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Abstract 

Background:  Immune checkpoint inhibitors (ICIs) represent an approved treatment for various cancers; however, 
only a small proportion of the population is responsive to such treatment. We aimed to develop and validate a plain 
CT-based tool for predicting the response to ICI treatment among cancer patients.

Methods:  Data for patients with solid cancers treated with ICIs at two centers from October 2019 to October 2021 
were randomly divided into training and validation sets. Radiomic features were extracted from pretreatment CT 
images of the tumor of interest. After feature selection, a radiomics signature was constructed based on the least 
absolute shrinkage and selection operator regression model, and the signature and clinical factors were incorporated 
into a radiomics nomogram. Model performance was evaluated using the training and validation sets. The Kaplan–
Meier method was used to visualize associations with survival.

Results:  Data for 122 and 30 patients were included in the training and validation sets, respectively. Both the radiom-
ics signature (radscore) and nomogram exhibited good discrimination of response status, with areas under the curve 
(AUC) of 0.790 and 0.814 for the training set and 0.831 and 0.847 for the validation set, respectively. The calibration 
evaluation indicated goodness-of-fit for both models, while the decision curves indicated that clinical application was 
favorable. Both models were associated with the overall survival of patients in the validation set.

Conclusions:  We developed a radiomics model for early prediction of the response to ICI treatment. This model may 
aid in identifying the patients most likely to benefit from immunotherapy.
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Background
Recent research has demonstrated that immunotherapy 
with immune checkpoint inhibitors (ICIs) is significantly 
effective in patients with various types of cancer. Several 
ICIs, including anti-programmed cell death protein–1 
(PD1) and anti-programmed cell death protein ligand–1 
(PDL1) antibodies, have been approved as treatments for 
solid cancers, such as lung, liver, gastrointestinal, blad-
der, and kidney cancers and melanoma [1–3]. Although 
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ICIs have shown promise in the context of cancer man-
agement, some challenges with optimizing their benefits 
remain. Notably, the response to ICI treatment is often 
low in clinical environments, highlighting the need to 
identify patients most likely to benefit from ICIs, to 
reduce risks and maximize efficiency.

At present, several research groups have focused on 
developing effective predictors of ICI response. Some 
studies have identified clinical characteristics such as 
body mass index (BMI), sex, and age as promising predic-
tors given their association with the response to immu-
notherapy [4–6]. However, predictors derived from the 
tumor microenvironment remain the most accepted 
indicators. In clinical practice, tumor PDL1 expression, 
microsatellite instability status, and tumor mutational 
burden are commonly recommended as criteria for guid-
ing the selection of patients for immunotherapy [7–10]. 
Despite their important roles in cancer immunotherapy, 
these criteria have exhibited varying predictive perfor-
mance across different cancer types and different degrees 
of invasiveness, limiting their clinical utilization.

Radiomics is an emerging technique that can extract 
quantitative high-dimensional data from medical images 
[11]. Studying tumor-derived data generated via radiom-
ics provides crucial information related to tumor biology. 
With the radiomics data, novel imaging biomarkers could 
be developed for patient classification and prediction of 
treatment response, which makes a better implementa-
tion of personalized management in cancer [12]. As the 
response to immunotherapy highly relies on the tumor 
microenvironment, it will be possible to make an early 
prediction by using the radiomics features linked to the 
tumor biology. To examine the feasibility of predicting 
immunotherapy outcomes using radiomics-based tools, 
we conducted a real-world study on ICI-treated patients. 
In this study, we developed and validated a plain CT-
based model for predicting the response to ICI treatment 
in patients with solid cancers and explored the clinical 
significance of the constructed model, intending to pro-
vide support for personalized cancer treatment.

Methods
The study design and basic workflow are illustrated in 
Fig. 1a.

