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Pan‑cancer analysis of genomic 
and transcriptomic data reveals the prognostic 
relevance of human proteasome genes 
in different cancer types
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Abstract 

Background:  The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer prote‑
ostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome 
in different cancer forms.

Methods:  Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the 
subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 
10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer 
cohort and KM plotter with four cancer types.

Results:  The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocar‑
cinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were pre‑
dominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and 
adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% 
of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was 
associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. 

Conclusion:  These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel 
therapeutic targets for different cancer forms.
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Introduction
In eukaryotic cells, about 80% of intracellular protein 
degradation is mediated via the nonlysosomal ubiqui-
tin–proteasome system (UPS) [1–3]. The 26S protea-
some (2500  kDa) is an evolutionarily conserved protein 

complex that uses proteolysis to selectively degrade dam-
aged and misfolded polyubiquitinated proteins [4–6]. The 
26S proteasome complex consists of one or two 19S regu-
latory particles (900 kDa) that recognize, deubiquitinate, 
and translocate protein substrates to the barrel-shaped 
20S protein core (700 kDa) where protein substrates are 
cleaved into smaller oligopeptides (< 25 amino acids) [7]. 
The 20S core particle consists of four stacked heterohep-
tameric rings (α1–7 β1–7 β1–7 α1–7) with two highly con-
served outer α rings (serve as a gate to restrict access to 
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the catalytic core) and two inner β rings (only 3/7 β subu-
nits are proteolytically active, namely β1 (caspase-like), β2 
(trypsin-like), and β5 (chymotrypsin-like)) [3, 5, 6, 8, 9]. In 
normal cells, proteasome abundance is regulated by con-
trolling the expression of proteasome subunits and assem-
bly chaperones [3]. Furthermore, proteasome abundance 
and proteolytic activity have been found to be dependent 
on tissue type and age [5, 10, 11].

The proteasome gene family (PSM) consists of 49 
genes, including subunits for the 20S α and β rings 
(n = 19; class I), 26S ATPases and non-ATPases (n = 20; 
class II), proteasome activators and a PSMC3 interacting 
protein (n = 5; class III), a proteasome inhibitor subunit 
(class IV), and proteasome assembly chaperones (n = 4; 
class V) [4–6, 8, 12, 13]. Consequently, tissue-specific 
proteasomes have been identified in lymphoid and non-
lymphoid tissues that are induced by interferon-γ (immu-
noproteasome containing β1i (PSMB9), β2i (PSMB10), 
and β5i (PSMB8) instead of constitutive β1 (PSMB6), 
β2 (PSMB7), and β5 (PSMB5) subunits), thymic epithe-
lial cells (thymoproteasome containing β5t (PSMB11) 
instead of β5), and the testes during spermatogenesis 
(spermatoproteasome containing α4s (PSMA8) instead 
of α4 (PSMA7)) [14–17]. Dysfunction of the proteasome 
has been associated with neurodegenerative diseases, 
aging, and cancer [18–21]. Subsequent downregula-
tion of the 26S proteasome in certain cells, e.g. cancer 
stem cells, has led to the development of pharmaceutical 
agents to counteract proteasome dysfunction by stimu-
lating 26S proteasome activity [22–25]. Genetic aberra-
tions in the PSMB8 immunoproteasome gene have been 
associated with cancer and a wide range of immune and 
inflammatory diseases, e.g. Nakajo-Nishimura syndrome, 
CANDLE syndrome, and intestinal M. tuberculosis infec-
tion [11, 15]. Additionally, other PSM genes have been 
associated with cancer progression (e.g. PSMD9 (p27) 
and PSMD10 (p28)), increased radiation sensitivity in 
breast cancer (e.g. absence of p27), as well as, increased 
risk of colorectal cancer (e.g. PSMB8 and PSMB9) [3, 11, 
26–29]. Mutations in other PSM genes (e.g. A20T, A27P, 
C63Y, and M45I in the PSMB5 gene) have also been 
reported to cause resistance to certain proteasome inhib-
itors [30, 31].

Although proteasome inhibitors were initially devel-
oped to prevent cancer-related cachexia, the abnormally 
high proteasome activity observed in human cancer cells 
has thus led to the proteasome becoming an attractive 
target for anticancer drug development [7, 32]. In cancer 
cells, proteasome abundance is controlled by the NRF1 
and NRF2 transcription factors, which in turn promotes 
resistance to environmental stresses, as well as, chemo- 
and radiation therapy [3, 23, 33–37]. The first clinically 
used proteasome inhibitor, bortezomib (brand name 

Velcade®), was approved by the Food and Drug Associa-
tion in 2003 as a salvage treatment with dexamethasone 
for relapsed refractory multiple myeloma [2]. Subse-
quent side effects and problems with bortezomib-based 
therapy resistance resulted in the development of sec-
ond-generation inhibitors such as carfilzomib, ixazomib, 
delanzomib, marizomib, and oprozomib [2, 32, 37]. With 
the exception of ixazomib, the majority of proteasome 
inhibitors bind to the β5 subunit at relatively low concen-
trations, and the β1 and β2 subunits at higher concen-
trations. However, recent studies have shown that β5/β2 
or β5/β1 co-inhibition provides a significantly improved 
effect [38, 39].

Although proteasome inhibitor-based cancer treat-
ments have been used for about 20  years, their clinical 
utility for various cancer types has yet to be elucidated, 
in part due to our limited understanding of PSM gene 
expression in different cancer forms. Here, we identified 
genetic alterations and aberrant transcriptomic patterns 
in PSM genes across 33 cancer forms to delineate their 
effect on prognosis, thereby identifying cancer forms that 
may benefit from proteasome inhibitor-based treatment.

Methods
Patient cohorts and data acquisition
A comprehensive genomic and transcriptomic analysis 
of the PSM gene family (Table  1) was performed using 
The Cancer Genome Atlas (TCGA) pan-cancer data-
set comprised of close to 11,000 primary and/or meta-
static tumor samples corresponding to 33 cancer types 
and 11 pan-organ systems (i.e. central nervous system 
(CNS), endocrine, gastrointestinal, gynecologic, head 
and neck, hematologic and lymphatic malignancies, mel-
anocytic, neural-crest derived, soft tissue, thoracic, uro-
logic), as previously described [40]. The patient cohorts 
are described in detail in Table  2; SKCM and THCA 
contain data for primary and metastatic samples. First, 
genomic profiling data were retrieved from the interac-
tive web-based cBioPortal tool [41] to assess the genomic 
alteration frequency in the PSM genes for 10,967 TCGA 
tumor samples corresponding to 10,953 patients (30 can-
cer types representing 10 pan-cancer organ systems). 
Focal and arm-level (henceforth termed broad) amplifi-
cation regions in each cancer type were identified using 
copy number GISTIC2 data (focal amplifications and 
arm-level significance; Supplementary Table  1) from 
Broad GDAC Firehose [42], followed by an evaluation 
of the impact of DNA amplification on gene expression 
patterns using UNC RNASeqV2 level 3 expression (nor-
malized RSEM; mRNA). A list of consensus cancer driver 
genes and cancer drivers associated with DNA ampli-
fication were compiled from previously published lists 
[43, 44]. Of the genetic variants identified in cBioPortal, 
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Table 1  The 49 human proteasome gene family members (proteasome subunits and proteasome-interacting proteins)

