8)

LMR 7.68 (6.00, 9.96) 7.65 (5.88, 9.80) 7.67 (6.00, 9.95)
< 6.47 644 (31.2) 65 (36.3) 709 (31.6)
≥ 6.47 1421 (68.8) 114 (63.7) 1535 (68.4)

ATA risk stratification
Low risk 314 (15.2) 14 (7.8) 328 (14.6)
Intermediate risk 1230 (59.6) 104 (58.1) 1334 (59.4)
High risk 521 (25.2) 61 (34.1) 582 (25.9)

Abbreviations: PTC, papillary thyroid cancer; FV-PTC, follicular variant of papillary thyroid carcinoma; ETE, extrathyroid extension; Tg, thyroglobulin; LN, lymph node; 
ENE, extranodal extension; LNR, lymph node metastasis ratio; BMI, body mass index; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NLR, neutrophil–
lymphocyte ratio; PLR, platelet–lymphocyte ratio; PNI, prognostic nutritional index; LMR, lymphocyte–monocyte ratio; ATA, American Thyroid Association

Table 1  (continued) 
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greater sensitivity (0.568, 0.595, 0.676), specificity (0.903, 
0.857, 0.784), accuracy (0.875, 0.835, 0.775), positive pre-
dictive value (PPV) (0.344, 0.272, 0.219), negative pre-
dictive value (NPV) (0.959, 0.959, 0.964), and F1 score 
(0.429, 0.373, 0.331) than did the ATA risk stratification 
(sensitivity = 0.432, specificity = 0.770, accuracy = 0.742, 
PPV = 0.144, NPV = 0.938, F1 score = 0.216). The cali-
bration curves are shown in Fig. 3. Although all models 
overestimated the recurrence risk of patients to varying 
degrees, which may have resulted in a higher false-pos-
itive rate if the models were applied in clinical practice, 
the RF model had generally consistent calibration.

Relative importance of variables in the models
Although slight differences were shown in the impor-
tance of variables among those models (Fig.  4), the Tg 
and the LNR were the top 2 important variables in all 
the models, the N stage was the top 5 important vari-
ables in all the models. The importance of variables in RF 
model was as follows: Tg, LNR, and N stage, comorbid-
ity of hypertension, LDL, BMI, number of LNs dissected, 
comorbidity of diabetes, and LN dissection.

Discussion
In this study, based on a large dataset of PTC patients 
with comprehensive predictive variables (demographic 
characteristics and comorbidities, tumor-related vari-
ables, LN-related variables, and metabolic and inflam-
matory markers), we developed and validated five ML 
models to predict structural recurrence in PTC patients. 
In the test dataset, the SVM, XGBoost, and RF model 
showed better discrimination than the ATA risk stratifi-
cation according to the AUC values and corresponding 
indices, and the RF model generally had consistent cali-
bration compared with the other models. Thus, ML mod-
els may aid in treatment decision making and improve 
postoperative prognosis for PTC patients by accurately 
estimating the likelihood of structural recurrence and 
identifying patients at high risk of recurrence. Overall, 
we suggested that the RF model, which showed overall 
good performance and interpretability, could be used to 
predict structural recurrence in patients with PTC.

Nine of 29 variables were selected by the LASSO 
method and used to develop models in this study, 
including the Tg, LN variables (LN dissection, num-
ber of LNs dissected, LNR, and N stage), comorbidities 
and metabolic markers (comorbidity of hypertension, 
comorbidity of diabetes, BMI, and LDL). Further vari-
able importance analysis revealed that the Tg, LNR, and 
N stage were the three most important variables across 
all the models. Tg is the most important tumor marker 
in PTC, and the ATA risk stratification revealed abnor-
mally elevated postoperative suppressed Tg as one of the 
high-risk predictors; however, it did not specify a cutoff 
value or include postoperative negative Tg in the postop-
erative recurrence risk assessment. In this study, a non-
stimulated Tg value of 1.08 ng/mL was set as a cutoff by 
using the ROC curve, and patients with a higher level 
of non-stimulated Tg had a greater risk of recurrence 
than those with a lower level of Tg. Consistently, previ-
ous studies have used suppressed Tg values > 1 ng/mL to 
define a biochemical incomplete response to therapy in 
patients treated with total thyroidectomy and 131I abla-
tion, and approximately 20% of these patients were likely 
to develop structural disease [3, 38].

LN-related variables were also considered important 
contributing predictors by the ML models. According 
to the 2015 ATA risk stratification system, the N stage 
and the size of the metastatic LN were proposed as key 
predictors for structural recurrence. In this study, we 
selected the number of dissected LNs, the LNR, and the 
N stage to develop models. The LNR was among the 2 
most important variables, and the N stage was among the 
5 most important variables according to all the models. 
A higher LNR (≥ 22.70%), greater number of LNs dis-
sected (≥ 21), and advanced N stage were strongly associ-
ated with a high risk of recurrence. Several studies have 
reported various optimal cutoff values for LN-related 
variables [4–6]. For instance, in a recent study in which 
five ML models were constructed to predict recurrence 
among patients diagnosed with PTC, the LNR (cut-
off = 0.24) and LN metastasis were identified as important 
variables [21]. Another study determined the predictive 
cutoff values for the number of metastatic LNs (4 and 13) 
and the LNR (0.28 and 0.58) using the K-means clustering 

