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Abstract 

Background:  Pyroptosis is a newly discovered form of cell programmed necrosis, but its role and mechanism in can-
cer cells remain unclear. The aim of this study is to systematically analyze the transcriptional sequencing data of breast 
cancer (BC) to find a pyroptosis-related prognostic marker to predict the survival of BC patients.

Methods:  The original RNA sequencing (RNA-seq) expression data and corresponding clinical data of BC were 
downloaded from The Cancer Genome Atlas (TGCA) database, followed by differential analysis. The pyroptosis-related 
differentially expressed genes (DE-PRGs) were employed to perform a computational difference algorithm and Cox 
regression analysis. The least absolute shrinkage and selection operator (LASSO) was utilized to avoid overfitting. A 
total of 4 pyroptosis-related genes (PRGs) with potential prognostic value were identified, and a risk scoring formula 
was constructed based on these genes. According to the risk scores, the patients could be classified into high- and 
low-risk score groups. The potential molecular mechanisms and properties of PRGs were explored by computational 
biology and verified in Gene Expression Omnibus (GEO) datasets. In addition, the quantitative real time PCR (RT-qPCR) 
and Human Protein Atlas (HPA) were performed to validate the expression of the key genes.

Results:  A PRGs signature, which was an independent prognostic factor, was constructed, and could divide patients 
into high- and low-risk groups. The results from the prognostic analysis indicated that the survival was significantly 
poorer in the high-risk group than in the low-risk group both in TCGA and in GEO, indicating that the signature is valu-
able for survival prediction and personalized immunotherapy of BC patients.

Conclusions:  The pyroptosis-related biomarkers were identified for BC prognosis. The findings of this study provide 
new insights into the development of the efficacy of personalized immunotherapy and accurate cancer treatment 
options.
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Introduction
Breast cancer is the most common malignancy in 
females and one of the three most common tumors 
worldwide [1]. Breast cancer is a heterogeneous sub-
type of tumor with poor prognosis [2–4]. Due to the 
development of more effective and superior medical 
diagnostic and imaging techniques, the mortality rate 
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of BC has been greatly reduced, but the prognosis of 
patients with BC is still poor [1, 5]. The lack of effective 
features and diagnostic tools to predict prognosis or 
long- term survival in patients remains a major obstacle 
to improve detection and treatment strategies for BC 
[6].

Pyroptosis distincting from apoptosis, is accompa-
nied by inflammation and immune response, and it is 
a new form of Gasdermin (GSDM) family-mediated 
programmed cell death [7, 8].. When bacteria, fungi or 
parasites invade, immune cells, such as lymphocytes and 
neutrophils actively kill pathogens through a series of 
signal transduction. Many pathogens invade and hide in 
host cells in order to avoid detection by antiseptic sub-
stance and phagocytes in body fluids. To eliminate these 
pathogens, the solution is to clean out them together with 
the infected cells. Killing infected cells can be done by 
cell intrinsic mechanisms like necroptosis, apoptosis, and 
pyroptosis [9]. Gasdermin family member contains gas-
dermin A, B, C, D, E, and DFNB59 [6, 10]. GasderminD 
(GSDMD) represents a big gasdermin family, with a new 
membrane pore forming activity. GSDMD, the substrate 
of both caspase-11/4/5 and caspase-1, is by far the best 
researched [11]. Pyroptosis was originally not correctly 
appreciated for decades because it was similar to apop-
tosis, and it was condemned as a special type of apoptosis 
through caspase-1 [12]. Caspase-1 and caspase-11/4/5 
induced pyroptosis by cleavage GSDMD, release its gas-
dermin-N structure domain, the domain structure has 
the activity of punching holes in the membrane, eventu-
ally leading to cell swelling and osmotic lysis. The cells 
undergo the morphological changes described above 
[13]. After the demonstration of the GSDMD-mediated 
pathway, other pyroptosis mechanisms, such as caspase-
3/8-mediated pathway and granzyme-mediated pathway, 
have been clarified by several studies. Chemotherapy 
can induce caspase-3-mediated cleavage of GSDME, 
and form N-GSDME terminal, which can cause pyrop-
tosis of tumor cells [14]. Caspase-8 specifically cleaves 
GSDMC to produce N-GSDMC, and forms pores in 
cell membrane to induce pyroptosis [15]. Recent studies 
have proved that GzmB can further activate anti-tumor 
immune response and inhibit tumor growth by activat-
ing caspase-3/GSDME or directly cracking GSDME and 
inducing pyroptosis [16, 17]. Pyroptosis shows different 
morphology compared with apoptosis, it is lytic, featur-
ing cell swelling under microscope [18, 19]. Recently, 
pyroptosis has become a research hotspot in the occur-
rence and development of tumors. Besides, it is reported 
to be closely related to gastric cancer, colorectal cancer, 
hepatocellular carcinoma, breast cancer, and lung can-
cers [20–25], but its role and mechanism in cancer cells 
remain unclear.

