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Abstract 

Bone sarcomas are rare tumors representing 0.2% of all cancers. While osteosarcoma and Ewing sarcoma mainly affect 
children and young adults, chondrosarcoma and chordoma have a preferential incidence in people over the age 
of 40. Despite this range in populations affected, all bone sarcoma patients require complex transdisciplinary 
management and share some similarities. The cornerstone of all bone sarcoma treatment is monobloc resection 
of the tumor with adequate margins in healthy surrounding tissues. Adjuvant chemo- and/or radiotherapy are often 
included depending on the location of the tumor, quality of resection or presence of metastases. High dose radiother‑
apy is largely applied to allow better local control in case of incomplete primary tumor resection or for unresectable 
tumors. With the development of advanced techniques such as proton, carbon ion therapy, radiotherapy is gaining 
popularity for the treatment of bone sarcomas, enabling the delivery of higher doses of radiation, while sparing sur‑
rounding healthy tissues. Nevertheless, bone sarcomas are radioresistant tumors, and some mechanisms involved 
in this radioresistance have been reported. Hypoxia for instance, can potentially be targeted to improve tumor 
response to radiotherapy and decrease radiation-induced cellular toxicity. In this review, the benefits and draw‑
backs of radiotherapy in bone sarcoma will be addressed. Finally, new strategies combining a radiosensitizing agent 
and radiotherapy and their applicability in bone sarcoma will be presented.
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Introduction
Bone sarcoma are rare tumors accounting for 0.2% of all 
tumors with an incidence in North America and Europe 
of 0.75 / 100 000 [1]. Bone sarcoma can be classified 
according to the age of tumor onset. On the one hand, 
osteosarcoma (OS) and bone Ewing sarcoma (EWS) 
mostly affect children and young adults, and on the other 
hand chondrosarcoma (CHS) and chordoma (CD) occur 

after the age of 40 [1]. The survival rate of adults with 
bone sarcoma is low, around 50–60% at 5 years and 30% 
at 10  years, principally because of the indolent nature 
of these tumors [2–5]. For localized pediatric bone sar-
comas, the 5-year survival rate is around 70% [2–5] and 
drops to 30% for pediatric bone sarcoma presenting 
metastases at diagnosis, which occurs in 20–25% of pedi-
atric bone sarcoma [1, 3].

Notwithstanding the age of tumor onset or histologi-
cal type of sarcoma, the management of all bone sarcoma 
patients is based on a transdisciplinary approach where 
surgery, with complete resection of the primary tumor, 
remains the cornerstone. Indeed, the quality of resection 
is an essential prognostic factor for all bone sarcomas. 
Depending on the location of the tumor and the tumoral 
invasion of peripheral tissues, surgery can be challenging 
and is not feasible in all cases. Radiotherapy is frequently 
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used to ensure better local control [5–8]. In the case of 
Ewing sarcoma surgical resection and radiotherapy are 
both standard options for local control. Conversely, radi-
ations are not applied as first-line treatment for resect-
able osteosarcoma, chordoma and chondrosarcoma, 
albeit high doses of radiotherapy are used as adjuvant 
treatment in case of marginal or incomplete resection, 
and as definitive local treatment for unresectable tumors 
[9–11]. Treatment strategy must be adapted according 
to tumor location, ease of resection and treatment-asso-
ciated morbidity, as unnecessary high doses of radiation 
can trigger serious side effects such as neuropathies and 
fractures [12–14]. Challenging bone sarcoma of the axial 
skeleton are frequently treated with Intensity Modulated 
photon Radiation Therapy (IMRT) because of the higher 
dose applied to the tumor and the sparing of healthy tis-
sues [15]. The development of advanced radiotherapy 
techniques like carbon-ion, or proton therapy has dras-
tically improved patient care by reducing the exposure 
of nearby critical organs to radiations and increasing 
the dose of radiations delivered specifically to the tumor 
[12–14]. Combined proton and photon radiotherapy is 
also increasingly used for the treatment of sarcoma of 
the spine and sacrum and seems to improve local con-
trol [12, 16]. Excellent clinical results have been observed 
for sarcomas of the skull and cervical spine treated with 
proton therapy [13, 17]. Interesting results have also 
been reported with heavier particles, such as carbon ion. 
Access to these advanced RT techniques is increasing in 
developed countries. Hence, radiotherapy is an impor-
tant component in bone sarcoma management, and in 
this review, we will discuss the benefits of radiotherapy 
for bone sarcoma, the mechanisms involved in tumor 
radioresistance, and the innovative ways to improve radi-
otherapy efficacy in these tumors.

Radiotherapy for bone sarcomas
The place of radiotherapy in the treatment of bone sar-
coma has evolved with the development of new types 
of radiations and new ways to deliver these radiations 
(Table 1). Nevertheless, this evolution raises the question 

of choosing the best radiotherapeutic approach for the 
right tumor depending on patient age, tumor locations, 
histological subtype, tumor grade, previous treatment. 
The following paragraphs include an overview of the effi-
cacy of conventional radiotherapy and non-conventional 
radiotherapy in bone sarcoma.

Role of radiotherapy in CD and CHS treatment
Over the past few years, more information has become 
available on the effects of radiotherapy in bone sarcoma 
patients with unresectable or residual tumors. In this 
part, we summarize treatment guidelines and present the 
latest clinical studies evaluating the efficacy of radiother-
apy in bone sarcoma (Table 2).

In chondrosarcoma, radiotherapy can be considered for 
unresectable disease (primary or recurrent), after incom-
plete surgery and for symptom palliation. High-dose RT 
is currently recommended for patients with skull base 
chondrosarcoma and for inoperable, locally advanced, 
and metastatic high-grade chondrosarcomas with a poor 
prognosis. For chordoma, en bloc R0 resection is the 
recommended treatment for primary localized disease 
when feasible and sequelae are accepted by the patient. If 
these conditions are not met, RT alone without debulking 
is an alternative. For skull base and upper cervical tract 
chordoma, resection with negative margins can rarely be 
done, and microscopically-positive margins should be 
the goal of surgery. Adjuvant RT should be considered for 
skull base and cervical spine chordomas, and for sacral 
and mobile spine chordomas with R1 resection margins.

