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Abstract
Background  Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease harboring significant 
microenvironment heterogeneity, especially for the macrophages. Tumor-associated macrophages (TAMs) orchestrate 
PDAC malignancy, but their dynamics during disease progression remains poorly understood. There is a pressing need 
to identify the molecular mechanism underlying tumor-macrophage interactions and thus design novel therapeutic 
strategies.

Methods  Herein, we developed an insilico computational method incorporating bulk and single-cell transcriptome 
profiling to characterize macrophage heterogeneity. CellPhoneDB algorithm was applied to infer macrophage-tumor 
interaction networks, whereas pseudotime trajectory for dissecting cell evolution and dynamics.

Results  We demonstrated myeloid compartment was an interactive hub of tumor microenvironment (TME) essential 
for PDAC progression. Dimensionality reduction classified seven clusters within the myeloid cells wherein five subsets 
of macrophages were characterized by diverse cell states and functionality. Remarkably, tissue-resident macrophages 
and inflammatory monocyte were identified as potential sources of TAMs. Further, we uncovered several ligand-
receptor pairs lining tumor cells and macrophages. Among them, HBEGF-CD44, HBEGF-EGFR, LGALS9-CD44, 
LGALS9-MET, and GRN-EGFR were correlated with worse overall survival. Notably, as in vitro experiments indicated, 
TAM-derived HBEGF promoted proliferation and invasion of the pancreatic cancer cell line.

Conclusion  Together, our work deciphered a comprehensive single-cell atlas of the macrophage compartment 
of PDAC and provided novel macrophage-tumor interaction features with potential value in developing targeted 
immunotherapies and molecular diagnostics for predicting patient outcome.

Keywords  Single-cell RNA sequencing, Pancreatic ductal adenocarcinoma, Prognosis, Macrophage heterogeneity, 
Tumor-macrophage interactions
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal cancers with a 5-year survival rate of less 
than 8% [1]. The intractable characteristics of PDAC are 
the result of joint factors like population demographics, 
genetics, personal health status, immunity condition, 
and environment, which relate to the sequential accu-
mulation of driven mutations (KRAS, CDKN2A, TP53) 
and passenger mutations during tumor progression, and 
confers tumors with marked cellular and molecular het-
erogenicity [2–4]. PDACs develop in a complex tumor 
microenvironment (TME) that dynamically interacts 
with tumor cells to assist tumor growth and progression 
[5]. Among the diverse cellular components in TME, 
tumor-associated macrophages (TAMs) appear early 
during pancreatic tumorigenesis and represent the pre-
dominant stromal cell fractions that elicit severe T-cell 
exhaustion and eventually overwhelm antitumor cellular 
immunity in the advanced lesion [6, 7]. It is notewor-
thy that TAMs contribute to nearly all aspects of cancer 
progression, including angiogenesis, anti-inflammation, 
extracellular matrix (ECM) remodeling, and raising treat-
ment resistance upon gemcitabine administration [8–10]. 
Therefore, understanding the molecular mechanisms 
governing tumor-macrophage interactions is critical. 
Recent advances in computational biology and muti-
omics technologies enabled deciphering cell-cell commu-
nication from high-throughput transcriptomic data [11]. 
By profiling molecular spectrums of intracellular tumor-
macrophage communication, we are able to design tar-
geted molecular therapies to tackle PDAC.

Optimal therapeutic strategies targeting TAMs require 
an in-depth understanding of their origins, fates, and 
dynamics. Current advances in single-cell technology 
enable the characterization of cell trajectory inference 
and phenotypic evolution of macrophage compartments 
[12], while it remains poorly characterized for PDAC. 
It is a traditional view that TAMs are derived from the 
recruited monocytes [13]. However, emerging evidence 
suggests resident tissue macrophages (RTMs) of embry-
onic origin as the sources of TAMs. These cells exhibit 
unique pro-fibrotic functions distinct from monocyte-
derived counterparts [14]. RTMs are established during 
the embryonic development stage and maintained by 
self-renewal locally in addition to recruitment [15]. Since 
tissue-specific niche has a major influence on environ-
mental reprogramming of seeded embryonic precursors, 
RTMs that originated from different organs or tissues are 
conferred with distinct phenotypes and functions [16, 
17]. It was found that RTMs of the pancreas expanded 
during tumorigenesis and contributed to cancer progres-
sion [14], while their phenotypic characteristic and lin-
eage relationship with TAMs, especially at a single-cell 
level, remains to be elucidated.