Gene symbol and full name Subunita Chromosomeb Aliasesc UniProtKB 
accessionc

Sequence 
lengthc

(amino 
acids)

MWc

(Da)

Class I: Proteasome 20S subunit
  PSMA1 Proteasome 20S subunit alpha 1 α6 11p15.2 HC2, NU, PROS30, PSC2 P25786 263 29,556

  PSMA2 Proteasome 20S subunit alpha 2 α2 7p14.1 HC3, PSC3 P25787 234 25,899

  PSMA3 Proteasome 20S subunit alpha 3 α7 14q23.1 HC8, PSC8 P25788 255 28,433

  PSMA4 Proteasome 20S subunit alpha 4 α3 15q25.1 HC9, PSC9 P25789 261 29,484

  PSMA5 Proteasome 20S subunit alpha 5 α5 1p13.3 ZETA P28066 241 26,411

  PSMA6 Proteasome 20S subunit alpha 6 α1 14q13.2 PROS27 P60900 246 27,399

  PSMA7 Proteasome 20S subunit alpha 7 α4 20q13.33 HSPC O14818 248 27,887

  PSMA8 Proteasome 20S subunit alpha 8 - 18q11.2 PSMA7L Q8TAA3 256 28,530

  PSMB1 Proteasome 20S subunit beta 1 β6 6q27 PSC5 P20618 241 26,489

  PSMB2 Proteasome 20S subunit beta 2 β4 1p34.3 HC7-I P49721 201 22,836

  PSMB3 Proteasome 20S subunit beta 3 β3 17q12 HC10-II, MGC4147 P49720 205 22,949

  PSMB4 Proteasome 20S subunit beta 4 β7 1q21.3 PROS26 P28070 264 29,204

  PSMB5 Proteasome 20S subunit beta 5 β5 14q11.2 LMPX, MB1, X P28074 263 28,480

  PSMB6 Proteasome 20S subunit beta 6 β1 17p13.2 LMPY, Y P28072 239 25,358

  PSMB7 Proteasome 20S subunit beta 7 β2 9q33.3 Z Q99436 277 29,965

  PSMB8 Proteasome 20S subunit beta 8 β5i 6p21.32 LMP7, PSMB5i, RING10, Y2 P28062 276 30,354

  PSMB9 Proteasome 20S subunit beta 9 β1i 6p21.32 LMP2, PSMB6i, RING12 P28065 219 23,264

  PSMB10 Proteasome 20S subunit beta 10 β2i 16q22.1 LMP10, MECL1 P40306 273 28,936

  PSMB11 Proteasome 20S subunit beta 11 β5t 14q11.2 A5LHX3 300 32,530

Class II: Proteasome 26S subunit
  PSMC1 Proteasome 26S subunit, ATPase 1 Rpt2 14q32.11 S4, p56 P62191 440 49,185

  PSMC2 Proteasome 26S subunit, ATPase 2 Rpt1 7q22.1 MSS1 P35998 433 48,634

  PSMC3IP PSMC3 Interacting Protein 17q21.2 HOP2, TBPIP Q9P2W1 217 24,906

  PSMC3 Proteasome 26S subunit, ATPase 3 Rpt5 11p11.2 TBP1 P17980 439 49,204

  PSMC4 Proteasome 26S subunit, ATPase 4 Rpt3 19q13.2 TBP-7 P43686 418 47,366

  PSMC5 Proteasome 26S subunit, ATPase 5 Rpt6 17q23.3 SUG1 P62195 406 45,626

  PSMC6 Proteasome 26S subunit, ATPase 6 Rpt4 14q22.1 SUG2 P62333 389 44,173

  PSMD1 Proteasome 26S subunit, non-
ATPase 1

Rpn2 2q37.1 S1, P112, Rpn2 Q99460 953 105,836

  PSMD2 Proteasome 26S subunit, non-
ATPase 2

Rpn1 3q27.1 TRAP2 Q13200 908 100,200

  PSMD3 Proteasome 26S subunit, non-
ATPase 3

Rpn3 17q21.1 S3, P58, Rpn3 O43242 534 60,978

  PSMD4 Proteasome 26S subunit, non-
ATPase 4

Rpn10 1q21.3 MCB1 P55036 377 40,737

  PSMD5 Proteasome 26S subunit, non-
ATPase 5

- 9q33.2 KIAA0072 Q16401 504 56,196

  PSMD6 Proteasome 26S subunit, non-
ATPase 6

Rpn7 3p14.1 KIAA0107, PFAAP4 Q15008 389 45,531

  PSMD7 Proteasome 26S subunit, non-
ATPase 7

Rpn8 16q23.1 MOV34L P51665 324 37,025

  PSMD8 Proteasome 26S subunit, non-
ATPase 8

Rpn12 19q13.2 S14, Nin1p, p31, HIP6, HYPF, Rpn12 P48556 350 39,612

  PSMD9 Proteasome 26S subunit, non-
ATPase 9

- 12q24.31 p27, Rpn4 O00233 223 24,682

  PSMD10 Proteasome 26S subunit, non-
ATPase 10

Gankyrin Xq22.3 p28 O75832 226 24,428

  PSMD11 Proteasome 26S subunit, non-
ATPase 11

Rpn6 17q11.2 S9, p44.5, MGC3844, Rpn6 O00231 422 47,464
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fusions, missense, nonsense, frameshift deletion/inser-
tion, inframe deletion/insertion, translation start site, and 
nonstop mutations were classified as potentially deleteri-
ous variants (i.e. mutations with a functional impact due 
to amino acid changes). Furthermore, functionally impor-
tant deleterious variants were classified as SIFT score 
0–0.05 (deleterious) and/or Polyphen-2 score 0.453–1 
(probably/possibly damaging). Second, gene expression 
analysis was performed using UNC RNASeqV2 level 3 
expression (normalized RSEM; mRNA) retrieved from 
Broad GDAC Firehose for 8,526 tumor specimens (cor-
responding to 33 cancer types) and 627 corresponding 
normal specimens from the TCGA consortium. Lastly, 
multivariable Cox regression analysis was performed 
using log2 FPKM gene expression data and clinical data 
retrieved from UCSC Xena Browser and Genomic Data 
Commons (GDC) Supplemental Table S1 [45, 46] for 
10,304 GDC TCGA samples (corresponding to 33 cancer 
types). PSM gene expression was categorized from RNA 
sequencing data (FPKM log2) as low expression (lower 
than median expression, FPKM log2 4.398046) and high 
expression (higher than median expression) by calcu-
lating the quantiles (0, 25, 50, 75, 100%) for the 49 PSM 
genes. Hazard ratios (HR) < 1 depicts reduced risk at high 

expression levels, while HR > 1 illustrates increased risk at 
high expression. The study flowchart is shown in Fig. 1.

