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Abstract
Background  The immunological checkpoint known as Inducible T Cell Costimulatory Factor (ICOS, Cluster 
of Differentiation, CD278) is activated and expressed on T cells. Both somatic cells and antigen-presenting 
cells expressed its ligand, ICOSL (including tumor cells in the tumor microenvironment).It is important for 
immunosuppression. Uncertainty surrounds the function of ICOS in tumor immunity.

Methods  Several bioinformatics techniques were employed by us to thoroughly examine the expression and 
prognostic value of ICOS in 33 cancers based on data collected from TCGA and GTEx. In addition, ICOS was explored 
with pathological stage, tumor-infiltrating cells, immune checkpoint genes, mismatch repair (MMR) genes, DNA 
methyltransferases (DNMTs), microsatellite instability (MSI),and tumor mutation burden (TMB).In addition,To ascertain 
the level of ICOS expression in various cells, qRT-PCR was employed.

Results  The findings revealed that ICOS expression was up regulation in most cancer types. The high expression of 
ICOS in tumor samples was related to the poor prognosis of UVM and LGG; The positive prognosis was boosted by the 
strong expression of ICOS in OV, SARC, SKCM, THYM, UCEC, and HNSC. The result is that the expression of malignancy 
was revealed by the immune cells’ invasion.profile of ICOS in different types of cancer. Different ways that ICOS 
expression is connected to immune cell infiltration account for variations in patient survival. Additionally, the TMB, 
MSI, MMR, and DNMT genes as well as ICOS expression are linked in many cancer types.The results of PCR showed 
that it is highly expressed in gastric, breast, liver and renal cell carcinoma cell lines compared with normal cells.

Conclusion  This study suggests that ICOS may be a potential tumor immunotherapy target and prognostic marker.
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Introduction
According to statistics, cancer is the first or second cause 
of death before the age of 70 in 183 countries, ranking 
third or fourth in 183 countries. In the world, the lead-
ing cause of death is cancer [1]. The first-line treatment 
for most cancer patients is still surgery, chemotherapy, 
and radiotherapy. Immune checkpoint blockade therapy 
for cancer, however, has become a crucial component 
of treatment since its breakthrough [2]. Immunotherapy 
is mainly for the body ' s immune status, by regulating 
immune function so as to achieve a method of treating 
diseases. Compared with other treatment schemes, it has 
better effects, such as eliminating tumors and improving 
immunity, preventing tumor recurrence, so as to achieve 
the purpose of curing diseases. In addition, the side 
effects of immunotherapy are small, which can prolong 
the survival time of patients and make great progress in 
the treatment of tumors.

Cancer development depends largely on immune 
dysfunction [3–5]. TME is composed of immune cells, 
stromal cells, and other cells. In TME, tumor cells and 
immune cells interact dynamically, which determines 
the characteristics and heterogeneity of cancer [6–8]. In 
the case of long-term exposure to antigen, T cells dete-
riorate and exhibit increased expression of IRS, ICOS, 
and the programmed cell death receptor (PD-1) [9, 10]. 
Immunotherapy, such as blocking of immune check-
points (ICBs), has made great progress and shown great 
potential, especially for patients resistant to radiotherapy 
and chemotherapy [11–14]. However, clinical options for 
immunotherapy are lacking [15]. Therefore, it is crucial 
to investigate and confirm more efficient immune-related 
targets.

Inducible T cell costimulatory factor (ICOS, clus-
ter of differentiation, CD278) is an activated costimu-
latory immune checkpoint expressed on T cells. Its 
ligand ICOSL was expressed in antigen-presenting cells 
and somatic cells (including tumor cells in the tumor 
microenvironment) [16, 17]. As one of the most com-
mon targeted immune checkpoints, ICOS is considered 
a possible way to develop new immunotherapy [18]. 
Some clinical studies shown that blocking ICOS alone 
can inhibit tumor growth and proliferation, as well as 
TIGIT, CTLA4, and PD-1 [15, 19]. Numerous malig-
nancies, including colon adenocarcinoma (COAD), 
endocervical adenocarcinoma (CESC), and lung 
adenocarcinoma(LUAD), have been linked to the upreg-
ulation of ICOS. There are several ways that ICOS inhib-
its T cells in the tumor microenvironment (TME). ICOS 
is therefore considered a promising prognostic biomarker 
and a target for developing new immunotherapy [20, 21]. 
However, the function of ICOS(CD278) in pan-cancer 
remains unknown.