More and more studies have shown that tumor micro-
environment (TME) and tumor stemness are closely 
related to BC occurrence and development [26, 27], infil-
tration of numerous inflammatory cells in BC, and the 
density of CD8+ T cells is highly related to the immune 
escape of BC [28, 29]. PD-1 and PD-L1 constitute an 
essential inhibitory mechanism which causes T cell 
exhaustion in tumor microenvironment. That’s the main 
reason why PD-L1 has drawn increasing attention of 
researchers [30–32]. But the underlying mechanisms of 
pyroptosis in breast cancer microenvironment progres-
sion and immune response remain unclear. This study 
mainly aimed to explore PRGs in BC, and systemati-
cally investigate the association between the pyroptosis-
related gene signature and immune microenvironment, 
immune cell infiltration, cancer chemoresistance, cancer 
stem cells (CSCs). These results supported the feasibil-
ity of constructing tumor prognostic risk models using 
PRGs. At present, few studies have reported the prognos-
tic value of PRGs in BC in recent years.

In this study, the mRNA expression profiles and clinical 
data of BC patients were first downloaded from TCGA 
to identify differentially expressed genes (DEGs), espe-
cially pyroptosis-related genes. Then, a prognostic signa-
ture with these genes was constructed and its reliability 
was validated in the GEO database. Finally, this gene sig-
nature was proved to be able to predict the prognosis of 
BC and assess the patient’s tumor microenvironment and 
other states, thereby contributing to clinical treatment.

Material and methods
Data collection
The RNA sequencing (RNA-seq) expression data and 
clinicopathological information of female breast can-
cer patients from 1053 breast cancer tissue samples and 
111 nontumor tissue samples were downloaded from 
the TCGA BC dataset (https://​portal.​gdc.​cancer.​gov/), 
and were used as training cohort. Probes were trans-
formed to corresponding Entrez gene names referring to 
the annotation files. 33 genes associated with pyroptosis 
were identified from previous literature [33]. In order 
to get more breast cancer datasets, the GSE42568 and 
GSE86166 datasets, which were obtained from the gene 
expression omnibus (GEO: https://​www.​ncbi.​nlm.​nih.​
gov/​geo/) database, were used as testing cohort. Batch 
normalization was applied by using ‘sva’ and ‘limma’ R 
package [34]. A total of 470 breast cancer samples were 
obtained. The detailed flow-process diagram of this study 
is shown in Fig. 1.

Construction of a pyroptosis‑related gene signature
First, the expression level of pyroptosis-related genes was 
extracted from the total gene expression list. If a gene 
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appeared more than once in the same sample, the ‘limma’ 
of Bioconductor R package was utilized for averaging 
operations [35]. Second the limma was utilized to iden-
tify DE-PRGs between breast cancer tissue samples and 
normal breast tissue samples. The false discovery rate 
(FDR) threshold was set at FDR < 0.05 for DE-PRGs call-
ing. A protein-protein interaction (PPI) network of pro-
teins encoded by DE-PRGs of high-risk epidermal growth 
factor receptor 2-positive (HER2+) and triple-negative/
basal-like molecular subtypes was visualized using String 
(http://​string-​db.​org). To establish the pyroptosis-related 
gene risk model, univariate Cox regression analysis was 
performed on the pyroptosis-related genes. A total of 4 
prognostic related differential genes were obtained by the 
intersection of DE-PRGs and prognostic genes.