Patients and data collection
This retrospective study was approved by the Institu-
tional Research Ethics Committee of our hospital and 
the requirement for informed consent was waived from 
patients. Patients who received ICIs at two medical cent-
ers (Institution I and Institution II) from October 2019 to 
October 2021 were included. Inclusion criteria were as 
follows: (1) diagnosis of solid cancer and receipt of ICIs 

as first- or later-line treatment, (2) availability of com-
plete clinical data, (3) availability of CT images obtained 
within 14 days before ICI treatment, and (4) at least one 
CT re-evaluation within 6 months after treatment. The 
exclusion criteria were as follows: (1) receipt of concur-
rent or subsequent local combination treatments, (2) 
presence of multiple primary malignancies, (3) absence 
of measurable lesions based on the Response Evaluation 
Criteria in Solid Tumors (RECIST) 1.1 [13], and (4) pre-
vious immunotherapy. The data of the enrolled patients 
were divided into training and validation sets at a 4:1 
ratio using stratified random sampling. The following 
clinical data were obtained from medical records: sex, 
age, BMI, tumor type, clinical stage, number of metas-
tases (defined as the number of metastatic regions per 
patient), and treatment information (e.g., ICI type, com-
bination therapy, and line of therapy).

Outcome evaluation
The treatment response defined based on the RECIST 
was used as the patient label to train the models. A 
dichotomous response status was used to label patients 
as responders or non-responders. Each patient was 
evaluated for a response during the first CT follow-up, 
which was performed at least 1 month after the initia-
tion of treatment, to ensure sufficient follow-up time and 
evaluate consistency. Patients who exhibited a complete 
or partial response according to RECIST 1.1 were con-
sidered “responders,” while those who exhibited stable 
or progressive disease after treatment were considered 
“non-responders.” Overall survival (OS) was also assessed 
during follow up. In this study, OS was defined as the 
time from ICI initiation to death from any cause or the 
last follow up in surviving patients.

Acquisition of CT images
CT scans obtained within 14 days before treatment were 
used for analysis. Plain CT scans were acquired using spi-
ral scanners (GE Medical Systems, Philips, and Siemens) 
and reconstructed in the axial plane using a tube volt-
age of 100–120 kVp, slice thickness of 1–8 mm, and pixel 
spacing of 0.62–0.98 mm. Further details concerning the 
imaging reconstruction parameters are included in Addi-
tional file Table S1.

Tumor segmentation and extraction of radiomics features
Tumor segmentation was performed using 3D slicer soft-
ware (version 4.11.20210226, https://​www.​slicer.​org). Two 
experienced radiologists segmented the regions of interest 
by manually delineating the boundaries of the target lesion 
slice by slice. The most representative lesion was selected 
as the region of interest for segmentation to ensure a 
single lesion per patient. CT images were pre-processed 

https://www.slicer.org
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before feature extraction. All CT images and the corre-
sponding segmentation data were normalized by resam-
pling to a pixel size of 1 × 1 × 1 mm3 and discretized to 
a bin width of 25 Hounsfield units (HUs). In addition to 
the original images, wavelet-transformed images were 
used for feature extraction. During wavelet transforma-
tion, high- and low-pass filters were applied on the x, y, 
and z axes to produce eight decomposition images, which 
were labeled as LLL, LLH, LHL, LHH, HLL, HLH, HHL, 
and HHH. L and H represented low- and high-frequency 
signals in each direction, respectively. No limitations on 
feature classes were set for each extraction. Subsequently, 
851 features (107 original features and 744 wavelet fea-
tures) were extracted from the plain CT images using an 
open-source Python package: Pyradiomics (https://​pyrad​
iomics.​readt​hedocs.​io/​en/​latest/​index.​html, version 3.0.1, 
Computational Imaging & Bioinformatics Lab, Harvard 
Medical School). The Pyradiomics adheres to the Imaging 

Biomarker Standardization Initiative (IBSI) for the most 
of part. Z-score normalization with the same mean and 
standard deviation were performed to the extracted fea-
tures in both the training and validation sets.

Intra‑observer and inter‑observer reliability 
of the radiomics features
Thirty randomly selected CT images were segmented 
by two radiologists during the same period to assess 
inter-observer reliability. Intra-observer reliability was 
assessed by analyzing de novo segmentations of 20 ran-
domly selected images performed by one radiologist after 
a 2-week interval. The same radiologist performed the 
remaining image segmentations. Intra-class correlation 
coefficients (ICCs) were calculated for each feature to 
determine inter- and intra-observer agreement, with val-
ues > 0.75 denoting good agreement. Only features with 
good inter- and intra-observer agreement were retained.