In this study, the expression profiles of ICOS, prog-
nostic, immune-related level, tumor mutation burden 
(TMB), microsatellite instability (MSI), mismatch repair 
(MMR) genes, and DNA methyltransferases(DNMTS) 
were thoroughly analyzed at the pan-cancer level using 
data sets from the TCGA, GEO, and GTEx [22].

Method
Data source and processing
The ICOS expression data, clinicopathological, and sur-
vival data of 33 cancer genome maps were obtained by 
the TCGA database(https://portal.gdc.cancer.gov/). To 
compare the expression level of ICOS in healthy tissues, 
RNA sequences were taken from the GTEx database. 
(http://commonfund.nih.gov/GTEx/) database to com-
pare the expression level of ICOS in normal tissues.

Based on the level of ICOS expression, analyses of survival, 
ROC curves, and clinicopathological association were 
performed
After gathering the information on 33 tumor types from 
the TCGA and 33 tumor types from the normal GTEx 
samples, the correlation between ICOS expression and 
clinical prognosis was further examined.Total survival 
(OS), disease-specific survival (DSS), disease-free inter-
val (DFI), and progression-free interval are the key mark-
ers for our accurate assessment (PFI).The patients were 
split into two groups: those at high and low risk, based on 
the amount of ICOS expression. The prognosis of the two 
groups was compared using Kaplan-Meier (KM) analysis.
Additionally, we conducted a COX analysis to look at the 
connection between ICOS expression and the progno-
sis for all types of cancer. As a cutoff, a COX P- value of 
0.05 was chosen. Additionally, based on the TCGA’s gene 
expression study,we evaluated the correlation between 
ICOS expression and stage of cancer.

Adopt R-package “survival ” and “ forest map ” were 
mainly used to design forest map, and R-package “limma 
” and “ ggpubr ” were mainly used for clinicopathologi-
cal correlation analysis. R package “ pROC ” was used to 
visualize the RNAseq data of TCGA and GTEx and cal-
culate the area under the ROC curve ( AUC ) to deter-
mine their diagnosis and prognosis.

Immunity and ICOS expression are correlated
We investigated the prevalence of immune cells har-
boring tumors in 33 malignancies. The expression level 
of ICOS was correlated with the abundance of ICOS in 
CD4 + T cells, CD8 + T cells, and macrophages. The cor-
relation between ICOS expression and T cell subtype 
characteristics was analyzed.

We also used the estimation algorithm in R-package 
“estimation” and “limma” to estimate the matrix score 
and immune score of stromal cells and immune cells, and 

https://portal.gdc.cancer.gov/
http://commonfund.nih.gov/GTEx/
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further analyzed the correlation between ICOS expres-
sion and these two scores (P < 0.001 as a cut-off value).

Association between ICOS(CD278) expression on TMB, MSI, 
MMR, and DNMT in pan-cancer
We determined the TMB score and MSI score by remov-
ing the patients’ mutation spectrum from TCGA, and we 
examined the connection with ICOS expression. Radar 
maps were designed using the R-package “fmsb” to visu-
alize both indicators. We also analyzed Spearman’s cor-
relation analysis between ICOS expression and the MMR 
gene, DNMTs, respecively. And create these graphics 
with the R-packages “reshape2” and “RColorBrewer” to 
see the outcomes.

Gene set enrichment analysis
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
gene set (https://www.kegg.jp/kegg/)  [23–25]and the 
Gene Ontology (GO) gene set were acquired from the 
Gene Enrichment Analysis (GSEA) weibsite (http://www.
gsea-msigdb.org/gsea/index.jsp). Functional annota-
tions and enrichment pathways of ICOS were analyzed 
by GO and KEGG.These data are combined and analyzed 
using the R packages org.Hs.eg.db, clusterProfiler, and 
enrichplot.