To avoid overfitting, the least absolute shrinkage and 
selection operator (LASSO) was utilized to select varia-
bles with high prognostic value [36]. Next, 1000 LASSO 
iterations were performed for prognostic model con-
struction using the ‘glmnet’ package in R, and their 
regression coefficients were obtained. Finally, the for-
mula of the risk score was composed as follows, and 
risk scores were computed: Risk score = ∑ni = ∑Coefi 
× xi, where xi represents the normalized expression 

level of target gene i and Coefi represents the regres-
sion coefficient. According to the median risk score 
in TCGA dataset, 1014 patients in the data set were 
divided into high-risk and low-risk groups after sam-
ples with a survival time of zero were removed. The 
Kaplan-Meier (K-M) plot was used to evaluate survival 
differences between the high- and low-risk groups. To 
analyze the distribution differences between different 
groups, PCA was performed using the ‘prcomp’ func-
tion in the STATS package in R. A t-SNE analysis was 
implemented using the R package Rtsne (https://​github.​
com/​jkrij​the/​Rtsne).

Univariate and multivariate cox regression analysis
Univariate cox regression analysis was presented for 
assessment of the prognostic values of the risk score 
and clinical features (Age, Stage, T classification, N 
classification, M classification). Then, multivariate cox 
regression analysis was used to determine which prog-
nostic factors could independently predict the survival 
of patients. Adjusted p < 0.05 is considered to be statis-
tically significant using the ‘survival’ package.

Fig. 1  The flow chart of this study

http://string-db.org
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
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Functional enrichment and pathway analysis
To further investigate the biological processes associ-
ated with the pyroptosis-related genes, BC patients were 
divided into the high- and low-risk groups based on the 
median risk score in TCGA and testing cohort, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses for all 
selected DEGs between the two risk [37]. Cohorts were 
performed with the ‘clusterProfiler’ package in BioCon-
ductor using |log2FC| ≥ 1 and FDR < 0.05 as thresholds 
in TCGA. Considering the relatively small sample size in 
testing cohort, the threshold was set as FDR < 0.05.

Estimation of TME cell infiltration, immuneScore, 
stromalScore, PD‑L1, tumor stemness, drug sensitivity
The scores of 16 tumor-infiltrating immune cells and 13 
immune-related functions for samples were determined 
by single-sample gene-set enrichment analysis (ssGSEA). 
The ImmuneScore, StromalScore, and ESTIMATES-
core were calculated using the ‘ESTIMATE’ package [38, 
39]. Correlations between the risk signature and the key 
immune regulators, PD-L1 and PD-L2 were evaluated. 
The DNA index is a score based on methylation data and 
the RNA index is a score based on transcriptome data 
in TCGA, they can reflect the amount of stem cells [40, 
41]. The NCI-60 database and information on 216 FDA-
approved chemotherapy drugs were obtained from the 
CellMiner interface (https://​disco​ver.​nci.​nih.​gov/​cellm​
iner). Spearman correlation analyses were used to meas-
ure the relationship among the risk score, ImmuneS-
core, StromalScore, PD-L1 and PD-L2 expression, tumor 
stemness, and drug sensitivity.

Analysis based on human protein atlas database
The HPA database covers all pathological and gene 
expression data collected from a large number of stud-
ies using different cell lines and tissue types [42]. 
Immunohistochemistry images in this database were 
implemented in the present work to examine 4 PRGs lev-
els within diverse tissues along with their localization in 
cells.

Cell culture and reagents
Human breast cancer cell lines MCF7, MCF-10A, 
HCC1937, MDA-MB-231 were provided by Affiliated 
Hospital of Qingdao University. HCC1937 and MDA-
MB-231 ware cultured in DMEM (Invitrogen, USA), 
MCF7 cells were maintained in RPMI 1640 (Gibco, 
USA) supplemented with 10% fetal bovine serum (FBS) 
(Gibco, USA) and 1% penicillin-streptomycin (PS, 
100 μg/ml) (Enpromise, Hangzhou, China), MCF-10A 
was maintained in Medium-F12 (DMEM/F12) (Gibco, 

USA) supplemented with 5% horse serum (Gibco, 
USA), 1% penicillin/streptomycin, 0.5 μg/ml hydrocor-
tisone, 100 ng/ml cholera toxin (Sigma, USA), 10 μg/
ml insulin (Gibco, USA), and 20 ng/ml recombinant 
human EGF (Invitrogen, USA). All cells were cultured 
in a humid environment of 37 °C and 5% CO2.

RNA isolation and quantitative real‑time polymerase chain 
reaction PCR (RT‑qPCR)
Total RNA was extracted from cells using TRIzol rea-
gent (Invitrogen, USA). Complementary DNA (cDNA) 
was synthesized using the total RNA and a PrimeScript 
RT reagent kit (Takara). TB- Green assays (Takara) 
were used to perform the RT-qPCR on a Roche Light-
Cycler® 480 instrument. The data was calculated 
through the 2-ΔΔCt strategy, normalizing with GAPDH. 
The primer sequences used for qRT-PCR in this study 
are listed in Table 1.