A few historical retrospective studies have been con-
ducted to determine whether chordoma and chondro-
sarcoma patients could benefit from peri-operative 
radiotherapy. Two major retrospective studies have eval-
uated the role of radiotherapy in chordoma, comparing 
surgery alone vs surgery and conventional radiotherapy 
in 1478 and 5427 chordoma patients, respectively (level 
of evidence 2b) [9, 19]. Both studies concluded that radi-
otherapy peri-operatively improves patient local con-
trol when surgery with positive margins are performed. 
High-dose RT is also associated with better outcome [9, 

Table 1  Bone sarcomas

Primary bone tumors are rare, accounting for < 0.2% of malignant neoplasms registered in the EUROCARE (European Cancer Registry-based study on survival 
and care of cancer patients) database [1].Osteosarcoma and Ewing Sarcoma are the most common malignant bone tumors affecting children and young 
adults. Osteosarcoma is a complex genomic sarcoma arising mainly in the medulla of long bones while Ewing Sarcoma of the bone (85% of the all the Ewing 
sarcoma) are high-grade sarcoma arising principally in the diaphysis or metaphysis of the pelvis, femur, or tibia. Osteosarcoma-driven mutations include TP53 
and Rb1 while Ewing sarcoma is characterized by the fusion of genes of the FET and ETS family, the most renowned being EWS-FLI1. Chondrosarcoma and 
chordoma are the most common malignant bone tumors in adults and aging-populations. They affect cartilage cells of the upper arm, pelvis or femur for 
chondrosarcoma; and cervical, thoracic spine or sacrum for chordoma. Chondrosarcoma and chordoma are thought to arise from the malignant transfor-
mation of mesenchymal stem cells and of embryological remnants of the notochord, respectively. Both tumors are highly aggressive locally and present an 
abundant extracellular matrix. Adult bone sarcoma etiology is not clearly defined and driver mutations are not fully identified even if chondrosarcoma and 
chordoma initiation seem to be linked to the mutation of IDH genes and T gene, respectively [1, 18].
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19]. The same observation has be made in a retrospective 
study of 743 high-grade chondrosarcoma defining radio-
therapy as an independent protective factor (level of evi-
dence 2b) [21].

Different advanced radiotherapeutic techniques have 
been developed in the last few decades (Table  3, see 
Table 2 [9–35]). First, the use of proton therapy is associ-
ated with better outcome than conventional radiotherapy 
in both chordoma and chondrosarcoma [9, 19, 21, 23]. 
The administration of proton and photon therapy post-
operatively tend to be more efficient with a 5-year local 
control rate of 85.4% in CD, while it does not exceed 74% 
when combining surgery and photon radiotherapy alone 
[22]. When radiotherapy is administered as a single treat-
ment (e.g. in unresectable tumors), proton therapy is a 
better option than conventional radiotherapy for both 
CHS and CD, resulting in a 5-year overall survival of 75% 
for CHS and 100% for CD, whereas the 5-year overall 
survival is only 19.1% for CHS and 34.1% for CD for con-
ventional radiotherapy [23]. In skull base chordoma and 
chondrosarcoma, which are particularly difficult to handle 
surgically due to their proximity to vital structures, car-
bon ion radiotherapy administered peri-operatively has 
shown promising results with a 5-year local control of 
80% and 89% in CD and CHS, respectively [20]. Stereo-
tactic Radiation Therapy (SRT) has also been used in both 
chordoma and chondrosarcoma, and retrospective studies 
reported different results, with local control rates varying 
between 57% at 10 months and 90% at 28 months [28, 29].

Chondrosarcoma and chordoma have a very low inci-
dence, thus international clinical trials uniting bone sar-
coma centers worldwide are ongoing to determine the 
best therapeutic option depending on the type of the 
tumor, its localization (NCT05033288, NCT01182779) 
and its resectability (NCT02986516).

Role of radiotherapy in the treatment of Ewing sarcoma 
and osteosarcoma
Radiotherapy may be considered in osteosarcoma patients 
with unresectable tumors, primary tumors where surgery 
would be unacceptably morbid, or as adjuvant treatment 
of tumors at high risk of local recurrence and with limited 

option for further surgery. For patients with bone Ewing 
sarcoma, RT with definitive intent alone should be used 
instead of surgery if complete surgical excision is not pos-
sible and in cases with challenging local sites such as axial 
or spinal tumors, where surgery will be unacceptably mor-
bid. Adjuvant RT (45–60 Gy) significantly reduces Local 
Recurrence in patients with large tumors (> 200 ml), poor 
histological response or inadequate surgical margins and 
should be recommended in these circumstances [IV, B].

In addition, adjuvant RT should be considered in 
patients with non-sacral pelvic Ewing Sarcoma regard-
less of surgical margins, tumor volume or histological 
response, as this was shown to provide superior local 
control and survival outcome compared with surgery 
alone.

Several studies aimed at determining the best use of 
radiotherapy for EWS patients comparing radiotherapy 
alone with i) surgery alone, ii) post-operative RT, or iii) 
polychemotherapy (see Table 4). In a retrospective study 
(INT0091, INT0154, AEWS0031), radiotherapy alone 
increased the rate of local relapse compared to surgery 
alone in EWS patients with localized tumors [31].How-
ever, no difference was observed in the overall survival 
and overall disease control between those two treatments 
[30]. For patients with extremity and pelvic tumors, sur-
gery clearly improved local control compared to defini-
tive radiotherapy (local relapse rates 3.7% and 3.9% vs 
14.8 and 22.4%, respectively) [30]. For other tumor loca-
tions, no difference was detected between the different 
treatment groups. Of note, in this study, patients treated 
with surgery had favorable prognostic factors such as a 
younger age or tumors of the extremities, and most of 
the patients were treated with older techniques of radio-
therapy. Another study compared the same treatment 
options (surgery vs radiotherapy vs combined treatment) 
in metastatic EWS. The combination of surgery and radi-
otherapy improved the local control of metastatic tumors 
compared to surgery or radiotherapy alone (EFS at 
3 years: RT: 0.35, surgery: 0.35, combination: 0.56) [31].