Fig. 1  Study workflow (a) and patient selection process (b). HUs: Hounsfield units; ICC: Inter- and intra-class correlation coefficient; Radscore: 
radiomics score; OS: overall survival

https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
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Feature selection and construction of the radiomics 
signature
The feature selection and model construction were per-
formed by using the treatment response we defined dur-
ing outcome evaluation. The Student’s t-test was first 
performed for each extracted feature with ICCs > 0.75 to 
identify the features that differed significantly between 
responders and non-responders. Levene’s test was used to 
assess the equality of variances before performing t-tests. 
For the features that didn’t meet a normal distribution, 
Mann–Whitney U test was used for identification of dif-
ferential features. Significant features (p < 0.05) based on 
the results of t-test/Mann–Whitney U test were main-
tained for further selection. In the training set, all signifi-
cant features were entered into a least absolute shrinkage 
and selection operator (LASSO) regression algorithm 
(α = 1) to select the most predictive features with nonzero 
coefficients. The tuning regularization parameter, λ, 
was determined using 10-fold cross-validation based on 
the minimum criteria. As different types of cancer were 
included in this study, the location of the target lesions was 
also used as a variable in these analyses to eliminate the 
influence of organ heterogeneity on textural patterns. The 
radiomics signature was constructed by linearly combining 
the selected features with their nonzero coefficients. Sub-
sequently, a radiomics score (radscore) was calculated for 
each patient based on the radiomics signature.

Development of a radiomics‑based nomogram
Univariate logistic regression analysis was performed on 
the potential predictors of treatment response, includ-
ing the clinical factors and radscore, for the overall 
population. Variables exhibiting a significant association 
(p < 0.05) with treatment response in the univariate analy-
sis were used to develop a multivariate logistic regression 
model in the training set. A radiomics-based nomogram 
was constructed using the radscore and clinical factors to 
visualize the individualized results of this model. A nom-
ogram score (nomoscore) was calculated for each patient 
based on a linear combination of selected variables and 
their coefficients obtained from the multivariate regres-
sion analysis.

Evaluation of predictive performance and model validation
Hosmer–Lemeshow H test was used to evaluate the 
calibration of the two models (radscore and nomogram) 
based on the training and validation data. The area under 
the curve (AUC) of the receiver operating characteristic 
(ROC) curve was used to evaluate discriminative ability. 
Difference between two ROC curves was tested using the 
DeLong’s method. The sensitivity, specificity, and accu-
racy of the two models were calculated for both datasets 

based on the optimal cut-off values determined from the 
training set by maximizing the Youden index. The clinical 
utility of the models was evaluated using decision curve 
analysis, which can quantify the net benefits of models at 
different threshold probabilities [14].

Exploration of the associations between established 
models and patient outcomes
The radscores and nomoscores were compared between 
responders and non-responders, and the differences 
between the groups were visualized using a boxplot. Sur-
vival analysis grouped by the radscores and nomoscores 
was performed for patients in the validation set to clarify 
the association between each model and OS.

Statistical analysis
All statistical analyses were performed using R (version 
4.0.2; https://​www.r-​proje​ct.​org) and Python (version 
3.6.5; https://​www.​python.​org). Continuous data are pre-
sented as the mean ± standard deviation, while categori-
cal data are presented as numbers with percentages. The 
Student’s t-test was used to analyze normally distributed 
quantitative data, and Levene’s test was used to assess 
the equality of variances. The Mann–Whitney U-test was 
used to analyze the non-normally distributed data. Chi-
square tests and Fisher’s exact tests were used to compare 
categorical data. Survival curves were plotted using the 
Kaplan–Meier method, and the difference between the 
two curves was assessed using the log-rank test. A Cox 
proportional hazards model was used to calculate the 
hazard ratio for OS. All statistical tests were two-sided, 
and statistical significance was set at p < 0.05. The follow-
ing external R packages were used: (1) the “irr” package 
for intra-class correlation coefficient score calculation; 
(2) the “glmnet” package for LASSO logistic regression; 
(3) the “pROC” and “ROCR” packages for ROC analysis 
and DeLong’s test; (4) the “rms” package for the nomo-
gram; (5) the “ResourceSelection” package for the Hos-
mer–Lemeshow H test; (6) the “ggDCA” package for 
decision curve analysis; and (7) the “survival” and “sur-
vminer” packages for survival analysis.