Drug sensitivity of ICOS in Pan-Cancer
Download NCI-60 compound activity data and RNA-seq 
expression files with CallMinerTM to analyze and visual-
ize ICOS chemosensitivity in pan-cance (https://discover.
nci.nih.gov/cellminer/home.do). We mainly selected 
some FAD or clinically approved drugs for analysis.

Cell culture
Human normal gastric epithelial cell GES-1, human gas-
tric cancer cell lines AGS, MKN-45 and HGC-27 (from 
our research group, preserved in Gansu Provincial People 
‘s Central Laboratory) ; human normal liver cell L02 and 
human liver cancer cell SMMC-7721 (from our research 
group, preserved in Gansu Provincial People ‘s Central 
Laboratory) ; human normal mammary epithelial cells 
MCF-10A, human breast cancer cells MCF-7 and MDA-
MB-231 (General Hospital of Ningxia Medical University 
Laboratory Gift) ; human renal proximal tubular epithe-
lial cells HK-2, human renal clear cell carcinoma CAKI-2 
(General Hospital of Ningxia Medical University Labora-
tory Gift). The cells were cultured in RPMI-1640 medium 
containing 10% fetal bovine serum ( FBS ) and 1% double 
antibody ( penicillin and streptomycin ) at 37°C.

RNA isolation and qRT-PCR
Total RNA was extracted according to the instruc-
tions of the M5 Universal RNA Mini Kit kit. The absor-
bance values at 260 nm and 280 nm were measured by 

spectrophotometer to ensure that the RNA concentration 
and purity were consistent. RNA was reverse transcribed 
into cDNA according to the instructions of M5 Sprint 
qPCR RT kit with gDNA remover reverse transcription 
kit. We used cDNA as a template and 2 × M5 HiPer SYBR 
Premix EsTaq(with Tli RNaseH) qRT-PCR detection. 
ICOS primers were designed and synthesized by Bioen-
gineering (Shanghai) Co. The primer sequences are as 
follows : forward, 5 ' -GGGCACAATTCCCTCTC-3 ' ; 
reverse, 5 ' -TTGCATCGACATTGGC.

Statistical analysis
The Wilcox test was used to examine the gene expression 
data from TCGA and GTEx. The connection between 
ICOS expression and immune cell score was assessed 
using Spearman correlation analysis.To illustrate the 
findings, the R package is used for all calculations. Statis-
tics were judged significant at P < 0.05.

Results
Pan-cancer expression landscape of ICOS
Based on the TCGA and GTEx datasets, the expres-
sion of ICOS in normal and malignant samples is com-
pared. According to the TCGA dataset, the expressions 
of ICOS in the following tissues were up-regulated in the 
two comparisons: BRCA, CESC, ESCA, HNSC, KIRC, 
KIRP, LIHC, LUAD, LOSC, PRAD, STAD, and UCEC. In 
THCA, the expression of ICOS was less tightly controlled 
(Fig. 1A). On the other hand, according to the TCGA and 
GTEx datasets, ICOS expression in THCA tissues was 
noticeably higher than in healthy tissues. In addition to 
THCA, the expression of ICOS in BLCA, COAD, DLBC, 
GBM, LGG, OV, PAAD, READ, SKCM, TGCT, and UCS 
patients in the comprehensive database was also signifi-
cantly increased (Fig. 1B). By comparison, the expression 
levels of ICOS in BRCA, CESC, ESCA, HNSC, KIRC, 
KIRP, LIHC, LUAD, LOSC, PRAD, STAD, and UCEC 
tumor samples were significantly higher than those in 
normal tissues, as shown in the figure. According to the 
integrated database, compared with normal tissues, the 
expression levels of ICOS in BLCA, COAD, DLBC, GBM, 
LGG, OV, PAAD, READ, SKCM, TGCT, and UCS were 
also significantly increased (Fig. 1A, B).