According to the induced conditions and activation 
states, TAMs are classified into M0-type (naive mac-
rophage), M1-type (classically activated macrophage), 
and M2-type (alternatively activated macrophage) [18]. 
Researchers were used to this typing system for a long 
time, while recent studies on the genetically engineered 
mouse model of PDACs, as well as human primary gas-
tric cancer, revealed no such divisions with single-cell 
technology [19, 20]. M1/M2 division system was based 
on in vitro artificial induction and thus might not be 
applicable for the real in vivo environment. Instead, 
applying single-cell RNA sequencing (scRNA-seq) to the 
comprehensive dissections of pan-cancer macrophage 
ontogeny has revealed distinct features of tumor-infiltrat-
ing macrophages across cancer types [12]. Further study 
on colon cancer has revealed dichotomous subtypes of 
TAMs (C1QC + and SPP1 + TAMs), which demonstrate 
unique transcriptional profiles [21]. Intriguingly, these 
two functional TAM subsets exhibited enrichment of 
inflammatory and angiogenic signatures respectively, 
emphasizing the importance of classifying macrophages 
according to functional diversity.

Herein, we performed computational analyses to delin-
eate the features of diverse macrophage subsets and con-
struct novel macrophage-tumor cell interaction networks 
involved in regulating the malignancy of PDACs. Dif-
ferentiation trajectories analysis showed that RTMs and 
inflammatory monocytes are potential sources of TAMs. 
Our study uncovered cellular reprogramming programs 
of the macrophage compartment and provided a strong 
rationale for personalized/precision approaches for mac-
rophage-directed cancer therapy.

Materials and methods
Generation of the primary PDAC dataset
The bulk gene expression and survival data (n = 182) of 
TCGA pancreatic cancer were downloaded from the 
UCSC data portal ( https://xenabrowser.net ). The raw 
count data obtained from the RNA-sequencing (RNA-
seq) was normalized concerning library size using the 
Deseq2 package, thus making fair gene comparisons 
between samples. After excluding cases not histologi-
cally diagnosed as primary ductal cancer and deficient in 
survival data, we reserved 147 PDAC patients for further 
analysis.

Single-cell data processing
The published PDAC single-cell dataset [22] containing 
24 tumors and 11 normal pancreas tissues was deposited 
in the Genome Sequence Archive (https://ngdc.cncb.
ac.cn/gsa/) with the accession number PRJCA001063. 
We retrieved the raw data matrix and transformed it into 
a SingleCellExperiment object using the Seurat R pack-
age. After removing cells with poor quality (< 200 genes/

https://xenabrowser.net
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cell, < 10 cells/ gene, and > 10% mitochondrial genes), the 
raw matrix was processed using “Sctransform” meth-
ods, which contains encapsulated functions of “Nomal-
izeData”, “ScaleData”, and “FindVariableFeatures” for 
automatically identifying high-variance gene. Next, the 
ElbowPlot was generated for determining the optimal 
dimensionality number of principal components (PCs). 
As high resolution often leads to an increasing number 
of clusters, the “FindClusters” function for applying mod-
ularity optimization was adjusted to 0.15. The UMAP 
(Uniform manifold approximation and projection), a 
dimension reduction technique, was used for visualiz-
ing the clustering. To assign cell identity to each cluster, 
previously published literature and CellMarker dataset 
(http://biocc.hrbmu.edu.cn/CellMarker) were used for 
reference. Following identifying the myeloid cells/mac-
rophages subset according to expressions of AIF1 and 
CD68, the same workflow was used for making further 
sub-classification. To perform over-representation analy-
sis (ORA), we identified differentially expressed features 
(DEGs) for each subset against other subsets using the 
“FindMarkers” function in which parameters of min.pct 
(minimum percent of cells expressing the gene) and log2 
fold-change are set to 10% and 0.5, respectively. Pathway 
enrichment analysis was performed using the ClusterPro-
filer package.

Correlative cell-cell interactions inferred by combined bulk 
and single-cell transcriptome profiling
To conduct correlative cell-cell interaction analysis, we 
refer to the previously published protocol [21]. Based on 
the TCGA bulk profiling, we estimated the relative abun-
dance of each cell type by the average expression of the 
cell type-specific genes defined in the single-cell data 
processing. Subsequently, Pearson Correlation analysis 
was performed between each gene and the relative abun-
dance of each cell type to identify genes that may infer 
the co-occurring cells with these particular cell types. 
Since the expression levels of specific signature/marker 
genes in a given cell subtype (i) were obviously in high 
correlation with the abundance of this specific cell sub-
type, we filtered these genes according to the criteria 
of average expression > 1 and cell frequency of expres-
sion > 20% upon scRNA-seq dataset. Next, the top 20 
highly correlated non-self-expressed genes for cell-type 
i were selected based on the ranked correlation coeffi-
cient matrix. To identify certain cell types in relation to 
cell-type i, we searched the candidates contributing to 
the highly correlated non-self-expressed genes by per-
forming gene set enrichment analyses through calculat-
ing the mean expressions of these selected genes across 
all cell types followed by the application of z-score trans-
formation. At last, the correlated cell types for cell-type 
i were identified if the z-score transformed enrichment 

score over 1.28. If the correlated two types were identi-
fied mutually, the maximum of the enrichment scores 
was chosen.