External validation
To validate our findings, we re-evaluated genomic pro-
filing data (array comparative genomic hybridization, 
SNP genotyping, RNA-seq) [47, 48] from 229 breast 
invasive carcinomas. Mutation signatures for the PSM 
genes were determined for 23 of the 229 samples (Sup-
plementary Table 2), CNA in all samples (Supplementary 
Table 3), and correlation between individual PSM mRNA 
expression and overall survival (OS; defined as the time 
from initial diagnosis to death of any cause) using both 
univariable and multivariable analysis (adjusted for age 
and tumor grade). KM plotter [49] was used to validate 
the correlation between individual PSM mRNA expres-
sion and OS in gastric- (RNA microarray), breast- (RNA 
microarray), lung- (RNA microarray), ovarian- (RNA 
microarray), and liver cancer (RNA-seq). For each gene, 
the following settings were selected in KM plotter: (1) 
Split patients by: ‘median’ expression, (2) Survival: OS, 
and (3) Probe options: user selected probe set. Multi-
pletesting.com was then used to calculate the False Dis-
covery Rate (FDR) set to 5% [50]. All procedures were 

Table 1  (continued)

Gene symbol and full name Subunita Chromosomeb Aliasesc UniProtKB 
accessionc

Sequence 
lengthc

(amino 
acids)

MWc

(Da)

  PSMD12 Proteasome 26S subunit, non-
ATPase 12

Rpn5 17q24.2 p55, Rpn5 O00232 456 52,904

  PSMD13 Proteasome 26S subunit, non-
ATPase 13

Rpn9 11p15.5 p40.5, Rpn9 Q9UNM6 376 42,945

  PSMD14 Proteasome 26S subunit, non-
ATPase 14

Rpn11 2q24.2 POH1 O00487 310 34,577

Class III: Proteasome activator
  PSME1 Proteasome activator subunit 1 PA28α 14q12 IFI5111 Q06323 249 28,723

  PSME2 Proteasome activator subunit 2 PA28β 14q12 PA28beta Q9UL46 239 27,402

  PSME3 Proteasome activator subunit 3 PA28γ 17q21.31 Ki, PA28-gamma, REG-GAMMA, 
PA28G

P61289 254 29,506

  PSME4 Proteasome activator subunit 4 PA200 2p16.2 KIAA0077 Q14997 1,843 211,334

Class IV: Proteasome inhibitor
  PSMF1 Proteasome inhibitor subunit 1 PI31 20p13 PI31 Q92530 271 29,817

Class V: Proteasome assembly chaperone
  PSMG1 Proteasome Assembly Chaperone 

1
21q22.2 C21LRP, DSCR2, PAC1 O95456 288 32,854

  PSMG2 Proteasome Assembly Chaperone 
2

18p11.21 HCCA3, PAC2, TNFSF5IP1 Q969U7 264 29,396

  PSMG3 Proteasome Assembly Chaperone 
3

7p22.3 C7orf48, PAC3 Q9BT73 122 13,104

  PSMG4 Proteasome Assembly Chaperone 
4

6p25.2 C6orf86, PAC4 Q5JS54 123 13,775

Data obtained from a Gomes AV et al., b Genome Reference Consortium Human GRCh38.p12/hg38, c UniProtKB
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Table 2  TCGA cancer types and corresponding pan-cancer organ systems

Disease name and pan-organ system Cohort RNA-seq dataa Survival analysisb cBioPortalc KM plotterd

Cancer tissue Normal tissue

Central nervous system (CNS)
  Glioblastoma multiforme GBM 166 5 167 592

  Brain lower grade glioma LGG 530 0 528 514

Endocrine
  Adrenocortical carcinoma ACC​ 79 0 79 92

  Thyroid carcinoma THCA 496 58 510 500

Gastrointestinal
  Cholangiocarcinoma CHOL 36 9 36 36

  Colon adenocarcinoma COAD 191 0 469

  Esophageal carcinoma ESCAe 185 11 162 182

  Liver hepatocellular carcinoma LIHC 147 50 374 372 364

  Pancreatic adenocarcinoma PAAD 56 0 178 184

  Rectum adenocarcinoma READ 72 0 166

  Colorectal adenocarcinoma/Rectum adenocar‑
cinoma

COADREADf 0 594

  Stomach adenocarcinoma STAD 415 35 375 440 875

Gynecologic
  Breast invasive carcinoma BRCA​ 1026 108 1103 1084 1879

  Cervical and endocervical cancers CESC 159 0 306 297

  Ovarian serous cystadenocarcinoma OV 265 0 379 585 1656

  Uterine corpus endometrial carcinoma UCEC 369 0 548 529

Head and neck
  Head and neck squamous cell carcinoma HNSC 425 42 502 523

Hematologic and lymphatic malignancies
  Lymphoid neoplasm diffuse large B-cell lym‑

phoma
DLBC 48 0 48 48

  Acute myeloid leukemia LAML 173 0 151 200

  Thymoma THYM 120 0 119 123

Melanocytic
  Skin cutaneous melanoma SKCM 472 0 471 448

  Uveal melanoma UVM 80 0 80 80

Neural crest-derived
  Pheochromocytoma and paraganglioma PCPG 184 3 183 178

Soft tissue
  Sarcoma SARC​ 105 0 263 255

  Uterine carcinosarcoma UCS 57 0 56 57

Thoracic
  Lung adenocarcinoma LUAD 490 58 526 566 1925

  Lung squamous cell carcinoma LUSC 482 50 501 487

  Mesothelioma MESO 87 0 86 87

Urologic
  Bladder urothelial carcinoma BLCA 223 19 411 411

  Kidney chromophobe KICH 66 25 65 65

  Kidney renal clear cell carcinoma KIRC 507 72 535 512

  Kidney renal papillary cell carcinoma KIRP 161 30 289 283

  Prostate adenocarcinoma PRAD 498 52 499 494

  Testicular germ cell tumors TGCT​ 156 0 139 149

  Total 8526 627 10,304 10,967 6699
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done in accordance with the Declaration of Helsinki and 
approved by the Medical Faculty Research Ethics Com-
mittee (Gothenburg, Sweden).

Statistical analysis
P < 0.05 (two-sided) was considered to be statistically sig-
nificant in R/Bioconductor (version 3.6.1). Hierarchical 
clustering of the log2-tranformed relative RNA-seq data 
(cancer vs mean normal samples) was performed with 
the pheatmap R package (version 1.0.12) [51] using the 
Manhattan distance metric and Ward’s minimum vari-
ance method (Ward.D2). The biological significance of 

DNA amplification was evaluated by comparing the gene 
expression patterns between PSM genes showing ampli-
fication (classified as AMP in cBioPortal) and no ampli-
fication (classified as no alteration or all other mutation 
types in cBioPortal). To compare gene expression levels 
between cancer and normal samples, cancer types with 
no available normal samples (ACC, CESC, COAD, DLBC, 
LAML, LGG, MESO, OV, PAAD, READ, SARC, SKCM, 
TGCT, THYM, UCEC, UCS, UVM) were removed. Then, 
box plots were constructed using the ggpubr (version 
0.2.4.999) [52] and rstatix (version 0.4.0.999) [53] R pack-
ages with the Wilcoxon test and Benjamini–Hochberg 