Stereotactic Body Radiation Therapy (SBRT) (Table 1) 
uses several radiation beams of various intensities target-
ing the tumor from different angles and is considered an 

Table 3  Radiotherapy principles

Radiotherapy is one of the most widely used therapies for tumors. Radiation is defined as “ionizing” if its energy load is enough to ionize a molecule of water 
(> 10 eV). There are two categories of ionizing radiations: particle beams (protons, neutrons, ions, α-particles) and photons radiations (X-rays, γ-rays). Ionizing 
radiations are characterized by their capacity to ionize a tissue, or Linear Energy Transfer (LET). Particle beams have high LET and photon radiations have low 
LET. External beams are generally used to deliver the maximum dose of radiation to the tumor and to spare surrounding healthy tissues. Different strategies 
of radiation delivery can be adopted depending on the patient and the type of tumor: 3D conformational radiation is adapted to the shape of the tumor 
by delivering beams from different directions. More recently, advances in imaging promoted the use of Intensity Modulated Radiation Therapy (IMRT). IMRT 
uses smaller beams with different intensities to deliver different doses of radiation to certain areas of the tumor. For example, higher doses can be delivered to 
hypoxic areas which are usually more radioresistant, while sparing healthy tissues near the tumor. Variable radiation intensity is generated across each beam, 
in contrast to the uniform intensity used in other RT technics. Stereotactic Body Radiation Therapy is a technique that uses precise imaging in conjunction with 
high-intensity radiations beams to deliver high radiation doses to tumors in three to five treatments. Extracorporeal radiation can also be used in the treatment 
of bone sarcoma and consists in excising the tumor bearing segment of bone, irradiate the tumor and reimplant it back into the body.
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effective strategy for metastatic EWS and OS [33]. SBRT 
used to control pulmonary metastases was reported 
to lead to a 2-year local control of 60% in 13 metastatic 
patients (IV) [33]. In osteosarcoma, the local control at 
5  years was shown to range between 68 and 72% with 
conventionally fractionated proton RT doses of 68-70 Gy 
(1.8-2 Gy per day) in a retrospective study including 41 
OS unresected or incompletely resected [36]. Carbon 
ion radiotherapy was effectively used in the treatment of 
unresectable pediatric osteosarcoma, with a local tumor 
control of 62% at 5  years in a retrospective study [34]. 
More recently, Combined Ion Beam Radiotherapy with 
protons and carbon ions in a multimodal treatment strat-
egy of inoperable osteosarcoma was evaluated. Results 
showed an overall survival and a progression-free sur-
vival of 68% and 45%, respectively (2b). These results 
are particularly promising in craniofacial osteosarcoma 
[35]. Recently, a randomized controlled phase III study 
evaluated the efficacy of carbon ions, photon, and proton 
therapy in chordoma and chondrosarcoma (except skull-
based tumors). This study will be extremely valuable in 
determining the benefits of using carbon ion radiother-
apy as it is a prospective study and it compares the effects 
to a reference treatment [37].

Even though chemotherapy is a preferred treatment 
choice, RT plays a primordial role in the treatment of 
bone sarcomas. The development of new techniques 
makes RT an approach of interest for the treatment of 
incompletely or unresectable tumors, for tumors local-
ized near critical structures, and for metastases. These 
new radiotherapies can lead to a better management of 
sarcoma patients who have an unfavorable prognosis and 
limited treatment options. With great advances in the 
development of targeted therapies, moving on to per-
sonalized combination approaches able to enhance the 
efficacy of radiotherapy, may be a promising strategy. To 
achieve this goal, a better understanding of radiotherapy 
mechanisms of action is necessary.

Potential target for combination with radiotherapy in bone 
sarcomas
Radiotherapy is currently focused on the precise delivery 
of high doses of radiation within the tumor bulk, sparing 
surrounding healthy tissues. However, the development 
of targeted therapy arguably has the potential to enhance 
radiotherapy efficacy. The possibility to molecularly pro-
file tumors at diagnosis, together with improvements in 
radiotherapy could potentially pave the way for a more 
personalized approach to bone sarcoma treatment. Sev-
eral key molecular pathways could theoretically enhance 
the therapeutic effect of radiation. In addition, it is 
important to determine the timing for combining molec-
ular targeted therapy with radiation, as it could greatly 

affect the outcome depending on which pathway is being 
inhibited.

To determine which potential pathway could be a 
promising target in bone sarcomas, it is first necessary 
to review the radiation process and its consequences at 
the cellular and molecular levels. This paragraph sum-
marizes, in chronological order, the principal steps and 
actors involved in the cellular response to radiotherapy 
(Fig. 1).

Irrespective of the type of radiations used (e.g. X-rays, 
Proton, carbon ion), ionizing radiation affects all cellular 
compartments and their main target is DNA. Under ion-
izing radiations, micro-deposits of energy are generated 
in the nucleus near DNA. This accumulation of energy 
destabilizes and causes damage to the DNA structure. 
Moreover, by ionizing water molecules, a phenomenon 
known as water radiolysis, radiation triggers the forma-
tion of Reactive Oxygen Species (ROS) that lead to fur-
ther DNA damage. DNA damage caused directly or 
indirectly by radiations, includes DNA oxidation, loss of 
a base, single-strand break and double-strand breaks [38, 
39]. Double-Strand Breaks (DSB) are considered the most 
lethal type of lesions and are induced at a higher level 
by proton rather than photon therapy [40]. Each type of 
damage is recognized and corrected by specific repair 
mechanisms, each acting with a different degree of preci-
sion and speed (Table 5).

The response of a cancer cell to an ionizing radiation 
can be divided into several steps, from the recognition of 
the damage to the induction of cell death. At each step, 
bone sarcoma cells can have properties allowing them 
to counteract radiation-induced cell death, representing 
potential targets for combination therapy (Tables 6 and 7). 
Most of the studies on the biological effects of radiother-
apy in bone sarcoma focus on X-rays or γ-rays, which will 
be presented in the next paragraph, and since very few 
studies (only 2 studies) deal with protons or carbon ions 
these will be presented when necessary.

DNA damage recognition
DNA damage is first recognized by 2 enzymes: Ataxia 
Telengiectasie Mutated (ATM) and Ataxia Telengiec-
tasie RAD3-related (ATR). ATM recognizes double-
strand breaks, while ATR can detect single-strand 
breaks and replication fork alterations. After the recog-
nition of a DSB, ATM phosphorylates the histone H2AX 
(yH2AX), involved in stabilizing DNA extremities and 
in the recruitment of DNA repair complexes. ATM and 
ATR also phosphorylate the checkpoint kinases 1 and 2 
(CHK1 and CHK2), leading to cell cycle arrest. ATR can 
phosphorylate many other substrates including Rep-
lication Fork components: MCM (MiniChromosome 
Maintenance) proteins, Rpa (Replication Protein A), 
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Fig. 1  Schematic representation of the major known actors involved in radioresistance of bone sarcomas- when a damage occurs in DNA, ATM 
and ATR kinases are recruited and activate checkpoint kinases 1 and 2, leading to cell cycle arrest and to the recruitment of diverse effectors of DNA 
repair, such as the complex MRN PARP, RAD51, NBS1, RAD50. Diverse alterations in cell cycle proteins including p16 and CRIF, and in DNA repair 
proteins enhance bone sarcoma radioresistance. The accumulation of DNA damage is generally leads to cell death. However, bone sarcoma cells 
present defects in this pathway too, leading to cell survival after radiotherapy. Created using BioRender.com