Statistical analysis
We used R software (version 4.0.3) to perform all statis-
tical analyses. The Student’s t-test was used to compare 
gene expression levels between BC samples and non-
cancer samples. Heatmaps of the LASSO analysis genes 
were plotted using the ‘heatmap’ R package. R packages 
‘survival’ and ‘survminer’ were used for survival analysis 
[43, 44]. The OS for the two risk groups was evaluated 
by Kaplan-Meier (K-M) survival curves and log-rank 
test. Bioconductor R package ‘GSVA’ was used to com-
pare ssGSEA enrichment scores for immune cells and 
immune-related pathways between the two groups (i.e. 
high- or low-risk groups) [45]. Unless otherwise stated, 
p < 0.05 was considered statistically significant. P values 
were showed as: ns not significant; *P < 0.05;**P < 0.01; 
***P < 0.001.

Table 1  Sequences of gene-specific primers used for real-time 
RT-qPCR

Gene Forward primer(5′-3′) Reverse primer(5′-3′)

IL18 GGC​TGC​TGA​ACC​AGT​AGA​
AGACA​

GCT​TGC​CAA​AGT​AAT​CTG​ATT​
CCA​

GPX4 GAG​GCA​AGA​CCG​AAG​TAA​
ACTAC​

CCG​AAC​TGG​TTA​CAC​GGG​AA

GSDMC CAT​GCA​TGG​TTT​AAC​CCA​
AAGG​

AAC​AGG​CCA​GCA​AAT​CGT​GTT​

GSDMD GTG​TGT​CAA​CCT​GTC​TAT​
CAAGG​

CAT​GGC​ATC​GTA​GAA​GTG​GAAG​

GAPDH GAG​AAG​GCT​GGG​ GCT​CAT​TT TGA​TGA​CCC​TTT​ TGG​CTC​CC

https://discover.nci.nih.gov/cellminer
https://discover.nci.nih.gov/cellminer
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Results
Identification of prognostic PRGs in the breast TCGA cohort
Threshold was set at FDR < 0.05 to compare PRGs 
expression level between breast cancer and normal 
tissue. A total of 22 differently expressed genes was 
obtained. In the univariate Cox regression model, we 
found 5 genes were associated with a significant OS. 
Subsequently, a total of 4 intersection genes (GPX4, 
GSDMD, GSDMC, IL18) was selected as hub genes for 
further analyses (Fig.  2a). The PPI network of HER2+ 
and basal-like molecular subtypes that indicates tight 
interplay of pyroptosis-related genes are shown in 
Fig.  2b and c. Additionally, the prognosis of 4 genes 
was shown in Fig. 2d and the expression profiles of the 
4 genes were showed in a heatmap (Fig.  2e). In order 
to compare four genes expression level in clinical cases, 

and to explore the clinical significance of the signa-
ture. The mRNA expression level was showed in Fig. 2f, 
and GPX4 showed a low expression trend, while IL18 
showed a high expression.

Construction of a prognostic PRGs signature
According to the result of the LASSO, we ended up with 
4 key PRGs which related to prognosis for building the 
prognostic signature of breast cancer. Figure  3a shows 
the risk score distribution of patients. Figure  3c shows 
the survival status of high and low risk group of patients 
in TCGA database. With the increasing of risk score, the 
patient’s survival time reduced, on the contrary, the death 
risk increased. High-risk group of patients than low-risk 
groups have a greater probability of death incidents. As 
we can see from t-SNE mappings and PCA (Fig. 3e and 
g), patients have formed two different clusters. The result 

Fig. 2  Identification of candidate PRGs in breast cancer. a Venn diagram to identify pyroptosis-related DEGs between tumor and adjacent normal 
tissue that were correlated with OS. b Network analysis of internal correlations among DE-PRGs in basal-like molecular subtypes, (c) and in HER2+. 
The red nodes represent the upregulated DE-PRGs, and the green nodes represent the downregulated DE-PRGs. d Forest plots showing the results 
of univariate Cox regression analysis between the expression of 4 candidate PRGs and OS. e Heat map showing the expression of 4 candidate PRGs 
in normal and tumor in breast cancer. f The mRNA expression level of 4 PRGs in TCGA​