Table 2  (continued)
a  UNC RNASeqV2 level 3 expression (normalized RSEM) data were retrieved from Broad GDAC Firehose (https://​gdac.​broad​insti​tute.​org/)
b  Survival analysis was performed using the dataset https://​gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​PanCan-​Clini​cal-​2018
c  Mutational profiling data (mutated genes, CNA genes, and fusion genes) was retrieved from cBioPortal for Cancer Genomics, http://​www.​cbiop​ortal.​org/​study/​
summa​ry?​id=​laml_​tcga_​pan_​can_​atlas_​2018%​2Cacc_​tcga_​pan_​can_​atlas_​2018%​2Cblca_​tcga_​pan_​can_​atlas_​2018%​2Clgg_​tcga_​pan_​can_​atlas_​2018%​2Cbrca_​
tcga_​pan_​can_​atlas_​2018%​2Ccesc_​tcga_​pan_​can_​atlas_​2018%​2Cchol_​tcga_​pan_​can_​atlas_​2018%​2Ccoa​dread_​tcga_​pan_​can_​atlas_​2018%​2Cdlbc_​tcga_​pan_​
can_​atlas_​2018%​2Cesca_​tcga_​pan_​can_​atlas_​2018%​2Cgbm_​tcga_​pan_​can_​atlas_​2018%​2Chnsc_​tcga_​pan_​can_​atlas_​2018%​2Ckich_​tcga_​pan_​can_​atlas_​2018%​
2Ckirc_​tcga_​pan_​can_​atlas_​2018%​2Ckirp_​tcga_​pan_​can_​atlas_​2018%​2Clihc_​tcga_​pan_​can_​atlas_​2018%​2Cluad_​tcga_​pan_​can_​atlas_​2018%​2Clusc_​tcga_​pan_​
can_​atlas_​2018%​2Cmeso_​tcga_​pan_​can_​atlas_​2018%​2Cov_​tcga_​pan_​can_​atlas_​2018%​2Cpaad_​tcga_​pan_​can_​atlas_​2018%​2Cpcpg_​tcga_​pan_​can_​atlas_​2018%​
2Cprad_​tcga_​pan_​can_​atlas_​2018%​2Csarc_​tcga_​pan_​can_​atlas_​2018%​2Cskcm_​tcga_​pan_​can_​atlas_​2018%​2Cstad_​tcga_​pan_​can_​atlas_​2018%​2Ctgct_​tcga_​pan_​
can_​atlas_​2018%​2Cthym_​tcga_​pan_​can_​atlas_​2018%​2Cthca_​tcga_​pan_​can_​atlas_​2018%​2Cucs_​tcga_​pan_​can_​atlas_​2018%​2Cucec_​tcga_​pan_​can_​atlas_​2018%​
2Cuvm_​tcga_​pan_​can_​atlas_​2018
d  Survival analysis using KM plotter, https://​kmplot.​com/​analy​sis/
e  Esophageal adenocarcinoma and Esophageal squamous carcinoma was merged into one as Esophageal carcinoma
f  COAD and READ was merged in cBioPortal dataset

Fig. 1  Flowchart depicting the study design and workflow. A Genomic and transcriptomic data were collected from multiple sources and validated 
with a breast cancer cohort and KM plotter. B Both interactive tools and collected data were used to determine genomic alterations and its effect 
on gene expression. Furthermore, differential expression between cancer and normal tissue, co-expressed genes was determined, and how this 
affects cancer patient survival. C We used the statistical tool R to perform statistical calculations and to generate figures

https://gdac.broadinstitute.org/
https://gdc.cancer.gov/about-data/publications/PanCan-Clinical-2018
http://www.cbioportal.org/study/summary?id=laml_tcga_pan_can_atlas_2018%2Cacc_tcga_pan_can_atlas_2018%2Cblca_tcga_pan_can_atlas_2018%2Clgg_tcga_pan_can_atlas_2018%2Cbrca_tcga_pan_can_atlas_2018%2Ccesc_tcga_pan_can_atlas_2018%2Cchol_tcga_pan_can_atlas_2018%2Ccoadread_tcga_pan_can_atlas_2018%2Cdlbc_tcga_pan_can_atlas_2018%2Cesca_tcga_pan_can_atlas_2018%2Cgbm_tcga_pan_can_atlas_2018%2Chnsc_tcga_pan_can_atlas_2018%2Ckich_tcga_pan_can_atlas_2018%2Ckirc_tcga_pan_can_atlas_2018%2Ckirp_tcga_pan_can_atlas_2018%2Clihc_tcga_pan_can_atlas_2018%2Cluad_tcga_pan_can_atlas_2018%2Clusc_tcga_pan_can_atlas_2018%2Cmeso_tcga_pan_can_atlas_2018%2Cov_tcga_pan_can_atlas_2018%2Cpaad_tcga_pan_can_atlas_2018%2Cpcpg_tcga_pan_can_atlas_2018%2Cprad_tcga_pan_can_atlas_2018%2Csarc_tcga_pan_can_atlas_2018%2Cskcm_tcga_pan_can_atlas_2018%2Cstad_tcga_pan_can_atlas_2018%2Ctgct_tcga_pan_can_atlas_2018%2Cthym_tcga_pan_can_atlas_2018%2Cthca_tcga_pan_can_atlas_2018%2Cucs_tcga_pan_can_atlas_2018%2Cucec_tcga_pan_can_atlas_2018%2Cuvm_tcga_pan_can_atlas_2018
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adjusted p-values (ns = not significant (P > 0.05); *P < 0.05; 
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001). The pairwise 
Pearson’s correlation coefficient (r) (0 < r < 0.4 (weak); 
0.4 < r < 0.7 (moderate); r > 0.7 (strong)) was calculated per 
gene pair using the basic stats R package to determine 
the level of co-expression. Gene expression correlation 
matrices were visualized using the corrplot R package 
(version 0.84) [54] with Ward D2 hierarchical clustering 
and P < 0.05 (95% confidence intervals; 95% CI). As GDC 
deemed OS and progression-free interval (PFI; defined as 
life span during and after treatment without worsening 
disease) to be relatively accurate clinical outcome end-
points with little missing data, they were recommended 
for use in survival analyses. Therefore, multivariable Cox 
proportional hazard models were calculated for the 49 
PSM genes using OS or PFI adjusted for available estab-
lished prognostic markers (age and/or tumor grade). For-
est plots were used to display HR for the effect of gene 
expression on OS or PFI with the forestplot R package 
(version 1.9) [55].

Results
Pan‑cancer genomic profiling demonstrates prevalent DNA 
amplification of PSM genes
To assess the distribution of genetic alterations (e.g. 
inframe mutation, missense mutation, nonsense muta-
tion, fusion, amplification, and nonstop mutation) in 
PSM genes in different cancer types, we used genomic 
profiling data retrieved from the web-based cBioPor-
tal tool for over 10,000 tumor samples (representing 33 
cancer types and 11 pan-cancer body groups) from the 
TCGA dataset (Tables 1 and 2). PSM genes were shown 
to be altered in approximately 67% of esophageal car-
cinoma (ESCA) cases (n = 182) and 66% of lung squa-
mous cell carcinomas (LUSC, n = 487), but only 4% of 
thyroid carcinoma (THCA) cases (n = 500; Fig.  2A). 
Genetic alterations (predominantly DNA amplification) 
were subsequently detected in all PSM genes, with the 
vast majority of aberrations found in the PSMD2 (6% of 
patient samples), PSMB4 (4%), and PSMD4 (4%) genes. 
In contrast, relatively few samples were found to harbor 
mutations in the PSMA3 gene (approximately 1%; Sup-
plementary Fig.  1). Interestingly, genetic aberrations in 

PSMD2 were most frequently found in LUSC (37% of 487 
cases).