We looked more closely at ICOS expression changes 
as reported by the cBioPortal database. According to the 
findings, depth loss was related with the highest mutation 
rate, which was then followed by mutation and amplifica-
tion. Cervical cancer changes the most frequently of all 
cancers (Fig. 1C). Based on CCLE data, Fig. 1D shows the 
relative levels of ICOS expression in several cell lines.The 
tumor and adjacent normal tissues for ICOS across all 
TCGA tumors were shown in supplementary file.1.

https://www.kegg.jp/kegg/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
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Fig. 1  The expression levels of ICOS in different types of human cancers. (A). Based on the TCGA database, the expression levels of ICOS in 33 tumor 
tissues and normal tissues were compared. (B). The expression level of ICOS in normal tissues and tumor tissues is based on TCGA and GTEx data sets. (C) 
From the TCGA data, the expression levels of ICOS genes in different types of cancer. (D) The expression distribution of ICOS in different tumor tissues. 
*P<0.05, **P<0.01, ***P<0.001
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Correlation between the expression level of ICOS and the 
overall survival of tumor patients
We used different databases to explore the prognostic 
value of ICOS for pan-cancer. It is worth noting that the 
Kaplan-Meier cumulative curve shows that in the TCGA 
database, the expression of ICOS(CD278) is related to 
the prognosis of several cancers. In eleven distinct can-
cer types, including LUAD, OV, SARC, SKCM, THYM, 
UCEC, CESC, COAD, HNSC, BLCA, UCS, and ACC, 
ICOS played a protective function. In this situation, 
patients with higher ICOS expression outlived those with 
lower ICOS expression by a greater margin (Fig. 2, Sup-
plementary file.2). In contrast, ICOS had a negative effect 
on patients with LGG, UVM, and GBM cancers, where 
higher ICOS expression was associated with a lower sur-
vival rate than low ICOS mRNA levels (Fig.  2, Supple-
mentary file.2).

Through COX analysis, we looked more closely at 
ICOS-related survival (OS, DSS, DFI, and PFI) (Fig.  3). 
Because of this, we discovered that ICOS is a protective 
prognosis factor in CESC, HNSC, LUAD, OV, SKCM, 
and UCEC; however in UVM, LGG and KIRP had a neg-
ative prognostic role.

Since the two methods are different, the results are dif-
ferent. For example, the results of two analyses showed 
that SARC, THYM, COAD, BLAC, UCS, and ACC were 
significant in COX analysis, but not in K-M analysis.

Correlation analysis of ICOS ( CD278 ) expression with age 
and cancer stage
Several tumors’ age and stage are related to the expres-
sion of ICOS. Particularly, patients who are 65 years of 
age or younger have significant levels of ICOS expres-
sion. However, in LGG and LAML (Fig. 4A-D), Individ-
uals over 65 had higher levels of ICOS expression than 
patients who were younger or older. In contrast, ICOS 
was low expressed in individuals over 65, especially in 
BRCA and UCEC. ICOS was also significantly expressed 
in stage I-II patients and lowly expressed in stage III-IV 
patients with LUAD, TGCT, and COAD (Fig. 4E-G); sim-
ilarly, ICOS of KIRC and STAD (Fig. 4H, I) were highly 
expressed in stage III-IV patients and lowly expressed 
in stage I-II patients. Moerover, the receiver operating 
characteristic (ROC) curve was emplored to explore the 
diagnostic value of ICOS in different cancers. As shown 
in Fig. 4J, the ICOS had a moderate diagnostic accuracy 
of BRCA, COAD, COAD/READ, KIRC, SKCM, STAD, 
and THYM. (AUCs were above 0.7 and even 0.8). Taken 
together, these analyses suggest that ICOS is a meaning-
ful biomarker in a variety of cancers.

Study on the correlation between the expression of ICOS 
and immune infiltration
In addition, we used CIBEROR and TIMER methods to 
analyze the correlation of immune infiltrating cells in 33 
cancers.Results from the CIBEROR and TIMER data-
bases revealed a correlation between different immune 
cells and the expression of ICOS in 33 malignancies 
(Fig. 5A,B).

Using CIBEROR techniques, we investigated the 
potential relationship between ICOS expression and 
22 immune cell infiltration cells in various cancer types 
(Detailed information is provided in supplementary 
file.3). The aforementioned findings demonstrated that 
immune cell infiltration in tumors revealed the expres-
sion profile of ICOS in various cancer types. To explain 
the potential variations in patient survival, this gene 
expression is primarily linked to the infiltration of 
immune cells in various ways.