Results
Patient characteristics
A total of 152 patients were included in this study, includ-
ing 128 from institution I and 24 from institution II. Dur-
ing patient selection, 32 patients were excluded for the 
following reasons: unavailable pretreatment CT scans, 
combination with local treatment, multiple primary 
malignancies, no measurable lesions, and non-evaluation 
of treatment response due to missing follow-up. Using 
randomization, the data of 122 patients were allocated to 

https://www.r-project.org
https://www.python.org
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the training set, while those of 30 patients were allocated 
to the validation set. The details are shown in Fig. 1b.

Among the included patients, 119 were men, while 33 
were women. The mean age and BMI (±standard devia-
tion) were 59.62 ± 10.07 years and 22.74 ± 3.52 kg/m2, 
respectively. Five types of cancer were observed, the 
most prevalent of which was lung cancer (n = 78), fol-
lowed by gastric cancer (n = 39), hepatocellular carci-
noma (n = 16), esophageal cancer (n = 13), and colorectal 
cancer (n = 6). Most patients had advanced disease (stage 
III/IV, n = 143), with the number of metastases rang-
ing from one to five. Six types of target lesions were 
employed for data analysis, including those of the esoph-
agus, liver, lung, stomach, lymph nodes, and others. Of 
these patients, 34.9% (n = 53) showed a clinical response 
to immunotherapy, whereas 65.1% (n = 99) did not. The 
patient treatment characteristics and detailed informa-
tion are listed in Table 1.

Feature selection and construction of the radiomics 
signature
A total of 851 radiomic features were originally extracted 
from the pretreatment CT scans. During the intra- and 
inter-observer reliability analyses, 157 features were 
excluded due to low agreement. Thus, 694 radiomic fea-
tures remained for selection. After the difference test, 89 
features (including target lesion location [liver]) that dif-
fered significantly between responders and non-respond-
ers in the overall population were retained. Using the 
training set, the LASSO regression model identified 14 
features with nonzero coefficients using an optimal regu-
lation weight (λ) of 0.01352951 based on the minimum 
criterion (Fig.  2). These 14 features were finally used to 
construct the radiomics signature, and the radscore was 
calculated according to the following formula (Additional 
file Table S2), in which the 14 features were replaced by 
letters a through n:

radscore = 0.254 × a – 0.027 × b + 0.546 × c + 0.026 × d – 5.469E-11 × e – 
0.116 × f – 0.170×g + 0.235 × h + 0.318 × i – 0.286 × j – 0.237 × k – 0.664 × l 
– 0.444 × m – 0.166 × n − 0.706.

Difference analysis indicated that responders had sig-
nificantly higher radscores than non-responders based on 
the training and validation sets (Additional file Fig. S1).

Development of the radiomics nomogram
In the overall population, univariate logistic regres-
sion indicated that radscore, stage, number of metas-
tases, tumor type (gastric cancer vs. hepatocellular 
carcinoma), tumor type (lung cancer vs. hepatocel-
lular carcinoma), and line of therapy (> 3 vs. 1) were 
significantly associated with treatment response (Addi-
tional file Table  S3). Tumor type and line of therapy 
were excluded from the multivariate analysis, as not all 

comparisons of the groups yielded significant results. 
Using the training set, a radiomics nomogram incor-
porating the radscore, stage, and number of metastases 
was developed using multivariate logistic regression 
(Fig.  3). The following formula was used to calculate 
each patient’s nomoscore (Additional file Table S4):

Table 1  Characteristics of included patients

Data reflect numbers of patients with corresponding percentages in 
parentheses unless otherwise indicated

SD standard deviation, BMI body mass index, HCC hepatocellular carcinoma, 
ESC esophageal cancer, GC gastric cancer, CRC​ colorectal cancer, LC lung cancer, 
ICI immune checkpoint inhibitor, PD1 programmed cell death protein-1, PDL1 
programmed cell death protein ligand-1
a defined in accordance with the American Joint Committee on Cancer TNM 
staging system

Characteristics Overall
n 152

Sex (%) Male 119 (78.3)

Female 33 (21.7)

Age, mean (SD) 59.62 (10.07)

BMI, mean (SD) 22.74 (3.52)

Tumor type (%) HCC 16 (10.5)

ESC 13 (8.6)

GC 39 (25.7)