Calculate module scores for feature expression programs 
in single cells
To delineate the functional state/signature for each 
macrophage sub-cluster, the AddmoduleScore func-
tion integrated into the Seurat package was used for 
computing the module scores of annotated gene sets 
from the MSigDB hallmark collection (https://www.
gsea-msigdb.org/gsea/msigdb/). Then, we performed 
differential expression gene (DEG) analysis using the 
Seurat::FindAllMarkers function with a log2 fold-change 
threshold set to 0.5 and P-value < 0.01 to choose the top 2 
or 3 pathways across macrophage clusters.

Single-cell regulatory network inference and clustering 
(SCENIC)
For single-cell regulons (i.e., transcription factors and 
their target genes) inference in the different subsets of 
macrophages, the SCENIC protocol (https://aertslab.
org/) was followed for reference [23]. The inference of 
regulons was performed in the following three steps. (1) 
Co-expression modules between transcription factors 
and their potential target were identified based on the 
gene-expression matrix through GENIE3 (R package) (2) 
To remove indirect targets, modules were pruned by cis-
regulatory motif discovery (cisTarget), leaving 94 regu-
lons analyzed in the next step. (3) The activity score of 
each regulon at cellular resolution was computed using 
the AUcell algorithm and subsequently used for t-SNE 
dimensionality reduction and visualization.

Cell-cell communication inference
To systematically study the interactions between macro-
phage and cancer cells, we predicted cell-cell communi-
cation via CellphoneDB (https://www.cellphonedb.org/), 
a publicly available repository of ligand-receptor inter-
acting pairs and multi-subunit protein complex [24]. It 
considered the expression level of ligands and receptors 
with each cell type, generated a null distribution of each 
ligand-receptor pair, and determined the likelihood of 
cell-specificity of a given receptor-ligand complex based 
on the P-value. Those with the least number of significant 
P-values are chosen to be biologically relevant. After fil-
tering in a criterion of P < 0.05 and containing secreted 
factors, a total of 92 ligand-receptor pairs were identi-
fied, as shown in Supplementary Table 1. Special mention 
should be made that CellphoneDB generates significant 
interactions between specific cell pairs in two forms: 
Macrophage-Tumor pair and Macrophage-Tumor pair, 
for which different ligand-receptor pairs are enriched.

http://biocc.hrbmu.edu.cn/CellMarker
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://aertslab.org/
https://aertslab.org/
https://www.cellphonedb.org/
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Trajectory analysis
The monocle2 package was used to build the develop-
mental trajectory of macrophages. Following the proto-
col, normalized data of the macrophage subset served 
as input to establish the monocle object. Next, the top 
2,000 most significant (q < 0.1) DEGs were taken as the 
set of ordering genes and sorted by the q-value. To iso-
late the root-to-branch specific gene expression patterns 
and trajectory modeling, the monocle BEAM function 
was used to compare two models with a likelihood ratio 
test for branch-dependent expression. For visualizing the 
fate-dependent gene expression patterns and expression 
dynamics for each gene, “plot genes branched heatmap” 
and “plot genes branched pseudotime” functions were 
used.

Cell culture and differentiation
THP-1 cell line (human monocytic leukemia cell line) 
and SW1990 (human pancreatic cancer cell line) were 
purchased from American Type Culture Collection 
(Manassas, VA). Cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 10% 
fetal calf serum, penicillin, and streptomycin in the pres-
ence of 5% CO2. THP-1 cells were induced to be polar-
ized into an attached macrophage-like phenotype by 
stimulation with 150 nM PMA (Sigma-Aldrich, Shang-
hai, China) for 24  h. Subsequently, M2 differentiation 
can be achieved by the combined treatment with 25 ng/
ml IL-4 and 25 ng/ml IL-13. To build a co-culture system, 
1 × 105 cells of polarized macrophages and SW1990 cells 
were co‑cultured with a Transwell apparatus of 0.4  μm 
pore hanging inserts (Corning, USA) for three days. Neu-
tralization handling was performed using HBEGF Poly-
clonal Antibody (PA5-47352, Invitrogen, USA).

Quantitative reverse transcription PCR (RT-qPCR)
According to the manufacturer’s protocol, the total RNA 
was extracted using RNA fast 2000 Reagent (Fastagen, 
Shanghai, China). Purified RNA was reverse‑transcribed 
using oligo-dT and random primers with the Prime-
Script™ RT reagent Kit (Takara, Dalian, China). RT‑qPCR 
was run on a CFX-96 real-time PCR System (Bio-Rad, 
Shanghai, China) using TB GreenTM Premix Ex Taq II 
(Takara, Dalian, China). The sequences of the primer sets 
for GRN, LGALS9, HBEGF, and GAPDH were listed in 
Supplementary Table 2. The relative expression for each 
gene was normalized to GADPH and calculated using the 
2−ΔΔCT formula.