In order to determine the relationship between the 
expression of ICOS and the immune and matrix scores 
in various cancer types, we estimated the immune score 
and matrix score. In the following cells: CESC, COAD, 
HNSC, LGG, LUAD, OV, SARC, SKCM, THCA, UCEC, 
and UVM, the expression of ICOS was substantially 
linked with stromal and immunological scores (P<0.001). 
These findings showed that ICOS expression increased 
along with an increase in the number of stromal cells and 
immune cells (Fig. 6A, B).

To further study the potential mechanism of immuno-
suppression of the ICOS signaling pathway, in 33 differ-
ent cancer types, we looked at the relationship between 
ICOS expression and immunological checkpoint mark-
ers.(Fig. 7). In general, the results show that in different 
T cells, the expression of ICOS is significantly correlated 
with many immune checkpoints. For instance, ICOS 
has positive relationships with PDCD1, TIGIT, CD274, 
and CTLA4 in the majority of cancer types, indicating a 
broad co-expression landscape.

Correlation analysis on TMB, MSI, MMR, and DNMT
In addition, we evaluated the relationship between TMB, 
MSI, and ICOS expression. We found that ICOS expres-
sion was positively correlated with TMB in BRCA, 
COAD, LAML, LGG, OV, UCEC, and UCS, and nega-
tively correlated with TMB in CHOL, DLBC, HNSC, 
KIRP, LUAD, PAAD, TGCT, and THCA (Fig.  8A). In 
COAD, THCA, and VCEC, ICOS expression correlated 
favorably with MSI and negatively with DLBC, ESCA, 
HNSC, KIRP, LUSC, OV, SKCM, and TGCT (Fig. 8B).

In addition, we analyzed the relationship between 
ICOS and the expression of MMR genes and MSH2 
upstream gene EPCAM. In 17 of the 33 different malig-
nancies, there was a positive correlation between ICOS 
and the expression of at least one MMR gene. ICOS had 
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Fig. 2  Survival curve analysis of ICOS gene expression in different tumor types. (A): OS of CESC, COAD, HNSC, LGG, LUAD, OV, SARC, SKCM, THYM, 
UCEC, UVM. (B): DSS of BLCA, CESC, HNSC, LGG, LUAD, OV, SKCM, THYM, UCEC, UCS, UVM. Bladder Urothelial Carcinoma (BLCA), Cervical squamous cell car-
cinoma and endocervical adenocarcinoma (CESC), Colon adenocarcinoma (COAD), Head and Neck squamous cell carcinoma (HNSC), Brain Lower Grade 
Glioma (LGG), Lung adenocarcinoma (LUAD), Ovarian serous cystadenocarcinoma (OV), Sarcoma (SARC), Skin Cutaneous Melanoma (SKCM), Thymoma 
(THYM), Uterine Corpus Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Uveal Melanoma (UVM).
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a bad correlation with the expression of the MMR gene 
in the 7 tumors (Fig. 8C). We also looked at the relation-
ship between ICOS and DNMT expression. ICOS was 
positively correlated with at least one DNMTs expres-
sion in 19 cancers, and negatively correlated with DNMT 
expression in 5 cancers (Fig. 8D).

Functional analysis by GSEA
We then carried out GO functional annotation and 
KEGG pathway analysis of ICOS in various cancer types 
by GSEA. According to GO functional analysis, in the 
biological processes of gene silencing, RNA silencing, 
and mRNA binding in OV, CESC, and THYM, ICOS 
acts in a negative manner. ICOS is positively regulated 
in COAD, HNSC, LGG, LUAD, SARC, SKCM, UVM, 
and UCEC, and provides multiple immune-related 
functions. Its functions include cell immune response 

regulation, endocytosis, negative regulation of cell adhe-
sion, plasma membrane signal receptor complex, cell 
activation, and immune response(Fig.  9A). KEGG path-
way analysis results show that ICOS can regulate: the T 
cell receptor signaling pathway and chemokine signaling 
pathway(Fig. 9B).