Table 2  Predictive performance of the models in the test dataset
AUC (95% CI) Sensitivity Specificity Accuracy PPV NPV F1 score

LR 0.738 (0.636–0.820) 0.865 0.495 0.526 0.133 0.976 0.231
SVM 0.752 (0.666–0.841) 0.568 0.903 0.875 0.344 0.959 0.429
XGBoost 0.741 (0.609–0.840) 0.595 0.857 0.835 0.272 0.959 0.373
RF 0.766 (0.702–0.845) 0.676 0.784 0.775 0.219 0.964 0.331
NN 0.767 (0.675–0.843) 0.757 0.682 0.688 0.176 0.969 0.286
The ATA risk stratification 0.620 (0.534–0.670) 0.432 0.770 0.742 0.144 0.938 0.216
Abbreviations: AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; SVM, support vector machine; 
XGBoost, eXtreme gradient boosting; RF, random forest; NN, neural network; ATA, American Thyroid Association
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algorithm [39]. The optimal predictive cutoff may depend 
on the extent of LN dissection, the number of LNs dis-
sected, the annual number of surgeries performed by 
physicians, etc. Thus, more evidence is needed before 
combining LN-related variables with newly developed 
risk stratification or staging systems for PTC patients.

The comorbidities and metabolic-related markers 
(comorbidities of hypertension and diabetes, BMI, and 
LDL) were included in our models and showed potential 

predictive value. Although the current risk stratification 
or staging system for PTC does not include these predic-
tors, a few studies have reported that hypertension [40], 
diabetes [41], a high level of BMI [11] and LDL [42] were 
significantly associated with the aggressiveness of PTC. 
The underlying mechanism between metabolism-related 
predictors and poor prognosis in PTC patients is less 
clear. Increasing insulin, insulin-like growth factor or 
TSH were associated with the aggressiveness of PTC in 

Fig. 2  ROC curves of the models and the ATA risk stratification. LR, logistic regression; XGBoost, eXtreme gradient boosting; SVM, support vector machine; 
RF, random forest; NN, neural network; ATA, American Thyroid Association
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obese patients [43]. The LDL receptor played an impor-
tant role in the RAS/RAF/MAPK (MEK)/ERK signaling 
cascade, and synergy between LDL-mediated receptor 
uptake and BRAF may lead to a worse prognosis in thy-
roid cancer patients [42].

Compared with existing studies on prognosis predic-
tion for PTC [18–22], our study has several strengths. 
First, we developed ML models for predicting structural 
recurrence based on a large dataset of PTC patients. By 
using multiple ML algorithms, 5-fold cross-validation 
and Bayesian optimization, more reliable and robust 

Fig. 3  Calibration curves of the models. LR, logistic regression; XGBoost, eXtreme gradient boosting; SVM, support vector machine; RF, random forest; 
NN, neural network
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predictions can be achieved. Second, benefitting from 
the simultaneous consideration of multiple predictors 
and the use of LASSO, we identified nine variables that 
were strongly associated with the risk of recurrence to 
develop models. Our results provided comprehensive 
evidence for the interpretation and clinical application of 
these predictors. Third, to help clinicians making optimal 
use of the models, we evaluated the discrimination, cali-
bration, and interpretability of the ML models; however, 

these items were underreported in the published litera-
ture addressing PTC prognosis prediction [12, 44].

This study has several limitations. First, the retrospec-
tive nature of the study might have resulted in selection 
bias. Second, the ML models we developed were based 
on data from a single institution, and more studies cov-
ering wider populations are warranted for validation. 
Third, our models were built on data from patients diag-
nosed with PTC and treated with thyroidectomy and 
131I; thus, they were unlikely to be accurate for patients 

Fig. 4  Relative importance of variables. LNR, lymph node metastasis ratio; Tg, thyroglobulin; LDL, low-density lipoprotein; BMI, body mass index; LR, 
logistic regression; XGBoost, eXtreme gradient boosting; SVM, support vector machine; RF, random forest; NN, neural network
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whose tumor behavior was considerably different, such as 
children and adolescents with PTC [45] or patients who 
undergo lobectomy [46]. Fourth, our sample data used 
for developing the models were unbalanced due to the 
low incidence of recurrence in PTC patients (only 8.0% 
of patients experienced recurrence in our study). Unbal-
anced data may typically affect model training; thus, we 
performed resampling to minimize this effect. Advanced 
methods for handling imbalanced data have been pro-
posed recently and need to be applied [47]. Fifth, 61.1% 
of the BRAF mutations were missing, which was used 
as a categorical variable and may affect the risk estimat-
ing of this variable. Finally, a median follow-up period of 
45.5 months might be insufficient for the assessment of 
outcomes in PTC patients; thus, our models were mainly 
used to estimate short-term recurrence risk.

Conclusion
This study demonstrated that the RF model achieved the 
expected prediction performance with generally good 
discrimination, calibration and interpretability. It is likely 
that ML approaches could improve the accuracy of the 
existing risk stratification for PTC as well as assist physi-
cians in better understanding how ML approaches can be 
applied to optimize treatment and follow-up decisions.
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