GISTIC2 data from Broad GDAC Firehose were then 
used to evaluate the effect of DNA amplification of the 49 
PSM genes on gene expression (Supplementary Table 1). 
Broad amplification of whole chromosome arms (p and 
q arms) was most prevalent in the different cancer types 
(mean ± SEM, 7.3 ± 0.9; range, 1–22), while focal amplifi-
cation was found in 1.7 ± 0.4 (range, 0–12) cancer types 
per PSM gene. Furthermore, similar DNA amplification 
profiles were found for 10 PSM genes located on the same 
cytoband (PSMB5 and PSMB11, 14q11.2; PSME1 and 
PSME2, 14q12; PSMC4 and PSMD8, 19q13.2; PSMB4 
and PSMD4, 1q21.3; PSMB8 and PSMB9, 6p21.32; Sup-
plementary Fig.  2) and a number of consensus cancer 
driver genes (e.g. PSMB3 and ERBB2, 17q12; PSME3 and 
BRCA1, 17q21.31) [43, 44]. Moreover, several PSM genes 
(PSMA6-8, PSMB3-4, PSMB8-9, PSMC2, PSMC4-5, 
PSMD2-4, PSMD8, PSMD12, and PSMG3-4) were ampli-
fied > 100 times across cancer types. Of these, PSMB4 
(1q21.3) and PSMD4 (1q21.3) genes were amplified > 400 
times, while PSMD2 (3q27.1) was amplified almost 600 
times. In general, DNA amplification was most prevalent 
in the BLCA (urologic), BRCA (gynecologic), LUSC (tho-
racic), LUAD (thoracic), OV (gynecologic), and UCEC 
(gynecologic) cancer types. DNA amplification events 
(broad and focal) resulted in significantly elevated RNA 
levels for all 49 PSM genes in amplified samples com-
pared to non-amplified samples (P adjusted < 0.05; Sup-
plementary Table 1), including PSMB4 (1q21.3), PSMD4 
(1q21.3), and PSMB3 (17q12) that demonstrated focal 
amplifications in > 10 cancer types (Fig. 2B-D).

In total, 3% of the 2,935 genetic variants were found to 
harbor DNA amplification of PSM genes (n = 31) in con-
junction with mutations (n = 37; BLCA, BRCA, CESC, 
COADREAD, ESCA, HNSC, LUAD, LUSC, SARC, 
SKCM, STAD, UCEC) or fusions (n = 40; BLCA, BRCA, 
CESC, CHOL, ESCA, LIHC, LUAD, OV, SARC, SKCM, 
UCS) in the same patient (Supplementary Tables  1 
and 4). Although all 77 co-occurrences of amplifica-
tion/mutation or amplification/fusion were unique, six 
patients with BRCA, CHOL, HNSC, LIHC, LUAD, 
or UCEC harbored two different amplification/muta-
tion (PSMC2 or PSMC5) or amplification/fusion events 

(See figure on next page.)
Fig. 2  Bar charts depicting alteration frequency for the 49 PSM genes by cancer type using the interactive web-based online tool cBioPortal 
(cbioportal.org). A DNA amplification was shown to be prevalent in most cancer types, with ESCA and THCA showing the highest och lowest 
alteration frequencies, respectively. Box plots visualizing DNA amplification of (B) PSMB3, (C) PSMB4, (D) PSMD4 and their effect on expression 
(RSEM). Wilcoxon test was used to calculate statistical significance (Benjamini–Hochberg adjusted p-values), ns = not significant (P ≥ 0.05); *P < 0.05; 
**P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001. E PSME4 gene was the most mutated of all PSM genes. Most PSME4 mutations was found in the UCEC cancer 
type, where missense mutations were prevalent. F Beeswarm plot visualizing copy number alterations (CNA) and other types of mutations, and 
their effect on expression was generated in cBioPortal. Deep deletions in PSME4 resulted in significantly lower expression. G Lollipop plot depicting 
the number of mutations across the PSME4 gene. Missense mutations were prevalent (243 of 312 mutations), with a domain with unknown 
function containing 14 mutations (10 frameshift deletions in T1805Pfs*69, three frameshift insertions in T1805Nfs*11, and one missense in T1805P)
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Fig. 2  (See legend on previous page.)
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(PSMB2 or PSMD11) in the same gene or two differ-
ent genes (PSMD4 and PSMG3 in a LUAD sample, and 
PSMD11 and PSMD12 in a BRCA sample). The PSM 
gene was most commonly the 5’- gene partner (58%), 
and co-expression between the fusion gene partners 
was relatively weak (rs <|0.4|). According to Polyphen-2 
functional prediction annotation scores, 18/40 amplifi-
cation/fusion and 17/37 amplification/mutation events 
were predicted to be possibly damaging (Polyphen-2 
scores 0.15 to 1). In contrast, 12/40 amplification/fusion 
events in PSMB2, PSMB3, PSMC4, PSMD3, PSMD4, 
and PSMD11, and 12/37 amplification/mutation events 
in PSMA6, PSMA8, PSMB8, PSMC2, PSMC6, PSMD2, 
PSMD3, and PSMD4 were more confidently predicted to 
be damaging (Polyphen-2 scores 0.85 to 1).

Of the 2,935 genetic variants identified in the 49 PSM 
genes, 2,782 (95%) were classified as potentially delete-
rious (Supplementary Table  4). Although SIFT and/or 
Polyphen-2 functional prediction annotation data were 
not available for 1,233 of the 2,782 (44%) genetic variants, 
961 and 900 potentially damaging variants were identi-
fied, respectively. Consequently, 721 potentially damag-
ing variants were identified by both databases in 28/32 
cancer types and in all PSM genes, except PSMB10 and 
PSMG1-4. Of the 49 PSM genes, PSME4 had the highest 
number of mutations, primarily consisting of missense 
mutations though other mutations were also identified 
(e.g. nonsense mutation, fusions, amplifications; Fig. 2E). 
As expected, copy number alterations in the PSME4 gene 
such as amplification and deep deletion resulted in over- 
and underexpression, respectively. However, PSME4 
expression varied in samples harboring missense muta-
tions (Fig.  2F). Although missense mutations spanned 
the PSME4 gene, 14 cancer samples (colon adenocarci-
noma (COAD, n = 2), stomach adenocarcinoma (STAD, 
n = 6), and uterine corpus endometrial carcinoma 
(UCEC, n = 6)) had truncating mutations in a domain at 
the C-terminal region with unknown function (10 with 
frameshift deletion in T1805Pfs*69, three with frameshift 
insertion in T1805Nfs*11, and one sample with missense 
in T1805P; Fig. 2G).