Drug sensitivity analysis of ICOS
We further investigated the potential correlation analy-
sis between drug sensitivity and ICOS expression using 
the CellMiner™ database. Notably, ICOS expression was 
negatively correlated with drug sensitivity of cordyce-
pin, temsirolimus, (+)-JQ1, dasatinib, and LY-294,002 
(Fig.  10C,H,J,O,P). Our results exhibited that ICOS 
expression was positively associated with pipobroman, 
bendamustine, entinostat, nelarabine, XK-469, dab-
rafenib, panobinostat, thiotepa, triethylenemelamine, 

Fig. 3  Correlation analysis of ICOS expression with survival using the COX method for different types of cancers in TCGA. (A) OS. (B) DSS. (C) 
DFI. (D) PFI.
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Fig. 5  The relationship between the expression of the ICOS gene and the level of immune cell infiltration in 33 types of cancer was analyzed by 
CIBEROR(A) and TIMER(B) databases. * P<0.05, **P<0.01, ***P<0.001

 

Fig. 4  Correlation analysis of ICOS ( CD278 ) expression with age and cancer stage
 ICOS gene expression associated with age in BRAC (A), UCEC (B), LGG (C), and LAML (D). ICOS gene expression is related to the stage in LUAD (E), TGCT 
(F), COAD (G), KIRC (H), STAD (I). ROC analysis of ICOS genes in TCGA database(J).Breast invasive carcinoma (BRCA), Uterine Corpus Endometrial Carcino-
ma (UCEC), Brain Lower Grade Glioma (LGG), Acute Myeloid Leukemia (LAML), Lung adenocarcinoma (LUAD), Testicular Germ Cell Tumors (TGCT), Colon 
adenocarcinoma (COAD), Kidney renal clear cell carcinoma (KIRC), Stomach adenocarcinoma (STAD), Head and Neck squamous cell carcinoma (HNSC), 
Lung adenocarcinoma (LUAD), and Testicular Germ Cell Tumors(TGCT).
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vemurafenib, and cisplatin sensitivity (Fig.  10A,B,D-
G,I,K-N). In summary, we found that ICOS may be 
associated with chemoresistance to certain drugs. It is 
speculated that it may be related to the involvement of 
ICOS in RNA silencing, mRNA binding endocytosis and 
cellular immune response regulation.

Expression of ICOS in different cancers
The results showed that ICOS was highly expressed in 
gastric cancer cells AGS, MKN-45 and MGC-803 com-
pared to normal cells ( Fig. 11A ) ; it was highly expressed 
in breast cancer cells MCF-7 and MDA-MB-231 com-
pared to normal cells ( Fig.  11B ). CAKI-2 was highly 
expressed in renal carcinoma cells compared with normal 
cells ( Fig. 11C ). Hepatocellular carcinoma SMMC-7721 
cells were highly expressed compared with normal cells 
( Fig.  11D ).Genes are selectively expressed in different 
time and space, so that cells have different physiological 
functions and morphological structures. The occurrence 
of tumor is under the influence of various factors, result-
ing in local tissue cells in the relevant gene mutations, 
aberrant DNA methylation and immune escape a series 

Fig. 7  The correlation between ICOS expression and immune checkpoint 
gene expression in 33 cancer types. *P<0.05,**P<0.01, and***P<0.001

 

Fig. 6  Analysis of ICOS gene expression and interstitial score (A) and immune score (B) of cancer
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of changes. Therefore, the same gene in different cancer 
cells express different, different functions.

Discussion
The recent success of checkpoint inhibitors in cancer 
treatment provides new therapeutic prospects for cancer 
treatment. Inducible costimulator (ICOS) is a costimula-
tory receptor for T cell enhancement. The ICOS / ICOSL 

Fig. 8  Relationships between ICOS gene expression and TMB, MSI in Pan-cancer, and the correlation between ICOS expression and five mis-
match repair genes. (A) Radar map showed the expression relationship between TMB and ICOS in different cancers. Red curve represents correlation 
coefficient and blue value represents range. (B) Radar map showed the expression relationship between MSI and ICOS in different cancers. Blue curve 
represents correlation coefficient and green value represents range. (C), and the correlation between ICOS expression and DNA methyltransferase (D) 
across 33 cancer types. * P<0.05,** P<0.01,and *** P<0.001
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Fig. 10  Drug sensitivity analysis of ICOS. The expression of ICOS was associated with the sensitivity of pipobroman (A), bendamustine (B), cordycepin 
(C), entinostat (D), nelarabine (E), XK-469 (F), dabrafenib (G), temsirolimus (H), panobinostat (I), (+)-JQ-1 (J), thiotepa (K), triethylenemelamine (L), vemu-
rafenib (M), cisplatin (N), dasatinib (O), and LY-294,002 (P)