Invasion assay
Transwell assay was performed to assess cell invasion 
using 6-well Matrigel pre-coated cell culture inserts 
(Corning, USA). 1ml aliquot (4 × 105) of preprocessed 
SW1990 cells in DMEM medium (1% FBS) was plated 

into the upper chamber of each insert and filled the 
lower chamber with 2 ml complete medium. After 24 h, 
non-invading cells were removed from the upper surface 
using cotton swabs, whereas invaded cells on the bottom 
layer of the surface were rinsed in 1×PBS, fixed with pre-
chilled 4% paraformaldehyde solution for 30 min, stained 
with 0.1% crystal violet dye for 10  min and followed by 
rinsing in 1×PBS for three times. For imaging acquisi-
tion, dried inserts were observed under an inverted light 
microscope.

Cell proliferation assay
Briefly, 1 × 103 preprocessed SW1990 cells were seeded 
in a 96-well plate. The medium was replaced with 100 µl 
fresh medium with 10% Cell Counting Kit-8 (CCK-8) 
reagents (Beyotime Biotech, China) in each well at 0, 24, 
48, and 72  h and incubated at 37  °C for additional two 
hours. Finally, the absorbance at 450  nm was measured 
using an ELISA microplate reader (Thermo, USA).

Statistical analysis
For cell-cell communication inference, the means of 
the average expression level of interacting molecule1 
in malignant ductal cells and interacting molecule2 
in macrophages are calculated using the square root 
of mean((molecule1 × molecule2) + 1). The Kaplan-
Meier survival curve was built to show differential sur-
vival between two groups, and a log-rank statistical test 
was performed to compare the survival distributions 
of the two groups (P < 0.05). We defined the “High” and 
“Low” by setting the cut-off as a median value of the 
gene expression level or gene signature scores. To com-
pare non-normal distribution parameters between two 
groups, unpaired two-tailed Wilcoxon rank-sum tests 
were performed. By contrast, normally distributed data 
were compared between the two groups using the Stu-
dent’s t-test. All statistical analyses were performed using 
Graphpad Prism 8.0 or R version 3.6.3.

Results
Identifying myeloid cell subset as an interactive TME hub 
essential for PDAC progression
To interrogate the global cell interaction atlas of PDACs, 
we incorporated scRNA-seq and TCGA bulk transcrip-
tome datasets into the integrated analysis. From the pub-
lished scRNA-seq profiles, a total of 10 cell subsets were 
identified and annotated as previously defined [22]. Gene 
signatures detected in over 25% of each cell population 
with a log2 fold-change greater than 0.5 were identified 
(Supplementary Table  3). By identifying the abundance 
of a particular cluster in each TCGA sample using its 
gene signatures, we generated non-self highly correlated 
genes and matched this gene set back to scRNA-seq 
dataset. Co-occurring enriched cell types were identified 
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and used for building cell-cell interaction networks 
(Supplementary Fig. 1a). It was found that myeloid cells 
and malignant ductal cells harbor the greatest number 
of partners, suggesting their close relationships with 
TME components (Supplementary Fig.  1a). Increased 
myeloid cell infiltration informed a worse prognosis for 
PDAC patients (Supplementary Fig. 1b). Thus, we termed 
myeloid cell compartment as an interactive hub essen-
tial for cancer progression. In contrast, there were no 
similar interactions in normal pancreas tissue. Functional 
enrichment analysis of the DEGs between tumor and 
normal myeloid cells (Supplementary Fig.  1c) revealed 
that digestion- and metabolism-related functional mod-
ules were enriched in normal tissue, whereas genes up-
regulated in tumor samples were significantly enriched 
for immune-associated terms, such as interferon signal-
ing, interleukin 4 and interleukin 13 signalings, and toll-
like receptor cascades (Supplementary Fig. 1d).