Table 5  Biological differences between photons, protons, and carbon ions

X-rays have no mass and interact weakly with matter, depositing energy along their entire path until they exit the body. The highest doses are recorded just 
below the skin, and deep-seated tumors can be treated by focusing beams from many different angles. The energy deposited by X-rays is diffuse, hence X-ray 
radiation is characterized by low linear energy transfer (LET). Protons and carbon ions are charged particles with mass that have the important property of 
depositing low amounts of LET energy when traveling at high speed through tissue. Collision of these particles with tissue causes the particles to slow down 
and eventually stop, and they deposit the bulk of their energy at the very end of their path (Bragg Peak). Because no energy is delivered beyond the particle 
stopping point, normal tissue situated beyond the tumor receives almost no dose. While low LET radiations produce diffuse ionizations along their tracks, high 
LET radiations cause dense ionizations that create clustered DNA damage that is less easily repaired by tumor cells. This is reflected in the greater tumor cell 
killing per unit of dose of high LET radiations (carbon ions) compared to low LET radiations (photons, protons). This difference is termed Relative Biological 
Effectiveness.

Table 6  TP53 mutations in bone sarcomas

Sarcoma Overall TP53 mutation rate TP53 mutations Other mutations affecting TP53

OS 80% TP53 intron rearrangements MDM2/MDM4 gene amplification

EWS 10% C176F and R273X Inhibition of WT TP53 by EWS-FL1 
fusion protein

CHS 20% TP53 intron rearrangements MDM2 amplification
Alterations in the TP53 pathway

CD 1–2% TP53 missense mutations /
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Table 7  Combination of radiotherapy and pharmacological inhibition of targets in bone sarcoma

Drug Drug target RT technic used Models Combination effects Citation

Osteosarcoma
  Zoledronic acid Osteoclasts γ radiation KHOS/NP, U-2, MG63, HOS 

OS cells
Increased cell death, 
increased levels of ROS, 
increased DNA damage, 
decreased proliferation

[41]

  Sulforaphane Multiple targets: survivin, 
NFKB, Bcl-2, VEGF, MMP-2

X-rays LM8 murine OS cells Cell cycle arrest, increased 
DNA damage, increased 
apoptosis, decreased cell 
proliferation

[42]

  Ginseng polysaccharide Multiple targets γ radiation MG63 cell line Decreased cell viability, 
increased apoptosis 
and autophagy,

[43]

  BI6727, GSK461364 PLK1, key regulator of mito‑
sis

X-rays HOS and MG63 Cell growth arrest, apoptosis 
induction

[44]

  KU60648 DNA-PKcs, serin/threonine 
kinase, sensor of DNA 
damage

γ radiation 143B, U2OS, Saos-2, Hos Altered cell cycle distri‑
bution, increased DNA 
damage, decreased survival 
fraction

[45]

  SAHA HDAC, histone deacetylase X-rays KHOS-24OS, SAOS2 cell lines, 
xenogrqfted mice

Increased cell death [46]

  Hydrogen peroxide ROS induction X-rays HS-Os-1 cell line Oxidative DNA damage 
induction

[47]

  Valproic acid HDAC, histone deacetylase X-rays U2OS cells Decreased cell survival, 
increased chromosomal 
abberations

[48]

  SAHA, M344, PTACH HDAC Proton therapy U2OS Decreased survival fraction, 
increased DNA damages

[49]

  SAHA, M344, valproate HDAC X-rays KHOS-24OS, SAOS2 Decreased survival, cell cycle 
arrest, enhanced apoptosis

[50]

  Demethylating agent 
5-Aza-CdR

Methylation, regulation 
of genic expression

X-rays SaOS, HOS, U2OS Enhanced apoptosis, arrest 
in G2/M

[51]

  Berberine, isoquinoline 
alkaloid

Multiple targets γ radiation MG63 Increased cell death, 
induced cell cycle arrest 
in G2/M, induced apoptosis

[52]

  DTCM-g Activator Protein 1 X-rays HOS MG63 Decreased cell proliferation [53]

  BI2536 PLK1, key regualtor of mito‑
sis

X-rays U2OS Cell cycle arrest, increased 
cell death

[54]

  Wortmannin PI3K, proliferation and sur‑
vival

X-rays MG-63 Decreased cell survival frac‑
tion, decreased DNA repair

[55]

Ewing sarcoma
  Mithramycin Inhibitor of transcription X-rays 4 EWS:Fli1 + and 3 EWS:Fli- 

cells in vitro and in vivo
Reduced tumor growth 
in vivo, increased apoptosis

[56]

  Olaparib PARP-1 γ radiation RD-ES, SK-N-MC EWS cell 
lines + tumor xenografts 
SK-N-MC

Decreased proliferation, 
increased cell death

[57]

  Curcumin Multiple targets γ radiation SK-N-MC cell lines Increased apoptosis 
and DNA fragmentation, 
increased cytotoxicity

[58]

  Taxol Multiple targets X-rays Cell line HTB-166 Blockade in G2/M, decreased 
colony formation rate

[59]

Chondrosarcoma
  Olaparib PARP X-rays, proton, 

hadron therapy
CHS2879 cell line Decreased cell survival, 

decreased proliferation
[60]

  Disulfiram + copper ALDH1A1 X-rays SW1353 and CS1 cell lines, 
Orthotopic CHS model,

Decreased survival, 
increased apoptosis, 
decreased colonies, 
decreased cancer stem cells

[61]
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polymerase, PCNA (Proliferating Cell Nuclear Antigen), 
and Claspin (Mrc1) [66, 67]. Cancer cells can resist radia-
tion by increasing their efficiency in DNA repair through 
the increased expression of proteins involved in DNA 
damage recognition and repair, including ATM and ATR. 
A correlation was shown between radioresistance lev-
els and the expression of 7 proteins involved in the DSB 
DNA repair machinery in 5 sarcoma cell lines, including 
one OS cell line. ATM, ATR and NBS (Nijmegen break-
age syndrome protein 1), proteins involved in DNA dam-
age recognition presented the strongest correlation [68]. 
In CD, an increased expression of ATM, ATR and yH2AX 
was observed in 26 patient samples in comparison with 
surrounding healthy tissue. However, this observation 
has not been directly correlated to the level of radioresist-
ance of CD [69, 70]. Drugs targeting both ATR and ATM 
are already approved by the FDA and in clinical trials in 
other cancers (Bay1895344, NCT03188965; AZD1390, 
NCT03423628).