In the breast cancer validation dataset, only PSMA4 
(HER2/ER- subtype, n = 2; bilateral breast can-
cer), PSMB7 (Luminal B/HER2- subtype, n = 1), 
PSMD3 (Luminal B/HER2- subtype, n = 3; Luminal B/
HER2 + subtype, n = 1; Basal-like subtype, n = 1), and 
PSME4 (Luminal B/HER2- subtype, n = 2) harbored 
mutations. DNA amplification was prevalent in 33/39 
PSM genes, where five genes (PSMA7, PSMB4, PSMD2-
4, PSMD10) were amplified in more than 10% of all 
samples (Supplementary Table 3). These five genes were 
significantly overexpressed in amplified samples com-
pared to non-amplified breast cancer samples (P < 0.0001; 

t-test). Amplification of PSMA7, PSMB4, PSMD4, and 
PSMD10 were identified in the Luminal B, HER2/ER-, 
and Basal-like subtypes, while PSMD3 amplification was 
only found in Luminal B and HER2/ER- samples and 
PSMD2 amplification in Luminal B and Basal-like sam-
ples. These findings were in agreement with the cBio-
Portal TCGA dataset. Taken together, these data show 
that although genetic aberrations were found in all PSM 
genes, specific PSM genes are hotspots for DNA amplifi-
cation in certain cancer types.

Differential gene expression analysis between cancer 
and normal tissues identifies cancer‑related PSM genes
Differential gene expression analysis was performed in 
16/33 cancer types using RNA-seq data from TCGA can-
cer samples (n = 5,507) with corresponding normal tissue 
(n = 627). Expression profiling of 49 PSM genes revealed 
similar gene expression patterns across the different 
cancer types, frequently showing overexpression in can-
cer in comparison with normal tissue (Fig.  3). Interest-
ingly, hierarchical clustering revealed two main clusters 
of PSM genes, of which one cluster contained five PSM 
genes (PSMB8-10 and PSME1-2) with high expression 
in a number of urologic, CNS, and gynecological can-
cers (Fig.  3). Furthermore, differential expression was 
found in 35 ± 2 (mean ± SEM, range 17–45) PSM genes 
per cancer type. Interestingly, 45/49 PSM genes were 
differentially expressed in the breast invasive carcinoma 
(BRCA) and lung squamous cell carcinoma (LUSC) can-
cer types, while only 17/49 PSM genes were differentially 
expressed in pheochromocytoma and paraganglioma 
(PCPG; Fig.  4A). Moreover, 11 ± 0.4 (range 2–15) can-
cer types were associated with each PSM gene. Over-
expression of PSM genes was most prevalent across the 
range of cancer types. For instance, seven PSM genes (i.e. 
PSMA1, PSMA4, PSMC1, PSMC3IP, PSMD13, PSMG2-
3 (PSM class I/II/V)) were overexpressed in the majority 
of the 16 cancer types (Fig. 4B). In comparison with the 
other PSM genes, differential expression of PSMB11 was 
relatively uncommon, whereas PSME3 and PSMG3 were 
found to be differentially expressed in virtually all exam-
ined cancer forms (15/16 cancer types; Fig. 4C-D). Taken 
together, these findings demonstrate that the vast major-
ity of PSM genes were cancer-related.

Pearson correlation reveals five clusters of co‑expressed 
PSM genes in cancer
To assess co-expression of the 49 PSM genes in cancer, 
pairwise Pearson correlation coefficients (r) were cal-
culated for the PSM genes in the 33 cancer types. First, 
we evaluated overall PSM co-expression patterns in can-
cer by compiling RNA-seq data for all 33 cancer types. 
This analysis showed that the majority of co-expressed 
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PSM genes were positively correlated, with at least five 
gene clusters displaying moderate to strong positive cor-
relation (r >|0.4|: 1) PSMD1, PSMD11-12, PSME3-4, 2) 
PSMA3-4, PSMA6, PSMC6, 3) PSMA2, PSMA5, PSMA7, 
PSMB2, 4) PSMB1, PSMB3-7, PSMC1, PSMC3, PSMC5, 
PSMD4, PSMD9, PSMD13, PSMG3, and 5) PSMB8-
10, PSME1-2; Fig.  5A). In contrast, Pearson correlation 

coefficients varied between |0.4| and |0.9| for the 33 
cancer types. Interestingly, PSMB8-10 (PSM class I) dis-
played moderate to strong positive correlation patterns in 
31 cancer types (e.g. KIRC, LIHC, LUAD). Furthermore, 
PSMB8-10 (PSM class I) expression was also strongly 
correlated with PSME1-2 (PSM class III) in 27 cancer 
types, e.g. BRCA (Fig.  5B). Consequently, a number of 

Fig. 3  Human proteasome genes frequently displayed overexpression in cancer compared with normal tissue. Heatmap showing relative log2 
RSEM gene expression (cancer vs mean normal samples) for the 49 PSM genes in 5,507 TCGA cancer samples representing 16 pan-cancer diseases. 
Hierarchical clustering was performed with the pheatmap R package (version 1.0.12) using the Manhattan distance metric and Ward’s minimum 
variance method (Ward.D2)
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PSM genes belonging to different PSM gene classes were 
found to be positively correlated, particularly PSMB8-10, 
which are found in the immunoproteasome.

Multivariable Cox regression analysis shows the prognostic 
significance of PSM gene expression in cancer
To assess the prognostic significance of PSM genes, log2 
Fragments Per Kilobase of transcript per Million (FPKM) 
gene expression (RNA-seq) values were retrieved from 
the web-based UCSC Xena Browser tool for 10,304 GDC 
TCGA samples (representing 33 cancer types and 11 
pan-cancer body groups; Table 2). Survival analysis was 
then performed to evaluate the prognostic relevance of 
the 49 PSM genes in 33 cancer types using overall sur-
vival (OS) and progression-free interval (PFI) as clinical 

endpoints adjusted for covariates (age for 33 cancer types 
and/or tumor grade for 12 cancer types; Fig. 6A-B). Sur-
vival analysis for PFI could not be performed for acute 
myeloid leukemia (LAML) due to a lack of clinical data. 
In total, age was shown to have an adverse effect on OS in 
22/33 cancer types (e.g. BRCA, OV, and UVM) and 5/32 
cancer types (e.g. CESC, LGG, and SKCM) for PFI, but 
tumor grade only affected prognosis in 3/12 cancer types 
(i.e. HNSC, PAAD, and UCEC) for OS and 4/12 (e.g. 
ESCA, KIRC, and PAAD) for PFI.