Identification of macrophage heterogeneity
To profile myeloid cell diversity, the coarse-grained 
annotated myeloid cluster from tumor and normal tis-
sue were sub-divided into eight subsets (Fig.  1a). Of 
note, DC subsets were characterized by high expression 
of HLA-DRs and low expression of CD68, and further 
distinguished by specific expression of DERL3/CXCR3/
IGJ, CCR7/IDO1/DAPP1, and CD1C/CD1E for plasma-
cytoid DC (pDC), cDC2, and cDC1 cells, respectively 
(Fig.  1b-c). The remaining five clusters were denoted as 
macrophages concerning the high expression of CD68 
and CD163 (Fig. 1b-c). Intriguingly, no prominent batch 
effect was observed across the patients, and macrophage 
subsets were shared with diversity among patients, albeit 
at different proportions, showing intertumoral hetero-
geneity (Fig.  1d and Supplementary Fig.  2a). Gene sig-
natures for each subset are identified and presented 
in Supplementary Table  4. Among the diverse macro-
phage subsets, cluster 2 macrophage showed preferen-
tial enrichment (91.9%) in normal mucosa relative to the 
tumor and hence, was designated as resident tissue mac-
rophages (RTMs) (Fig.  1a and Supplementary Fig.  2b). 
In addition to RTMs, cluster 0 macrophage formed the 
majority of macrophage subset (35.7%) in normal tis-
sue (Supplementary Fig. 2b). Cluster 4 macrophage was 
assigned into inflammatory monocytes regarding the 
high expression of S100A8, S100A9, VCAN, FCN1 [25]. 
Cluster 0 macrophage showed elevated expression of 
MHC-II class molecules (HLA-DPB1, HLA-DPA1, HLA-
DQB1), whereas cluster 1 macrophage displayed higher 
expression levels of cytokines CCL2, CCL3, ADM, et al., 
apolipoprotein genes APOC1, APOE, and pro-fibrotic 
genes SPP1, TIMP1 in control of ECM deposition [26]. 
Cluster 2 macrophage, known as RTM, exhibited spe-
cific signatures expression (PRSS1, CLPS, SYCN). The 

immunohistochemical analysis confirmed the over-
expression of these newly defined markers in normal 
pancreas using the online resource (Human Protein Atlas 
Dataset, Supplementary Fig.  3a-c). Further, cluster 3 
macrophage was characterized by high expression of cell-
cycle genes (TOP2A, CDK1, MKI67) and thus termed as 
cycling cells (Fig.  1c and Supplementary Fig.  2c). Deep 
analysis of M1 (e.g. CXCL9, IL1β, CCL5) and M2 (e.g. 
MRC1, CCL18, CCL23, CD163) signatures across the 
subsets indicated subpopulation of cluster 1 macrophage 
highly expressed central regulators (IRF1, CXCL9, and 
CXCL10) in Type-I interferon (IFN-I) signaling, resem-
bling previously defined “ISG” macrophage that exhibited 
an M1 phenotype bias induced by IFN-I [12, 27]. Even so, 
there was no recognizable subset representative of M1- 
or M2- polarized macrophage (Fig. 1e).

Delineation of the functional states across different 
macrophage subsets
To delineate the functional states across macrophage 
subsets, we performed singlesample gene set enrich-
ment analysis (ssGSEA) and over-representation analy-
sis (ORA) in terms of immune- and cancer-related 
phenotypes, which aggregate redundant biological states 
or processes. Our data indicated that cluster 0 macro-
phage displayed upregulation of pathways associated 
with complement cascade, antigen processing and pre-
sentation, and PD1 signaling, whereas cluster 1 mac-
rophage was characterized by active metabolism and 
stroma, relating to properties of TAMs (Fig.  2a-c and 
Supplementary Fig.  4). Consistent with above finding, 
cluster 3 macrophage exhibited preferential enrichments 
of cell-cycle related terms (Fig. 2a-c and Supplementary 
Fig.  4). Processes of inflammation and innate immune 
response, indicative of monocyte-like properties, were 
enriched in cluster 4 macrophage (Supplementary Fig. 4).

Identification of master regulons across macrophage 
subsets
Building transcriptome-based regulatory networks, also 
known as regulons, contributes to a better understand-
ing of immune cell function and regulation [28]. We 
generated macrophage subset-specific core regulons 
for determining and characterizing cellular state using 
SCENIC (Fig. 3a). It was observed that clustering by cell 
state was compatible with the division using whole tran-
scriptome profiles (Fig.  3b), showing good performance 
for SCENIC. With the analyses, the cluster 4 subset 
was characterized by the upregulated activity of inflam-
matory regulons overexpressed in previously defined 
monocyte [27, 29], including IRF1, CEBPB, STAT3, and 
NFKB2 (Fig.  3a,c), confirming its classification as an 
inflammatory monocyte. EZH2, best known for its func-
tion in macrophage activation [30, 31], was identified 
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as a candidate regulon driving the rapid-cycling sta-
tus for cluster 3 macrophage. Additionally, we noted 
a trend of increased STAT1 activity in cluster 1 macro-
phage, whereas upregulation of SOX9 and HES4 seemed 

responsible for the distinct phenotype of RTMs (cluster 
2) (Fig. 3c).