Once activated, ATM, CHK1 and CHK2 phosphoryl-
ate p53, the most studied tumor suppressing protein. P53 
is the protein the most often mutated in all cancers and 
plays major roles in genomic stability, cell cycle regula-
tion, cell death induction and in radioresistance.

P53 activation
P53 is a transcription factor that is stabilized following 
radiation and induces transcription of genes associated 
with cell cycle arrest, apoptosis, and metabolism, thereby 
functioning as a tumor suppressor [71]. Mutations affect-
ing the normal functions of p53 are found in 80% of OS, 
20% of CHS, and 10% of EWS (Table 6) [72]. Typically, the 
majority of TP53 mutations are missense mutations in its 
DNA binding domain, preventing TP53 from inducing 
transcription of its target genes and thus causing the loss 
of its tumor suppressive function [71]. In OS and CHS 
TP53 functions can also be altered indirectly through the 
amplification of Murine Double Minute 2 (MDM2) that 

results in P53 degradation. Recent results have demon-
strated that TP53 mutations are associated with a radiore-
sistant phenotype and poor survival in EWS patients [73]. 
TP53 is rarely mutated in CD; a whole genome sequenc-
ing study conducted on 63 CD samples revealed that only 
one sample carried a p53 mutation [74]. However, an 
increased expression of p53 was observed in 9/10 patients 
presenting relapsed tumors compared to patients with a 
stabilized disease. Thus, in chordoma overexpression of 
TP53 is correlated with tumor relapse and is a poor prog-
nostic factor [75, 76]. Other studies are needed to under-
stand the role of p53 in CD radioresistance.

If TP53 involvement in radioresistance is quite clear, 
further molecular studies are needed to precisely deter-
mine the underlying mechanisms of p53-driven radi-
oresistance in bone sarcomas in terms of effectors and 
functions. In addition, although multiple p53 reactivators 
have been developed, only two drugs have entered clini-
cal trials, APR-246 and COTI-2, currently making p53 
hardly targetable.

Cell cycle arrest
Cell cycle regulation is a critical biological function 
involved in response to radiation. Arresting cell cycle 
progression is an essential step to enabling the recruit-
ment of DNA repair machinery when DNA damage is 
caused by radiations. Several major actors of cell cycle 
regulation are involved in bone sarcoma radioresistance 
(Fig. 1). The gene Cyclin Dependent Kinase Inhibitor 2A 
(CDKN2A) encodes the P16 protein that inhibits Cyclin 
Dependent Kinases 4 and 6 (CDK4/6), inducing cell cycle 
arrest in G1 phase [77]. CDK4/6 usually bind to cyclin 
D1 and phosphorylate the tumor suppressor protein Rb1. 
The phosphorylation of Rb1 prevents its binding to the 
protein E2F, which in turn activates the transcription of 
genes allowing entry into the S phase [78].

The CDKN2A locus, is frequently deleted in bone sar-
comas [74, 79–81]. The absence of p16 allows CDK4/6 

Table 7  (continued)

Drug Drug target RT technic used Models Combination effects Citation

Chordoma
  Hyperthemia X-rays U-CH2 and MUG-Chor1 cell 

lines
Reduced colony formation [62]

  Ribavirin Anti-viral drug X-rays U-CH1 cell line in vitro 
and in vivo

Decreased cell growth 
in vitro and in vivo

[63]

  LB100 Protein Phosphatase 2A X-rays U-CH1, JHC7, UM-ChOR1 
in vitro + in vivo

Accumulation in G2/M, 
growth inhibition, in vivo 
tumor growth delay

[64]

  DIMATE ALDH1, ALDH3 X-rays U-CH1, U-CH12, CH22 3D Decreased proliferation, 
decreased colony formation, 
increased cell death

[65]
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activation and entry into the S phase of the cell cycle 
and could represent an advantage for cancer cells in 
response to radiation. These alterations could explain 
their low sensitivity to radiation. Pre-clinical studies 
refer to the synergistic effect of CDK4/6 inhibitors-radi-
otherapy combination. For instance, different clinical 
studies are ongoing in other cancers to determine the 
efficacy of combining radiation therapy and Palbociclib 
in breast cancer patients (NCT03691493, NCT03870919) 
and in locally advanced squamous cell carcinoma 
(NCT03024489). Further studies need to be done to 
determine the therapeutic potential of CDK4/6 inhibi-
tion in combination with radiotherapy.

Another protein involved in sarcoma radioresistance is 
CRIF, a protein regulating cell cycle. This protein phos-
phorylates CDK2, inducing cell cycle arrest and promot-
ing DNA repair [82], a strong expression of CRIF has 
been detected in OS patient samples. CRIF inhibition by 
siRNA in both OS cell lines and OS xenografts was shown 
to increase sensitivity to irradiation, delay DNA damage 
repair, inactivate G1/S checkpoint, induce mitochondrial 
dysfunction and tumor regression in  vivo [82]. Other 
strategies aimed at inhibiting cell cycle to reinduce radio-
sensitivity. In OS, the inhibition of PLK1 [5, 54], WEE1 
[83], or PI3K [55] combined to radiotherapy generated 
cell growth arrest and cell death through mitotic catas-
trophe. Other studies are urgently needed to decipher the 
therapeutic potential of cell cycle gene alterations.

Once DNA damage is recognized and the cell cycle is 
arrested, the next step in cellular response to radiation is 
DNA repair.

DNA damage repair (DDR)
DNA repair involves a complex machinery and is orches-
trated by numerous actors. Here, we will present the 
major DNA repair actors involved in the response of 
bone sarcoma to radiation-induced DSBs. For DSB DNA 
repair, two major pathways are activated: homologous 
recombination (HR) and non-homologous end joining 
(NHEJ).