In total, PSM gene expression (high or low expression) 
was shown to affect prognosis in 7.1 ± 0.4 (mean ± SEM, 
range 2–14 (OS)) and 6.0 ± 0.3 (mean ± SEM, range, 2–11 
(PFI)) cancer types (Fig. 6C-D and Supplementary Fig. 3). 
Furthermore, PSM genes linked to decreased survival 

Fig. 4  Differentially expressed PSMs between 16 cancer types and corresponding normal tissue. A Bar chart visualizing the number of differentially 
expressed PSM genes between cancer and normal tissue. BRCA and LUSC showed the highest number of cancer-related PSMs (n = 45), whereas 
only 17 differentially expressed PSMs were identified in PCPG. B Bar chart depicting differential PSM gene expression patterns in various cancer 
types. Overexpression strongly dominated across all cancer types. C-D Box plot depicting differentially expressed PSMs in cancer and normal tissue. 
PSMB11 was found to be differentially expressed in 2/16 cancer types, while PSME3 was differentially expressed in all except one of the 16 cancer 
types. The Wilcoxon test was used to calculate statistical significance (Benjamini–Hochberg adjusted p-values) differences in expression (RSEM) 
between cancer and normal tissue. ns = not significant (P > 0.05); *P < 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001

Fig. 5  Pairwise Pearson correlation between PSM gene expression in 33 pan-cancer diseases. Correlation matrices for compiled gene expression 
patterns for (A) the 33 pan-cancer diseases and (B) BRCA, with genes ordered using hierarchical clustering with Ward’s minimum variance (Ward.
D2). Red and blue dots represent negative and positive correlation patterns, respectively. The strength of color and circle size defines correlation 
pattern between gene pairs using correlation coefficients (P < 0.05); blank squares were not statistically significant (P > 0.05). PSM genes showing 
recurrent positive correlation are outlined in red

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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(OS and PFI) were also investigated in ≥ 30% of cancer 
types. For OS, 12 prognostic PSM genes (i.e. PSMA1, 
PSMA4, PSMB4-5, PSMB8, PSMB10, PSMD2, PSMD11-
12, PSMD14, PSME2, and PSMG1; PSM class I/II/
III/V) were identified in ≥ 30% of cancer types (Fig. 6C), 
whereas only two PSM genes (PSMA1, PSMD11; PSM 

class I/II) were identified for PFI (Fig.  6D). In addition, 
PSMD2 had an impact on prognosis in 42% (14/33) of all 
cancer types for OS (Supplementary Fig. 4). Interestingly, 
PSMB8-10 and PSME1-2 genes had a significant impact 
on OS in most cancer types, primarily when underex-
pressed (Fig. 6C). In contrast, overexpression of PSMB5, 

Fig. 6  The prognostic relevance of PSM gene expression in different cancer types using overall survival (OS) and progression-free interval (PFI) 
as clinical endpoints in multivariable Cox regression analysis (adjusted for age and/or tumor grade). A-B Dot plots displaying the –log10(p-value) 
for the multivariable Cox regression analysis between PSM gene expression and OS (A) and PFI (B). Blue dots indicate a hazardous role for PSM 
gene expression, while red dots indicate a protective role. NS = not significant (P > 0.05). Dot sizes denote –log10(p-value); P < 0.001 is shown as 
–log10(p-value) = 3. Due to a lack of clinical data, PFI could not be performed for acute myeloid leukemia (LAML). C-D Bar charts illustrating the 
number of cancer types associated with different expression levels for each prognostic PSM gene. PSM gene expression (high [blue bars, higher 
than median expression] and low [yellow bars, lower than median expression]) associated with OS (C) and PFI (D) in different cancer types
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an important catalytic site in the proteasome, was associ-
ated with decreased OS and PFI in 36% and 27% of can-
cer types, respectively (Figs. 6C-D and 7A-B).

In contrast, specific cancer types were associated with 
10.6 ± 1.6 (range, 0–31 (OS)) and 9.0 ± 1.6 (range, 0–31 
(PFI)) prognostic PSM genes (Fig.  7C-D). Moreover, 

specific cancer types were identified where ≥ 50% of PSM 
genes (up- or downregulation) were linked to more unfa-
vorable survival, with overexpression being most com-
mon. For OS, four cancer types (i.e. ACC (29 genes), LGG 
(26 genes), LIHC (26 genes), and UVM (31 genes)) were 
identified (Fig. 7C), and three cancer types (i.e. ACC (29 

Fig. 7  The number of prognostic PSMs associated with high or low expression per cancer type using overall survival (OS) and progression-free 
interval (PFI) as clinical endpoints in multivariable Cox regression analysis (adjusted for age and/or tumor grade). A-B Forest plots visualizing the 
Hazard ratio (HR) for the multivariable Cox regression analysis between high PSMB5 expression and OS (A) and PFI (B). HR < 1 shows reduced risk at 
high PSMB5 expression (higher than median expression) and HR > 1 illustrates increased risk at high PSMB5 expression. C-D Bar charts visualizing the 
number of prognostic PSMs associated with each cancer type at high (blue bars, higher than median expression) or low (yellow bars, lower than 
median expression) expression for OS (C) and PFI (D)
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genes), KIRP (25 genes), and UVM (31 genes)) were iden-
tified for PFI (Fig. 7D). Interestingly, > 60% of PSM genes 
(predominantly overexpressed) were associated with 
both reduced OS and PFI in UVM (Fig. 7C-D and Sup-
plementary Fig. 4). Consequently, these results show that 
PSM gene expression patterns may be an important indi-
cator of prognosis in various cancer types. Compared to 
the TCGA dataset, similar correlation patterns between 
PSM gene expression and survival were observed in the 
breast cancer validation dataset and KM plotter (Supple-
mentary Table 5).

Discussion
The proteasome is an evolutionarily conserved protein 
complex that is essential for the maintenance of cellular 
proteostasis by degrading unneeded and temporary pro-
teins [56]. Therefore, nonfunctional proteasomes lead to 
severe diseases [3]. In cancer, the proteasome is therefore 
considered to be a “key player” in tumor progression due 
to the abnormally high proteasome activity observed in 
various neoplastic tissues [57]. High proteasome activ-
ity is likely due to increased levels of ubiquitinated and/
or high expression of proteasome subunits [57]. Here, 
we performed a comprehensive pan-cancer study of 
PSM genes using a large public dataset from The Cancer 
Genome Atlas and the cBioPortal web-based online tool 
to investigate the effect of genetic alterations and subse-
quent changes in PSM gene expression on prognosis. The 
study was limited by the lack of large datasets (similar to 
The Cancer Genome Atlas dataset) to validate our find-
ings and the inclusion of metastatic lesions in the SKCM 
and THCA datasets; the results for SKCM in particular 
should be interpreted with this in mind. Nevertheless, 
we were able to reveal a connection between frequent 
overexpression of specific PSM genes and adverse patient 
clinical outcome in several cancer types. These findings 
suggest that a number of PSM genes can be important 
prognostic and therapeutic markers for cancer.

Amplification events and subsequent overexpression 
of target genes are relatively common in cancer genomes 
[58]. In particular, cancer drivers are frequently found in 
genomic regions of focal amplification [59, 60]. Although 
genetic alterations were found to occur in all PSM genes, 
alteration frequencies varied in the different cancer types. 
In general, two different patterns of DNA amplification 
were observed, i.e. focal amplification of specific PSM 
genes (e.g. PSMB3, PSMB4, and PSMD4) in thoracic and 
gynecologic organ systems and focal amplification in 
conjunction with either mutations or fusions of the same 
PSM gene. Although uncommon, these findings indicate 
that specific PSM genes are targeted by more than one 
molecular mechanism for activation. These focal ampli-
fication events may possibly be due to proximity to a 

mutation hotspot region. Furthermore, co-amplification 
of PSM genes located in close proximity to one another 
(e.g. PSMB5 and PSMB11, 14q11.2; PSMB4 and PSMD4, 
1q21.3; PSMB8 and PSMB9, 6p21.32) or known cancer 
drivers (e.g. co-amplification of ERBB2 and PSMB3) were 
also frequently amplified together. Intriguingly, ampli-
fication of PSMB3, PSMB4, and PSMD4 have also been 
observed in breast- and ovarian cancer [61–63].