 

Fig. 9  Functional enrichment analysis of GO and KEGG on ICOS by GSEA. (A) GO functional annotation of ICOS gene in CESC, COAD, HNSC, LGG, 
LUAD, OV, SARC, SKCM, THYM, UCEC, and UVM. (B) KEGG pathway analysis of ICOS gene in CESC, HNSC, LGG, OV, SARC, SKCM, and UVM. Different color 
curves showed that ICOS gene regulated different functions or pathways of different cancers. The upward peak of the curve indicated positive regulation, 
and the downward peak of the curve indicated negative regulation
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axis has dual effects, and it may be involved in anti-tumor 
T cell response and tumor promotion response due to 
its association with regulatory T cells (Tregs) inhibitory 
activity. Therefore, both antagonists and agonist antibod-
ies may be targeted for cancer therapy. In the study, it was 
demonstrated that an ICOS agonist monoclonal antibody 
improved inhibitory checkpoint blocking. On the other 
hand, immunosuppressive Tregs can also be inhibited by 
an anti-ICOS monoclonal antibody, in addition to lym-
phatic tumor cells that express ICOS [26]. Therefore, a 
key problem in tumor immunology and immunotherapy 
is increasing, extending, and forecasting the clinical suc-
cess of the treatment.

In this study, a pan-cancer analysis workflow was car-
ried out, and the role of ICOS in cancer was studied in 
depth. The results show that the prognostic impact of 

ICOS on different types of cancer. The expression of 
ICOS mediates infiltration of immune cells and is posi-
tive correlated with the expression of PDCD1, CTLA4, 
and TIGIT in most cancer types [27]. In a variety of can-
cers, the expression of ICOS is also related to TMB, MSI, 
DNMTS, and MMR genes.

This study shows that ICOS has great prognostic value 
in different types of cancer. According to LGG [28, 29] 
and UVM [30]reports, ICOS expression is upregulated 
and is associated with a bad prognosis, which is consis-
tent with the findings of our study. The findings of our 
study also show a relationship between ICOS and the 
pathological phases of LGG and the predictive signifi-
cance of UVM. The findings demonstrate that ICOS has 
the potential to be employed as a prognostic biomarker in 
a variety of cancer types [31–33]. According to the study, 

Fig. 11  The expression of ICOS in different cancer cell lines. ( A ) The expression of ICOS in gastric cell lines GES-1, AGS, MKN-45, MGC-803 ; ( B ) The 
expression of ICOS in breast cell lines MCF-10 A, MCF-7 and MDA-MB-231 ; ( C ) The expression of ICOS in renal cell lines HK-2 and CAKI-2; ( D ) Expression 
of ICOS in liver cell lines L02 and SMMC-7721. * P<0.05,** P<0.01,and *** P<0.001
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the expression of ICOS was up-regulated with the activa-
tion of T cells and NK cells [34, 35]. Additionally, during 
prolonged antigen stimulation, T cells deplete or become 
dysfunctional, and several IRS expressions—including 
PD1, CTLA-4, TIGIT, and ICOS are also increased [7, 12, 
27, 36, 37], which are consistent with the results of our 
study, that is, the expression of ICOS is positively cor-
related with the effector T cells and Treg. Tumor tissues 
with up-regulated ICOS expression also showed abnor-
mal immune characteristics [38–41]. Our GSEA analysis 
revealed that ICOS also demonstrated the capacity to 
negatively regulate immune-related processes and path-
ways, including cytokine-cytokine receptor interaction, 
chemokine signaling pathway, cytotoxicity mediated by 
natural killer cells, interferon-gamma reaction, and JAK-
STAT3 signaling pathway.