NHEJ occurs during the G1 phase; it binds broken 
DNA extremities together leading to an increased num-
ber of errors. NHEJ initially recognizes DNA damage 
through a heterodimer Ku70-Ku80. This complex block 5’ 
DNA extremity and maintains DNA extremities close to 
each other to allow their binding. This complex also acti-
vates the protein 53BP1, which protects DNA extremities 
from more damage. γH2AX phosphorylation by ATM is 
also involved in stabilizing DNA extremities. The final 
steps following assembly of the repair machinery involve 
binding of DNA extremities by ligases (LIG4, XRCC4, 
and XLF) [84].

Homologous recombination (HR) only takes place 
in late S and G2 phases of the cell cycle, as this DNA 
repair mode is based on the use of the sister chroma-
tid to synthesize an identical DNA strand. This repara-
tion system is more precise than NHEJ. Here, The DNA 
DSB is recognized by the MRN complex composed of 3 
proteins (MRE11, RAD50, NBS1), which initiate resec-
tion of DNA extremities in collaboration with CTIP. 
A loop with the sister chromatid is then formed and a 
DNA polymerase replicates DNA and ligases bind DNA 
to the strand break [84, 85]. Certain strategies aim at 
inhibiting DNA repair to induce cell death such as 
RAD51 inhibition, a recombinase involved in the DDR 
machinery. In OS and CD, the inhibition of RAD51, 
combined with radiations lead to a decreased cell pro-
liferation and an increased apoptosis [86, 87]. In CHS 
and EWS, the PARP1 inhibitor Olaparib in combina-
tion with radiations was reported to decrease cell sur-
vival and clonogenic capacities [57, 60].

In this system, PARP-1 is rapidly recruited and acti-
vated by DNA DSBs. Upon activation, PARP-1 syn-
thesizes a structurally complex polymer composed of 
ADP-ribose units that facilitate local chromatin relaxa-
tion and the recruitment of DNA repair factors [57]. 
In both CHS and EWS, PARP-1 seems to play a role in 
radioresistance. In 2 EWS cell lines, the combination of 
the PARP-1 inhibitor Olaparib and radiation therapy 
was more effective than radiotherapy or Olaparib alone. 
This combination induced a 4-fold increase in apopto-
sis in comparison with both treatments alone and lead 
to increased and sustained DNA damage in EWS cell 
lines. Moreover, in in  vivo xenografts models of EWS, 
the combination of Olaparib and radiation therapy 
stopped tumor progression [57]. In the CHS cell line 
CH2879, Olaparib enhanced the efficacy of radiation 
by 1.3-fold for X rays, 1.8-fold for protons and 1.5-fold 
for carbon ions [60]. In a study of 11 advanced CD, a 
mutational signature associated with HR deficiency was 
found in 72.7% of samples, co-occurring with genomic 
instability. The use of Olaparib led to prolonged sur-
vival in a patient with refractory advanced CD [70]. 
Olaparib is currently being dose escalated in combina-
tion with radical (chemo-)radiotherapy regimens for 
non-small cell lung cancer (NSCLC), breast cancer and 
head and neck squamous cell carcinoma (HNSCC) in 
three parallel single institution phase 1 trials (Study 
protocols of three parallel phase 1 trials combining rad-
ical radiotherapy with the PARP inhibitor Olaparib).

After exposure to radiation, cells normally accumu-
late DNA damage that cannot be repaired fast enough 
and with enough precision for the cell to reenter the cell 
cycle. Proteins involved in genomic stability such as p53 
then trigger cell death. However, sarcoma cells often lack 
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the proteins supposed to control genomic integrity and 
present defects in cell death pathways [88].

Cell death
In response to DNA damage, apoptosis can be induced 
by different ways: i) activation of p53 or ii) accumula-
tion of ROS. TP53 can directly promote cell death after 
DNA damage or after incomplete repair of DNA dam-
age [89]. This is mediated through the activation of 
pro-apoptotic proteins, such as Tumor Necrosis factor 
Receptor superfamily (TNFR), triggering the extrinsic 
apoptosis pathway [90].

ROS accumulation can also induce cell death through 
the loss of mitochondrial membrane potential, leading to 
the release of cytochrome c. Moreover, ROS cause lipid 
damage, which activates sphyngomyelinase and induces 
the production and release of ceramide that in turn can 
activate caspases 1, 3 and 6, leading to cell death [91, 92].

An incomplete DNA repair can also induce a mitotic 
catastrophe, during which an abnormal chromosomal 
condensation occurs and the cell enters in mitosis before 
the end of S and G2 phases of the cell cycle [93].

Few studies have focused on the involvement of cell 
death defects in the response of bone sarcoma to radio-
therapy. In CHS, the anti-apoptotic proteins Bcl-2, Bcl-
xL and XIAP were found to be overexpressed in 2 CHS 
cell lines in comparison with 2 normal chondrocytes cell 
lines. When the expression of these anti-apoptotic pro-
teins was inhibited by siRNA, a 10-fold increase in radio-
sensitivity was observed in CHS cell lines [94]. In EWS 
cell lines, an exposure to 2 to 10 Gy X-rays was reported 
to increase the expression of the anti-apoptotic protein 
survivin in a dose-dependent manner. Survivin inhibition 
by siRNA doubles apoptotic cell death [95, 96]. Several 
BH3 mimetics are currently used in the clinic, for exam-
ple Venetoclax is approved for routine clinical practice in 
chronic lymphocytic leukemia (CLL) and acute myeloid 
leukemia (AML). To our knowledge, BH3-mimetics have 
not yet been combined to radiotherapy in patients.

Bone sarcomas arise in a particular environment (i.e. 
the bone or cartilage) and one of the characteristics of 
this environment is its hypoxic content that plays a role 
in resistance to conventional radiotherapy. Other fac-
tors of the tumor microenvironment, like the presence 
of immune cells or the extracellular matrix are likely 
involved in bone sarcoma radioresistance but studies 
regarding these are lacking.