However, mutation events in PSM genes were rela-
tively rare in cancer, which was also observed in the 
breast cancer validation dataset where only four PSM 
genes (PSMA4, PSMB7, PSMD3, and PSME4) harbored 
mutations. These findings indicate that mutations could 
cause loss of proteasome function thereby causing cell 
death. Although focal DNA amplification of PSM genes 
was found to have a significant effect on the expression 
levels of individual PSM genes, it could not account 
for the global overexpression observed in most cancer 
types due to its infrequency. This indicates that other 
molecular mechanisms (e.g. DNA methylation, histone 
modification or transcription regulation) contribute to 
the aberrant PSM gene expression patterns shown in 
cancer. For example, the NRF1 and NRF2 transcription 
factors are known to induce transcription of PSM genes 
during different types of cellular stress. Recent studies 
have shown that inhibition of the β2 proteasome site 
leads to the aggregation of NRF1, thereby suppressing 
proteasome gene expression and the production of new 
proteasomes [3, 34, 38, 64]. Consequently, the elevated 
PSM gene expression patterns and hence high protea-
some activity observed in cancer suggests an underly-
ing dependency on the ubiquitin–proteasome system 
and thereby therapeutic vulnerability to proteasome 
inhibition.

To further evaluate the significance of PSM expres-
sion levels in cancer, we performed differential 
expression analysis of the PSM genes in cancer and cor-
responding normal tissue. This analysis showed that 
most PSM genes, especially PSME3 and PSMG3, were 
differentially expressed (frequently overexpressed) rela-
tive to normal tissue, further highlighting the impor-
tance of the proteasome in cancer development and 
progression. As PSME3 and PSMG3 are involved in 
proteasome activation and assembly, evaluation of their 
expression levels in cancer could be clinically relevant. 
Unfortunately, differential expression analysis was only 
performed on 16/33 cancer types due to the lack of or 
limited number of corresponding normal tissue sam-
ples. Nevertheless, high PSME3 expression has been 
previously associated with worse survival in colorec-
tal cancer; our data confirm that PSME3 may also be 
important as a prognostic and predictive biomarker for 
other types of cancer [65].
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Pearson correlation analysis revealed that co-expres-
sion of most PSM genes were positively correlated. In 
general, cancer was shown to co-express (strong positive 
correlation) at least five PSM gene clusters (1) PSMD1, 
PSMD11-12, PSME3-4, 2) PSMA3-4, PSMA6, PSMC6, 3) 
PSMA2, PSMA5, PSMA7, PSMB2, 4) PSMB1, PSMB3-7, 
PSMC1, PSMC3, PSMC5, PSMD4, PSMD9, PSMD13, 
PSMG3, and 5) PSMB8-10, PSME1-2. These findings 
demonstrate that co-expression of PSM subunits, acti-
vators (PSME1-4; facilitates access to the proteasome 
complex [66]), and assembly genes (PSMG3; assembly 
chaperone that allows for efficient proteasome assembly 
[67]) are required to ensure high-fidelity organization 
and assembly of the proteasome. The diverse mutation 
profiles, expression patterns, and co-expression patterns 
shown in the different cancer types may be due to a num-
ber of factors, including proteasome structural diversity 
in different tissues and the need for an assortment of 
various proteasome subunits (i.e. immunoproteasome, 
PSMB8-10), as well as, differences in proteasome regu-
lation (i.e. proteasome activators, PSME1-2) [68–74]. 
The expression of PSMB8-10 (class I) was nevertheless 
shown to be highly correlated in 31 cancer types, with 
an association between high PSMB8-10 expression and 
better survival. These findings are not particularly sur-
prising, as PSMB8-10 are the catalytic subunits in the 
immunoproteasome, which plays a pivotal role in the 
immune system [75].

Survival analysis revealed 12 PSM genes with prog-
nostic potential (PSMA1, PSMA4, PSMB4-5, PSMB8, 
PSMB10, PSMD2, PSMD11-12, PSMD14, PSME2, 
and PSMG1; PSM class I/II/III/V) for OS and two 
PSM genes (PSMA1, PSMD11; PSM class I/II) for 
PFI. Recently, high expression of several of these PSM 
genes (e.g. PSMA1, PSMB4, and PSMD2) has been 
correlated with poor prognosis in a number of can-
cer types, including breast-, lung-, and gastric cancer 
[76–78]. In the validation dataset and KM plotter, these 
PSM genes were also found to be of prognostic value. 
Notably, PSMA1 and PSMD11 were associated with 
both OS and PFI. These findings indicate that PSMA1 
and PSMD11 may be useful biomarkers for the early 
detection of relapse, whereas patient samples express-
ing aberrant expression patterns of the 12 OS-related 
PSM genes may warrant more aggressive treatment 
regimens. Although overexpression of the PSM genes 
was most frequently associated with prognosis, under-
expression of PSMB8-10 had a major impact on prog-
nosis in several cancer types. This is consistent with 
recent studies revealing that high expression of the 
immunoproteasome is associated with better survival 
in breast cancer [79]. Intriguingly, overexpression of 
one of the three proteasome catalytic sites, PSMB5, 

had an adverse effect on prognosis in 12 (OS) and 9 
(PFI) of the studied cancer types. The prognostic sig-
nificance of PSMB5 is consistent with a previous study 
that established a link between high PSMB5 expres-
sion and enhanced tumor progression in breast cancer 
[80]. PSMB5 is also the main target for most clinically 
relevant proteasome inhibitors, further highlighting 
its importance for proteasome function and cell sur-
vival. We also identified specific cancer types where 
the majority of PSM genes had an impact on prognosis. 
Therefore, patients with ACC, LGG, LIHC, and UVM 
showing consistently elevated proteasome activity due 
to PSM gene overexpression might benefit from protea-
some inhibitor-based treatment or targeted treatment 
with inhibitors for individual PSM genes. However, sev-
eral cancer types can be characterized into histological 
subtypes due to heterogeneity. Consequently, it may be 
necessary to perform an in-depth analysis of specific 
cancer types to identify subtypes that may benefit from 
proteasome inhibition.

In conclusion, the comprehensive pan-cancer analy-
sis presented here demonstrated that several PSM 
genes (e.g. PSMA1, PSMB4-5, PSMB8-10, PSMD2, 
PSMD4, PSMD11, PSME1-3, and PSMG3) may be 
putative biomarkers for determining prognosis and 
choice of treatment for different cancer types. How-
ever, the proteasome is a complex of several PSM pro-
teins and crosstalk between different PSMs is inherent 
for proteasome activity. Therefore, further studies are 
needed to identify a panel(s) of up- or down-regulated 
PSMs that are associated with patients at-risk of can-
cer-related death and recurrence, thereby potentially 
improving the survival of cancer patients.
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