Fig. 1  Identification of macrophage heterogeneity. a t-SNE projection of 5408 myeloid cells from PDAC tumors and normal tissues, colored according 
to graph-based clusterings (left panel) or sample origin (right panel). b t-SNE plots showing normalized expression of S100A8, CD68, PRSS1, DERL3, CCR7, 
and CD1C, representative cell markers for specific cell types. c Dot plot depicting expression levels of representative marker genes across different myeloid 
subsets. d Hundred-percent bar chart illustrating the distributions of different macrophage subsets across PDAC samples. e Heatmap illustrating expres-
sions of M1 and M2 markers across different macrophage subsets. pDC, plasmacytoid dendritic cell; cDC, conventional dendritic cell; t-SNE, t-distributed 
stochastic neighbor embedding

 



Page 7 of 14Yang et al. BMC Cancer          (2023) 23:199 

Pseudotime trajectory reconstruction of macrophage 
reprogramming course
Pseudotime trajectories provide novel insights for under-
standing transcriptomic dynamics and discovering devel-
opmental regulation mechanism. With the pseudotime 
analysis, the macrophage subset was ordered along the 
trajectory comprising one starting point (root) and two 
termini corresponding to two distinct cell fates (Fig. 4a-
b). By projecting the cell identities onto the trajectory, 
cluster 4 macrophages primarily occupied the root side of 
the trajectory, confirming that peripheral monocytes are 
the primary source of infiltrated macrophages (Fig.  4c). 
Notably, cluster 2 macrophages also served as the pro-
genitor of tumor-infiltrating macrophages, and cluster 3 

macrophages were distributed broadly in the termini of 
State2. Further, State1 and State2 vectors appear to rep-
resent differentiation routes for fractions of cluster 0 and 
cluster 1 macrophages, respectively (Fig.  4c). We posit 
that these two clusters may populate the pool of fully 
polarized macrophages. Profiling gene regulation dynam-
ics along the root-cell fate trajectories revealed a reduc-
tion of known monocyte markers (S100A9, S100A8) and 
upregulation of MMP9, CCL2, CTSL et al. (Fig. 4d). Pseu-
dotime kinetics of SPP1, known as a TAM marker [21], 
showed a gradual upregulation from the root to two fates. 
In contrast, cells with high expression of S100A9, an 
inflammatory monocyte marker, were preferentially dis-
tributed at the beginning of both paths (Fig. 4e). Further, 

Fig. 2  Delineation of the functional states across different macrophage subsets. a t-SNE projection of cluster 0–4 macrophages, colored according 
to cell identity. b Heatmap showing the normalized single sample gene set enrichment analysis (ssGSEA) score for cancer- and immunological-related 
gene sets from the MSigDB hallmark collection across different macrophage subsets. c t-SNE projection of normalized ssGSEA score for representative 
hallmark and immune terms. 
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STMN1 expression exhibited a considerable rise from the 
late stage of fate 2, while CTSS showed divergent expres-
sions along the two trajectories (Fig. 4e).

Inference of tumor-macrophage interactions
To further investigate the molecular mechanism under-
lying tumor-macrophage interactions, an unbiased 
ligand-receptor (L-R) interaction analysis was performed 
between macrophage subsets and malignant ductal 
cells according to the expression level and specificity of 
each ligand-receptor pair. From the interaction strength 
matrix, we noted that cluster 3 and cluster 1 macro-
phages showed close interactions with pancreatic tumor 
cells. By contrast, monocyte-like macrophages (cluster 
4) showed the weakest strengths of interactions (Supple-
mentary Fig.  5a). Our deep look into the data showed 
that cluster 1 macrophage highly expresses cytokines 

and chemokines (CCL2, CCL3, CXCL3, CCL4, CX3CL1, 
ADM, CCL18), with potential roles in maintaining TAM 
phenotype and function (Supplementary Fig. 5c).

Next, we sought to assess the degree of interactions 
incorporating all the TME components. It is noted that, 
with regards to macrophages, malignant ductal cells 
appear to be the closest cooperator (Supplementary 
Fig.  5b). Master L-R pairs establishing the relationship 
were presented with forms of Macrophage (Ligand)-
Tumor (Receptor) pair (Fig.  5a) and Macrophage 
(Receptor)-Tumor (Ligand) pair (Fig.  5b). Among them, 
the CSF1-CSFR1 axis was present with significant effects 
on macrophage activation and polarization, whereas 
TGFB1-EGFR axis was reported to mediate tumor migra-
tion and invasion [32]. Moreover, this result raised the 
previous unknown pairs (CCL3L1-DPP4, LGALS9-MET, 

Fig. 3  Identification of master regulatory networks across macrophage subsets. a Heatmap showing the normalized activity score of representa-
tive regulons across different macrophage subsets. b t-SNE plots based on activity score of 94 regulons and colored by annotations inferred from whole 
transcriptome profiling. c t-SNE plots showing activities of IRF1, STAT3, EZH2, KLF5, TCF4, and HES4 regulons. *g included in the parenthesis represents the 
number of genes in the regulons. PC, principal component; AUC, the area under the curve

 



Page 9 of 14Yang et al. BMC Cancer          (2023) 23:199 

TNF-DAG1), which might serve critical functions 
(Fig. 5b).