Hypoxia
Hypoxia is a common feature of solid tumors, resulting 
from the imbalance between oxygen availability and con-
sumption, and is defined as one of the most important 

causes of radiotherapy failure [97]. In bone sarcoma, 
the presence of hypoxic zones is correlated with tumor 
relapse, metastases and resistance to treatments [98–
102]. These hypoxic zones are also predictive of poor 
tumor response to conventional radiotherapy. Differ-
ent mechanisms have been suggested to explain the link 
between bone sarcoma, radioresistance and hypoxia. Evi-
dence suggests that hypoxia inhibits the indirect effects of 
radiotherapy driven by the accumulation of ROS, creat-
ing more damage in cells which finally undergo cell death. 
The first mechanism proposed for hypoxia-induced radi-
oresistance is the acceleration of ROS clearance. In a 
study including 35 OS and 20 EWS samples, it was shown 
that radiotherapy does not affect oxidative stress levels. 
However, it is known that radiotherapy induces ROS pro-
duction which should increase oxidative stress. Hence, if 
oxidative stress levels remain constant, this implies that 
ROS clearance in the tumor cells is accelerated. The acti-
vation of autophagy and increased antioxidant metabo-
lism are two hypotheses which can explain how sarcoma 
cells can accelerate ROS clearance. Indeed, it was dem-
onstrated in OS that hypoxia confers cells resistance to 
radiation through activated autophagy to accelerate the 
clearance of cellular ROS products [103]. The increased 
antioxidant metabolism, mediated by the increase in two 
antioxidant enzymes, namely Aldehyde dehydrogenase 
(ALDH) 1 and 3, was shown in CD in an in vitro study. In 
this study, the pharmacological inhibition of the ALDH1 
and 3 restored radiosensitivity to CD spheroid models 
in  vitro [65]. Hypoxia-induced conventional radioresist-
ance can potentially be counteracted by the addition of 
proton therapy, which has a higher efficacy in hypoxic 
zones (NCT02802969).

Other potential therapeutic targets with pre‑clinical efficacy
Inhibition of histone deacetylases or demethylating 
agents has proven to be effective in combination with 
radiation, particularly in OS. Indeed, Histone DeACety-
lase (HDAC) inhibitors in combination with radiation 
was reported to increase cell death and DNA damages in 
several OS cell lines [46–51]. In CD and CHS, strategies 
targeting cancer-initiating cells (CIC) have been tested. 
One study highlighted that the use of disulfiram, an FDA-
approved anti-alcoholism drug, complexed with Cu can 
radiosensitize CHS CIC. Indeed, the addition of DSF/Cu 
to a CHS cell line and a CD cell line decreased the clo-
nogenicity of cells, while increasing apoptosis. Moreover, 
in an orthotopic model of CHS, the combination of DSF/
Cu and radiation induced a strong decrease in tumor 
growth [61]. Similar results were obtained in CD, where 
the inhibition of ALDH1 and 3, proteins overactivated 
in CIC, radiosensitized 3D culture of CD cell lines [65]. 
Efforts need to be made to evaluate the potential of other 
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radiosensitizing strategies. To do this, genetic inhibition 
of targets in combination with radiotherapy have been 
tested (Table 8).

Future directions could also lead to the combina-
tion of immunomodulators and radiotherapy. It is now 
widely accepted that RT can trigger a systemic immune 
response supporting a strong rationale for the combina-
tion of RT and immunotherapy [110]. Radiations induce 
a series of biological effects including enhancing tumor 
antigen release and presentation, promoting priming and 
activation of immune cells, increasing density of tumor-
infiltrating lymphocytes, facilitating recognition of tumor 
cells by T cells [110]. Combination of immunotherapy 
and radiotherapy has been evaluated in different solid 
tumors including melanoma, Non-Small Cell Lung Can-
cer and other solid tumors. The efficiency of Immune 
Checkpoint Inhibitors as single agents in bone sarcoma 
patients has been limited [111, 112]. Given the strong 
systemic anti-tumor immune effect induced by radio-
therapy, an interesting rationale could be the combina-
tion of radiotherapy and immune checkpoint inhibitors. 
To our knowledge, no study has been reported in bone 
sarcoma concerning radiotherapy-induced anti-tumor 
immunity, or proof of concept of the combination of 
radiotherapy and immunotherapy so it would be crucial 
to investigate further pre-clinically the rationale and to 

determine efficient and precise biomarkers to predict and 
evaluate response to this kind of treatment.

Combination of radiotherapy and pharmacological/genetic 
inhibition of targets in bone sarcoma in clinical trials
Ongoing clinical trials combining drugs with radiother-
apy are summarized in Table  9. In CD, 2 clinical trials 
show promising combinations. These trials evaluated the 
efficacy of a combination of an anti-brachyury vaccine 
with radiotherapy. Brachyury is involved in CD tumori-
genesis, progression and poor prognosis, and the vaccine 
targeting brachyury as monotherapy is in phase I. The 
results of the phase I clinical trial of brachyury vaccine as 
monotherapy have demonstrated that brachyury vaccine 
induces a specific immune response. As radiotherapy 
can induce immunogenic cell death triggering a strong 
immune response, the combination of brachyury vaccine 
and radiotherapy could have a synergistic effect. Other 
studies combining different chemotherapy regimens with 
radiotherapy are being tested in OS and EWS.

Other studies are necessary to test the efficacy of spe-
cific targeted therapy that could theoretically play a role 
in the response to radiotherapy. With the development 
of new radiotherapeutic approaches and their improved 
efficacy, specific studies deciphering the mechanistic 
action of these approaches in bone sarcoma would be not 

Table 8  Combination of radiotherapy and genetic inhibition of targets in bone sarcoma

Target Method of inhibition Models Results Citation

Osteosarcoma
  CRIF1 Knock down U2OS cells + xenografts Increased sensitivity to irradiation, 

delayed DDR, inactivated G1/S check‑
point, mitochondrial dysfunction. Tumor 
regression in vivo

[82]

  miR-513a-5p Treatment with miR-513-5p Decreased survival, decreased redox 
and DNA repair, stimulated apoptosis

[104]

  miR-328-3p Treatment with miR-328-3p HOS-2R, U2OS
 + HOS xenograft mice

Decreased survival, increased apoptosis, 
decreased DNA repair

[105]

  iNOS, Nitric Oxide Synthase Plasmid iNOS D17 canine OS cell line Decreased cell survival under hypoxic 
conditions

[106]

  UBE2T, Fanconi anemia gene, ubiqui‑
tine ligase

shRNA U-2OS MG63, xenograft Decreased survival fraction, induced cell 
cycle arrest in G2/M, promote apoptosis

[107]

  AKT2, serin/threonin kinase miR-203a-3p MG-63 Promoted apoptosis [108]

  IGF1R, Insulin-Growth Factor Rceptor siRNA U2, MG63, LM-8, SaOS-
2, murine xenograft 
model

Suppressed growth, arrested cells in G0/
G1, induced apoptosis, increased cell 
death,

[109]

Ewing Sarcoma
  Survivin, anti-apoptotic protein SiRNA 4 EWS cell lines RM-82, 

CADO-ES-1, VH-64, 
STA-ET-1

Increased number of radiation-induced 
DSBs, reduced repair, increased apoptosis, 
reduced proliferation

[95]

Chordoma
  RAD51, recombinase shRNA U-CH1, U-CH2 Decreased cell viability, increased 

apoptosis
[69]
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only interesting, but welcome to gain further insight into 
personalized medicine.