Our findings demonstrated that among cancer types 
with poor prognoses, ICOS was positively linked with 
TIICs. Studies have reported that high TIIC status may 
lead to a poor prognosis. It may explain that some infil-
trating immune cells, such as macrophages, can pro-
mote the development, and metastasis, especially in an 
immune microenvironment [42, 43], which can confirm 
our research results, that is, the overexpression of ICOS 
is related to the poor prognosis of some cancers. Further 
studies are needed, for example, different correlation 
analysis results may be due to the heterogeneity between 
tumors [44], and different types show different TME, 
tumor immunogenicity, TMB, and microenvironment 
[45, 46]. In summary, the immunosuppressive effect of 
ICOS is likely to lead to the survival and escape of tumor 
cells, affecting the occurrence and development of cancer 
and the prognosis of patients.

We examined the connections between ICOS and 
TMB, MSI, MMR genes, and DNMTs in order to fur-
ther investigate the likely mechanism underlying the 
association between ICOS and tumor. MSI is a typical 
MMR gene mutation phenomenon [47, 48]. Accord-
ing to recent data, the majority of tumors with MSI-H/
dMMR status have elevated TMB [49]. These features 
are associated with increased new antigens that affect 
tumor-infiltrating lymphocytes and responses to ICB, 
thus independently predicting responses to immuno-
therapy [50]. Our results showed that ICOS in COAD 
was positively correlated with MSI / TMB. At the pan-
cancer level, the expression of ICOS in other types of 
cancer was more correlated with MSI / TMB. However, 
the expression of ICOS in THCA and OA is not con-
sistent with TMB and MSI in some same types of can-
cer, which can be explained for two reasons. First of all, 
reports on the integration of MSI and TMB to predict 
ICB responses have been made, despite the fact that 
some studies have indicated that TMB is elevated in MSI 
tumors. This is because the link between MSI and TMB 

is still nonstationary. There is a lack of research on the 
relationship between ICOS and TMB in tumors, which 
needs more study. Second, distinct relationships between 
ICOS and TMB, and MSI in the same kind of cancer may 
result from the usage of datasets and the characteristics 
of the collecting process. In addition to gene mutation, 
epigenetic changes also profoundly affect tumor growth, 
proliferation, metastasis, and immunosuppression. One 
of the epigenetic control mechanisms is DNA methyla-
tion. Immune evasion and abnormal DNA methylation 
are linked to the development of tumors [51]. In diverse 
types of cancer patients, our investigation discovered a 
connection between DNMTs and ICOS expression, and 
DNA methylation may also be involved in the regula-
tion of ICOS. The mechanism is related to the decreased 
expression of tumor suppressor and anti-tumor immune-
related genes caused by DNA hypermethylation and the 
overexpression of tumor suppressor and immune-related 
genes caused by DNA hypomethylation. In conclusion, 
different methylation models affect various cancer types 
and their immune microenvironment mechanisms. This 
is a complex issue that will require additional investi-
gation in the future.The correlation between DNMTs 
and ICOS also suggest that it is possible to target these 
checkpoints by methylation regulation or to improve the 
response rate by combining methylation regulators with 
ICB. We hypothesized that malignancies, activated T 
cells, and NK cells by immune cells were caused by aber-
rant genetic and epigenetic alterations [33]. Additionally, 
some T cells and NK cells up-regulate the expression of 
ICOS and suppress immune activity, creating an immu-
nological milieu in tumors that encourages the growth 
and spread of malignancies and has a bad prognosis [34, 
35].

In this study, we demonstrated the analysis of pan-
carcinoma with abnormal expression of ICOS in differ-
ent tumors. Our findings will enable us to further study 
ICOS functionality. For certain cancers, the clinical use 
of ICOS blocking offers new therapeutic alternatives for 
cancer patients. Our research has several limitations. 
Firstly, more data from other public datasets are needed 
to support and validate our results. Second, although 
we found that ICOS expression is associated with tumor 
immune cell infiltration and patient survival, it may affect 
the survival of patients through immune infiltration cells.

Conclusion
According to this study, ICOS may be used as a cancer 
biomarker for prognosis and a possible therapeutic tar-
get. utilized to enhance prognosis, find possible targets 
for cancer treatments, and improve cancer detection. 
Therefore, a tailored prognosis and more therapy options 
are offered to patients by combining routine clinical tests 
with an assessment of ICOS expression.
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