CRC​ 6 (3.9)

LC 78 (51.3)

Stage (%)a 1 2 (1.3)

2 7 (4.6)

3 30 (19.7)

4 113 (74.3)

Number of metastases (%) 0 49 (32.2)

1 56 (36.8)

2 26 (17.1)

3 11 (7.2)

4 9 (5.9)

5 1 (0.7)

ICI type (%) Anti-PD1 145 (95.4)

Anti-PDL1 7 (4.6)

Combination therapy (%) No 14 (9.2)

Yes 138 (90.8)

Line of therapy (%) 1 54 (35.5)

2 46 (30.3)

3 22 (14.5)

4 30 (19.7)

Location of target lesions (%) esophagus 12 (7.9)

liver 31 (20.4)

lung 71 (46.7)

stomach 18 (11.8)

node 13 (8.6)

others 7 (4.6)
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nomoscore = 1.523 × radscore – 0.538 × stage – 
0.259 × number of metastases + 2.520.

Difference analysis indicated that responders had 
significantly higher nomoscores than non-responders 
based on the training and validation sets (Additional 
file Fig. S2).

Model performance and validation
Calibration evaluation by the Homer–Lemeshow test 
indicated that there were no evidence of poor fit for two 
models and both the radscore and nomogram exhib-
ited good accuracy in predicting the treatment response 
in both the training (radscore, p = 0.1532; nomogram, 
p = 0.9576) and validation sets (radscore, p = 0.3063; 

nomogram, p = 0.5241). Figure 4 shows the ROC curves 
for both models based on the training and validation 
sets. The radscore had AUC values of 0.790 (95% CI 
[0.705, 0.874]) for the training set and 0.831 (95% CI 
[0.649, 1]) for the validation set. For the radiomics sig-
nature, we also assessed the predictive performance for 
each included feature individually; the AUC value for a 
single feature was not favorable (Additional file Table S5). 
The nomogram had AUC values of 0.814 (95% CI [0.734, 
0.893]) for the training set and 0.847 (95% CI [0.662, 1]) 
for the validation set. The nomoscore exhibited slightly 
better performance in predicting treatment response 
than the radscore although the differences were not sig-
nificant (DeLong test, p = 0.1945 in the training set, and 

Fig. 2  Selection of radiomic features using the least absolute shrinkage and selection operator (LASSO) model. a Tuning parameter (λ) selection in 
the LASSO model using 10-fold cross-validation via minimum criteria. The misclassification errors were plotted against log (λ). The y-axis indicates 
misclassification errors, the lower x-axis indicates log(λ), and the upper x-axis indicates the degree of freedom (i.e., the number of features surviving 
at a specific λ). The vertical dotted line shows the optimal values of the tuning parameter (λ) based on the minimum criteria, where the model has 
the best fit. An λ of 0.01352951 was finally selected. b LASSO coefficient profiles of 89 significant features. Coefficient profiles were plotted against 
the log(λ). The vertical dotted line was drawn at the best λ value selected from the 10-fold cross-validation, and fourteen features with nonzero 
coefficients were identified

Fig. 3  The constructed radiomics nomogram for predicting response to immunotherapy. We developed a radiomics-based nomogram 
incorporating the radscore, stage, and number of metastases. Radscore: radiomics score
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p = 0.5002 in the validation set). The sensitivities, specifi-
cities, and accuracies of the two models, along with their 
optimal cut-off values, are summarized in Table 2.

Clinical application
Decision curve analysis demonstrated a good overall 
net benefit for the radscore and nomogram for distin-
guishing responders from non-responders over a wide 

range of threshold probabilities (Fig.  5). Within a range 
of reasonable risk thresholds for both the training and 
validation sets, the nomogram may provide a greater net 
benefit than the radscore when attempting to predict the 
response to immunotherapy.

Association with survival
Survival analysis demonstrated that both the radscore 
and nomogram were significantly associated with OS 

Fig. 4  Receiver operating characteristic (ROC) curves for the radiomics score (radscore) and nomogram. Panels a and b represent the ROC curves 
for the radscore for the training and validation sets, while panels c and d represent those for the nomogram for the training and validation sets, 
respectively. AUC: area under the ROC curve
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(Fig. 6). In the validation set, patients in the high radscore 
(> − 0.478) group exhibited improved OS when com-
pared with those in the low radscore (≤ − 0.478) group 
(hazard ratio: 0.18; 95% CI [0.04, 0.87], p = 0.01786). Sim-
ilarly, patients in the high nomoscore (> − 0.132) group 
also exhibited improved OS when compared with those 
in the low nomoscore (≤ − 0.132) group (hazard ratio: 
0.21; 95% CI [0.04, 0.99], p = 0.03212).