Toxicity & limitations
The improved efficacy of new radiotherapy techniques, 
such as proton beam or carbon ion therapy, offers new 
therapeutic perspectives in bone sarcoma. However, 
radiotherapy is still associated with short- and long-term 
toxicity, as described in Tables 2 and 4. Toxicity depends 
on the location of the tumor, and children are often par-
ticularly vulnerable to radiation-induced late toxicity and 
to secondary malignancies due to their immature tis-
sue. In a cohort of 222 patients (151 skull-base CD and 
71 CHS) treated post-operatively with proton therapy, 
long-term high grade (> 3) toxicity-free survival was 87%. 
High-grade late toxicity was characterized by optic neu-
ropathy, temporal lobe necrosis with cerebellum brain 
parenchyma Grade 3 necrosis, spinal cord necrosis and 
unilateral hearing loss [113]. In spinal tumors, spinal cord 
toxicity and insufficiency fractures are the most common 
radiotherapy-associated side-effects observed [114]. In 

children pelvic Ewing sarcoma, radiation can cause pelvic 
pain, premature ovarian deficiency, unequal limb length 
due to slow bone growth [115]. Aside from radiotherapy 
toxicity, one major drawback in cancer patient treatment 
by radiotherapy is the cost and lack of accessibility with 
only 30 proton therapy centers in Europe.

Conclusion
Bone sarcomas are a group of rare and heterogenous 
tumors, affecting people of all ages. Surgery is still the 
mainstay of bone sarcoma patients’ treatment. However, 
due to the localization of the tumor and the co-morbidity 
associated with surgery, complete resection is often diffi-
cult. Radiotherapy is used in case of incomplete resection 
or for unresectable tumors.

In the last decades, there has been an improvement 
in radiotherapy, both in terms of methods of delivery 
and types of radiation used, leading to more impor-
tant doses delivered to tumors and less toxicity for sur-
rounding healthy tissue. Currently, retrospective cohorts, 
case–control studies and systematic reviews are the main 

Table 9  Clinical trials combining radiotherapy and FDA approved drugs in bone sarcoma

Clinical trials Patients included Drug Radiation Phase Status Evidence level

NCT03595228 29 avanced CD BN-Brachyury Fractionated radiation 2 Active, Not recruiting 1c

NCT01407198 29 advanced CD Nilotinib (BCR-Abl, c-kit, 
and PDGF)

Fractionated radiation 1 Active, not recruiting 1c

NCT02383498 55 advanced CD GI-6301 brachyury vaccine 70 Gy fractionated radia‑
tion

2 Unknown 1b

NCT02802969 64 advanced CD 
after incomplete surgery

Hypoxia: 18F FAZA, proton 
boost

Proton therapy 2 Recruiting 1c

NCT02989636 33 recurrent, advanced 
or metastatic CD

Nivolumab (anti PD-1 
antibody)

Stereotactic radiosurgery 1 Recruiting 1c

NCT01696669 43 EWSs Chemotherapy: vincristine, 
doxorubicine, ifosfamide-
etoposide, dexrazoxane-
cyclophosphamide

Radiotherapy after incom‑
plete resection

2 Completed 1c

NCT00023998 80 metastatic OSs Trastuzumab (HER2) radiotherapy 2 Completed 1c

NCT01886105 4 metastatic OSs Sm-EDTMP Radiotherapy 2 Terminated 1c

NCT03612466 20 OSs bone metastases 153Sm-DOMTP
Calcium carbonate
Mozobil
Neupogen

Radiotherapy 1 Not yet recruiting 1c

NCT00002466 Bone sarcoma Cyclophosphamide, 
doxorubicin hydrochloride, 
etoposide, ifosfamide, vin‑
cristine sulfate, surgery

Radiotherapy 2 Completed 1c

NCT00245011 11 OSs Samarium-153 Radiation 2 Completed 1c

NCT00544778 7 recurrent bone sarcomas Filgrastim, dexrazoxane, 
doxorubicin, ifosfamide, 
irinotecan, conventional 
surgery

Radiotherapy 2 Terminated 1c

NCT03539172 61 bone sarcomas of head 
and neck

Apatinib mesylate radiotherapy 2 Unknown 1c

NCT04398095 20 radiation-induced bone 
sarcomas

Hyperthermia Radiotherapy 2 Recruiting 1c
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studies evaluating the efficacy of radiotherapy in bone 
sarcoma. Thus high-quality, multicentric randomized 
controlled trials are desperately needed to precisely 
determine the benefits of radiotherapy in bone sarcoma. 
Efforts are ongoing to standardize the treatment in these 
rare diseases, regroup patients into adapted clinical trials, 
and improve patient management. A better understand-
ing of the cellular and molecular mechanisms induced by 
radiotherapy could offer new therapeutic perspectives.

In vitro and in vivo pre-clinical data combining drugs 
and radiotherapy have shown promising results in bone 
sarcomas. However, it is important to remember that 
during the last decade, very few new drugs have been 
approved for concurrent radiotherapy administration in 
other cancers where pre-clinical data were also promis-
ing. Out of hundreds of clinical trials, only 2 compounds 
were finally approved for concurrent radiotherapy: the 
alkylating agent temozolomide and the anti-EGFR anti-
body cetuximab [116]. This highlights clear gaps between 
experimental models and the clinical reality that need 
to be addressed in bone sarcoma research. Efforts need 
to be made to improve translational research through 
in  vitro and in  vivo models to match radiotherapy spe-
cificities and challenges, but also through experimen-
tal design revision to unveil synergistic combinations. 
This need is particularly illustrated by the most recent 
studies showing the strong efficiency of immunother-
apy combined to radiotherapy, even in immune desert 
tumors [117]. The tumor microenvironment plays a pri-
mordial role in tumor initiation and progression and a 
way to improve tumor modeling could be to reproduce 
the TME, both in vitro and in vivo. This could be of par-
ticular interest in CHS and CD, which are considered 
immune desert tumors, and where radiotherapy could 
reverse tumor immune desertification. Finally, strategies 
focusing on the delivery of targeted therapies and radio-
therapy may also offer improved approaches in the treat-
ment of bone sarcoma.
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