To investigate the value of tumor-macrophage L-R 
pairs in predicting patient survival. Seventeen L-R pairs 
with macrophage-source ligands were selected to observe 
the tumor-promoting effects. Analyses of primary PDAC 

cohorts from TCGA supported five pairs (HBEGF-CD44, 
HBEGF-EGFR, LGALS9-CD44, LGALS9-MET, GRN-
EGFR) as molecular indicators of adverse clinical out-
comes (Fig. 5c). Interestingly, MET and EGFR exhibited 
a rising trend of expressions in the malignant ductal 
cells compared with normal ductal cells (Supplementary 

Fig. 4  Pseudotime trajectory reconstruction of macrophage reprogramming course. a,b Pseudotime trajectory was reconstructed on the whole 
macrophage compartment containing one branch point. Cells of different States are denoted with different colors (left panel). Cells are highlighted ac-
cording to the pseudotime ranging from 0 to 20 (right panel). c Each macrophage subset (left panel) and whole macrophage subsets (right panel) were 
projected onto the trajectory plots with different colors assignment. d Heatmap presents a differentially expressed genes by comparing two cell states 
(q < 10− 50), each row represents expression level of each gene along the branch trajectory. e Pseudotime kinetics of representative genes from the root of 
the trajectory to cell fate 1 (solid line) or cell fate 2 (dashed line), with each dot representing a single cell and color-coded by cell identity
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Fig.  5d). Also, LGALS9, HBEGF, and GRN were con-
firmed to be over-expressed in macrophage subset (Sup-
plementary Fig.  5d), highlighting the potential roles in 
mediating tumor-macrophage interactions. Further, we 
considered tumor cells as the donor cells to see whether 
there exist interactions associated with patient survival. 
Interestingly, the HLA-F-LILRB1 pair was the only inter-
action associated with patient survival. LILRB1 has been 
reported to exert an immunoregulatory effect via inter-
acting with a wide spectrum of HLA class I molecules 
[33], thus meditating tumor cell eradication and optimis-
tic prognosis (Supplementary Fig. 5e).

TAMs-derived HBEGF promotes proliferation and invasion 
of SW1990
To see if LGALS9, HBEGF, and GRN mediate tumor-
macrophage interactions and contribute to PDAC pro-
gression, we performed in vitro experimental studies for 
validation. By polarizing THP-1 cells into TAMs accord-
ingly, HBEGF was confirmed to be overexpressed in the 
M2 polarized macrophages compared with uncompleted 

polarized status (Fig.  6a) and thus selected for fur-
ther functional experiments. Then, the CCK-8 assay 
and Matrigel-coated Transwell system were used to 
observe cell growth and invasion of pancreatic cancer 
cells (SW1990 cell line). From the assays, we noted that 
growth and invasion rates were upregulated upon co-
cultivation with TAMs compared with the cultivation of 
SW1990 alone (Fig.  6b-c). The effect was reversed with 
significance upon blockage with HBEGF-Ab (Blocking 
antibody) (Fig.  6b-c), validating the tumor-promoting 
role of TAMs-derived HBEGF.

Discussion
Despite the progress in treatment strategies, the clini-
cal outcomes of PDAC remain poor due to low resection 
rate and high relapse rate. Given the lacking of effective 
treatment strategies for PDAC, researchers have fos-
tered ongoing efforts aiming at TME as targeted therapy. 
While significant heterogeneity of TME components, 
especially tumor-infiltrating myeloid cells, impedes our 
understanding of PDAC biology and hampers effective 

Fig. 5  Inference of tumor-macrophage interactions. a-b Dot plot illustrating the ligand-receptor pairs with significant meaning for tumor-macro-
phage interaction across the cell compartments of PDAC. Macrophages were considered as receptor cells (panel a) or donor cells (panel b) as shown 
above. P-values are indicated by circle size; The means of the average expression level of interacting molecule 1 in cluster 1 and its interacting molecule 2 
in cluster 2 are indicated by color. c Kaplan-Meier curves of overall survival in different groups of PDAC patients stratified by the median expression level 
of the ligand and receptor. P < 0.05 was identified as significant
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management strategy [34]. Herein, we provide a com-
prehensive single-cell transcriptomic atlas to charac-
terize myeloid cells in PDACs. Our analysis reveals five 
macrophage subsets associated with diverse phenotypes 
and functions. Transcriptomic profiling and differentia-
tion trajectory analysis demonstrated there is significant 
macrophage heterogeneity in the TME on continuums of 
inflammatory monocytes and RTMs to TAMs via prolif-
eration macrophages. From the results of CellphoneDB, 
we observed that malignant ductal cells showed com-
promised crosstalk with inflammatory monocytes while 
maintaining close contact with cluster 1 and 3 macro-
phages. These two subsets were enriched with cytokine 
signatures and in the rapid proliferation stage, respec-
tively, resembling the characteristics of TAMs [35]. 
TAMs constitute an essential compartment of the can-
cer-immune microenvironment and lead to an inherently 
immunosuppressed TME [36, 37]. Our result reveals 
the existence of active crosstalk between malignant 
cells and specific subsets of TAMs, which provide criti-
cal insights into TAM-oriented personalized therapeutic 
intervention.