Discussion
As a high proportion of patients exhibit a poor response 
to immunotherapy, one of the challenges in cancer 
immunotherapy is identifying the population most likely 
to benefit from such treatment. Despite substantial 
effort to develop markers for predicting ICI response, 

few attempts have been successful. While several stud-
ies have reported satisfactory results using clinical factors 
to predict ICI response [15–18], the robustness of these 
predictors has been questioned given the high intra- and 
inter-tumoral heterogeneity. No clinical predictor can 
fully represent the characteristics of the entire tumor 
microenvironment, limiting their use in clinical practice. 
Genetic and protein-based markers are characterized by 
spatial limitations related to sample collection and can-
not fully represent the tumor microenvironment. In the 
current study, we extracted the radiomic features of the 
entire tumor from CT images obtained prior to ICI treat-
ment for various types of solid cancer. Although a single 
feature is not powerful enough to predict the response 
to ICIs, we successfully developed a radiomics signature 

Table 2  Predictive performance of radiomics scores and nomogram

AUC​ area under the receiver operating characteristic curve, CI confidence interval, TPR true positive rate (i.e., sensitivity), TNR true negative rate (i.e., specificity), ACC​ 
accuracy
a using the best threshold determined by the Youden index
b calculated according to the cut-off value

Cut-off valuea AUC [95% CI] TPR (%)b TNR (%)b ACC (%)b

Radiomics scores
  Training −0.478 0.790 [0.705, 0.874] 0.750 (33/44) 0.769 (60/78) 0.762 (93/122)

  Validation −0.478 0.831 [0.649, 1] 0.778 (7/9) 0.810 (17/21) 0.800 (24/30)

Radiomics nomogram
  Training −0.132 0.814 [0.734, 0.893] 0.636 (28/44) 0.872 (68/78) 0.787 (96/122)

  Validation −0.132 0.847 [0.662, 1] 0.778 (7/9) 0.905 (19/21) 0.867 (26/30)

Fig. 5  Decision curve analysis (DCA) of the radiomics score (radscore) and nomogram. The x-axis represents the threshold of risk probability, 
and the y-axis represents the net benefit of the models. The green and purple lines represent the conditions that simply classify all patients as 
responders or non-responders. DCA revealed a good overall net benefit of the radscore and nomogram for both the training (a) and validation sets 
(b), although the net benefit of the nomogram was higher than that of the radscore across the range of reasonable risk thresholds
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for identification of responder by combining fourteen 
radiomics features, which had an AUC of 0.790 (95% CI 
[0.705, 0.874]). In addition, we developed a robust radi-
omics nomogram by combining the radscore with sig-
nificant clinical variables. According to our analysis, the 
radiomics nomogram increased performance in discrimi-
nating between responders and non-responders, with an 
AUC of 0.814 (95% CI [0.734, 0.893]).

Both the radscore and nomogram were validated for 
their performance using the validation set. The results 
exhibited robust predictive performance, with high AUCs 
for both models during validation. For a specific evalua-
tion of discriminative performance, both models exhib-
ited satisfactory sensitivity, specificity, and accuracy in the 
training and validation sets. However, the performance 
of the radiomics nomogram was superior to that of the 
radscore, especially for specificity. High specificity is cru-
cial for selecting potential responders to immunotherapy, 
as misjudgment of responders will increase the finan-
cial burden and risk of adverse events among patients. 
Our nomogram had high specificities of 0.872 and 0.905 
for the training and validation sets, respectively, demon-
strating the potential clinical usefulness of our models. 
In addition, both the radscore and nomogram were con-
firmed an association with OS in the validation set, which 
further highlights their clinical significance for personal-
ized immunotherapy. In the nomogram model, the vari-
ables of stage and metastases number were incorporated 
with negative coefficients, which indicated both variables 
are risk factors of poor response. This result is consistent 
with our conventional perspectives in clinical practice. 
The stage and number of metastases can reflect the degree 

of extension of the tumor. With the increase of stage and 
number of metastases, tumor shows a more aggressive 
phenotype with higher tumor burden and wider spread-
ing. Thus, it is not hard to explain the finding that both the 
stage and number of metastases are negatively associated 
with the response of immunotherapy in cancer patients.

While the ability of the radiomics method to success-
fully predict the response to ICI treatment remains diffi-
cult to explain from a mechanistic perspective, we believe 
that its predictive ability involves a correlation between 
radiomic features and the tumor microenvironment. 
The higher-dimensional data obtained via radiomics 
may reflect tumor heterogeneity at the cellular level [19, 
20]. The effectiveness of immunotherapy is mainly influ-
enced by the status of tumor–immune interactions, and 
radiomics may represent this characteristic of the tumor 
microenvironment. Sun et  al. identified an association 
between a radiomics-based signature and immune infil-
tration in solid tumors [21]. In addition, previous stud-
ies have successfully established predictive models for the 
analysis of tumor PDL-1 expression in various cancers, 
including non-small cell lung cancer, esophageal squa-
mous cell carcinoma, and head and neck squamous cell 
carcinoma [22–24]. Both immune infiltration and PDL-1 
are key factors involved in cancer immunotherapy; thus, 
the successful detection of these features on images rep-
resents a reasonable means by which radiomics can pre-
dict ICI response based on CT images.

Some recent studies have also attempted to predict 
the response to immunotherapy using radiomics. How-
ever, our study has several strengths when compared 
with these studies. While some radiomics-based models 

Fig. 6  Kaplan–Meier curves for overall survival in the validation set. Significant differences in survival were observed between the low (< cut-off 
value) and high groups (> cut-off value) in both the radscore and nomoscore analyses. HRs were analyzed when the low group was designated 
as the control (i.e., high group vs. low group). The corresponding cut-off values were determined by maximizing the Youden index for predicting 
response. Radscore: radiomics score; Nomoscore: nomogram score; HR: hazard ratio; CI: confidence interval
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have demonstrated good performance in predicting ICI 
response, all were developed for lung cancer [25–27], 
making it difficult to determine whether these models 
are applicable to other types of cancer. ICI immunother-
apy is an intervention with a wide range of applications, 
and responses are not limited to specific cancers. Thus, 
a pan-cancer predictor with robust performance across 
different cancers is required. In our study, we included 
patients with five different cancer types. Importantly, no 
cancer-specified variables were included in the final for-
mula, indicating that the constructed models can be used 
for several cancer types even when the specific type of 
cancer remains unknown. This is especially appropriate 
for patients with advanced disease involving metastasis 
of an unconfirmed pathological type. Ligero et  al. also 
developed models using data from patients with different 
cancer types [28]. Although their models demonstrated 
acceptable predictive ability for both the training and 
validation sets, they were developed using clinical trial 
data, making them difficult to adopt in clinical practice 
due to the various confounding factors associated with 
real-world settings. In addition, they defined response to 
treatment as complete/partial response or stable disease, 
which may not be common in crucial evaluations. The 
features included in our radiomics model differed from 
those used by Ligero et al. [28], which may be related to 
differences in the types of images used. In addition to the 
original images, we also used wavelet-transformed images 
for feature extraction in our study, as these can provide more 
information concerning intra-tumor heterogeneity [29].

Our study also had some limitations. First, the sam-
ple was relatively small, especially for the validation set. 
Second, selection bias was inevitable in this study due 
to its retrospective nature, which might have influenced 
the results. Third, no external validation was performed 
owing to the limited number of patients. In addition, 
radiomics models have not been validated separately 
for different cancer types. However, we plan to conduct 
a prospective study to explore the performance and 
robustness of radiomics models in real-world practice.

Conclusions
In conclusion, we developed a non-invasive radiomics-
based model for early identification of response poten-
tial in ICI-treated patients with solid cancers. Radiomics 
features (with or without clinical factors) were associ-
ated with patient response and survival after immuno-
therapy, thus highlighting the potential of our models to 
improve clinical decision-making regarding personal-
ized immunotherapy. The results should be adapted into 
clinical practice with cautions before the further valida-
tion from prospective large sample studies.
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