Accumulating evidence suggests the importance of M1 
and M2 TAMs in mediating PDAC progression [19, 38]. 
However, we could not clearly distinguish the M1 or M2 
macrophage subset from the scRNA-seq dataset. Consis-
tent with previous reports, there was almost no difference 
between M1 and M2 gene expression across different 
macrophage subsets [39, 40]. Instead, another classifica-
tion system has been recently proposed that is more akin 
to their in vivo state whereby TAMs are subdivided into 
monocyte-like resident, alternatively activated TAMs 

[41]. It is hypothesized that M1 or M2 polarized state is 
more likely a concept indicating a functional property of 
pro-inflammation or anti-inflammation in particular set-
tings rather than a specific cell compartment. M1-TAMs 
stand out to drive acinar-to-ductal metaplasia in the early 
phase of a neoplastic process. Also, it participates in can-
cer invasion by degradation of extracellular matrix [42, 
43]. By contrast, in other settings like proliferation or vas-
cularization, the M2-TAMs seize advantage [44]. M1 and 
M2 are nice concepts but are unfortunately the extremes 
of a continuum of intermediate cells. Instead, we hold the 
opinion that categorizing macrophages based on func-
tional phenotype would be more reasonable.

Beyond characterizing the cellular composition of 
PDACs, it is crucial to understand how the diverse cel-
lular components interact with each other to mediate 
PDAC progression. Presently, numerous studies have uti-
lized scRNA-seq data to characterize cell-cell interaction 
[45, 46]. However, inter-tumoral heterogeneity tends to 
skew the results, limited to the small sample size. Here, 
we leveraged the advantages of bulk and single-cell tran-
scriptome profiling to build a cell-cell interaction net-
work, which identified myeloid and tumor cell lineages 
as interaction hubs among the TME. Further, profiling 
tumor-macrophage interactions identified several core 
ligand-receptor pairs, for instance, CSF1-CSF1R and 
SPP1-CD44 axis, that coordinate tumor progression in 
mutual supporting ways [47, 48]. Moreover, accumulat-
ing evidence suggests the importance of these interaction 
signals in immunomodulation [49, 50].

Of note, our data demonstrated that Galectin-9-CD44/
MET generates an autocrine loop with a unique value in 

Fig. 6  TAMs-derived HBEGF promotes proliferation and invasion of SW1990. a qRT-PCR evaluation of relative expressions of GRN, LGALS9, and 
HBEGF across three groups. b Line charts showing the levels of cell viability across the three groups (SW1990 alone, co-cultured SW1990, and co-cul-
tured SW1990 with HBEGF blocking). The absorbance value at a wavelength of 450 nm was used as an indicator of cell viability. Data are presented 
as means ± SEM and analyzed with Student t-test (ns: non-significance;  *P < 0.05; **P < 0.01). c Representative phase-contrast images of crystal violet 
stained SW1990 cells that invaded through the Matrigel matrix after 24 h of preprocessing (magnification 40×) across the three groups (SW1990 alone, 
co-cultured SW1990, and co-cultured SW1990 with HBEGF blocking). The quantitative analysis of invaded cells was performed by collecting five fields of 
view, and the data was presented as means ± SEM ( ***P < 0.001)
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predicting the prognosis of patients. Recent data high-
lighted the critical role of the Galectin-9-CD44 axis in 
regulating immune response [51]. Other studies have 
linked Galectin-9 to tolerogenic macrophage program-
ming and adaptive immune suppression [52, 53]. As a 
novel immune checkpoint, Galectin-9 was reported to 
be available in periphery blood and demonstrated great 
value in disease diagnosing [54, 55]. Another Ligand-
Receptor pair for concern in prognostic determination 
was granulin (GRN)-EGFR. It has been well-established 
that granulin facilitates pancreatic cancer metastasis 
and resistance to anti-PD-1 therapy [56, 57]. We uncov-
ered an important role of HBEGF in the proliferation 
and invasion of SW1990 using in vitro experiments, con-
sistent with a previous paper that macrophage-derived 
HBEGF was associated with a malignant course of PDAC 
[58], which might explain the limited efficacy of conven-
tional therapy and poor prognosis. We concluded that 
immunotherapy targeting HBEGF markers might be 
effective for PDAC.

Our computational analysis serves as a rich resource 
of cellular states, function programs, and lineage ontol-
ogy in macrophage compartments of PDAC. Our predic-
tion of multiple intercellular interaction features between 
macrophage and malignant cells is implicated in coordi-
nating cancer biology. Regarding limited immunotherapy 
options at hand, the prognostic tumor-macrophage inter-
action features represent potential targets for cancer con-
trol and aid in implementing immunotherapy approaches 
for PDAC.
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