(See figure on next page.)
Fig. 3  The prognostic performance of the 4 pyroptosis-related gene signature in the training cohort and validation cohort. a The distribution of 
the risk scores in training cohort, (b) and in validation cohort. c The scatter plots showing whether the samples were alive or not in training cohort, 
(d) and in validation cohort. e Two-dimensional projection by a t-SNE analysis in training cohort, (f) and in validation cohort. g Score plot for the 
principal component analysis (PCA) in training cohort, (h) and in validation cohort. i Kaplan-Meier curves for the overall survival of patients in the 
high- and low-risk groups in training cohort, (j) and in validation cohort
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Fig. 3  (See legend on previous page.)
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of Kaplan-Meier plot shows that the survival rate of 
high-risk group was obviously lower than low-risk group 
(Fig. 3i).

Validation of the prognostic model in the validation cohort
To further evaluate the accuracy of the PRGs signature in 
predicting BC prognosis, it was validated by us using the 
same methods in the testing cohort. The validation set 
is segregated into high (N = 235) and low (N = 235) risk 
groups, Each patient’s survival outcome, risk status were 
demonstrated in Fig. 3b, d, f, h. K-M analysis shows that 
patients in the high-risk group also had a worse prognosis 
than those in the low-risk group (P < 0.05, Fig. 3j). Simi-
larly, the survival rate of high-risk group was significantly 

lower than that of low-risk group in basal-like molecular 
subtypes and luminal subtype (P < 0.05, Fig. 4a and b).

Independent prognostic value of the 4‑gene signature
We observed clinical factors and gene signature prog-
nostic significance through univariate and multivariate 
regression. Samples have been Chosen with complete 
clinical information. In 867 cases of patients, according 
to the age, clinical stage, histological grade and clinical 
pathologic factors, risk parameters were explored for 
patients. We have defined these variables indicated sig-
nificant differences in univariate analysis and stage, age 
N-classification, M-classification showed significant dif-
ferences in multivariable analysis. Risk parameters were 

Fig. 4  The survival analysis of the pyroptosis-related gene signature in basal-like molecular subtypes and in Luminal. a Kaplan-Meier curves of 
Luminal. b Kaplan-Meier curves of basal-like molecular subtypes

Fig. 5  The independency of the pyroptosis-related gene signature for predicting the clinical outcomes for breast cancer in TCGA cohort. a 
Univariate cox regression analysis for assessment of the prognostic values of different clinicopathological characteristics (age, stage, T, N, M) and the 
risk score. b Evaluation of the independency of the risk score and other factors for predicting the prognosis of breast cancer using multivariate cox 
regression analysis
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important prognostic values of p < 0.05 (Fig.  5a, b and 
Table 2).

Functional enrichment analyses
GO and KEGG functional enrichment analyses were 
performed on risk-related DEGs to investigate the 
potential functions. The result of GO analyse indicated 
that the DEGs equally concentrated in membrane raft, 

membrane microdomain, membrane region and exter-
nal side of plasma membrane (Fig.  6a, b). And KEGG 
functional enrichment analysis suggested that the DEGs 
were mainly related to Cytokine-cytokine receptor inter-
action, Hematopoietic cell lineage, etc. both in TCGA 
and GEO database (Fig.  6c, d). To further explore the 
relationship between BC prognosis and immune sta-
tus, we quantified immune cell infiltration score and 

Table 2  Univariable and multivariable analyses for each clinical feature

Abbreviations: T,Tumor;N,Lymph Node;M,Metastasis; HR, hazard ratio; CI, confidential interval

Clinical feature Number Univariate Analysis Multivariate Analysis

HR 95% CI P value HR 95% CI P value

Risk Parameter(high-risk/
low-risk)

427/419 2.926 1.748–4.898 <0.001 2.917 1.724–4.935 <0.001

Age(<65/≥65) 626/241 2.270 1.568–3.287 <0.001 2.619 1.800–3.811 <0.001

Stage(I-II/III-IV) 659/208 2.478 1.719–3.572 <0.001 2.023 1.155–3.542 0.014

T(I-II/III-IV) 741/126 1.667 1.099–2.530 0.016 0.788 0.466–1.333 0.374

N(0/1–3) 421/446 2.235 1.521–3.285 <0.001 1.570 0.983–2.505 0.059

M(0/1–3) 851/16 6.121 3.361–11.151 <0.001 3.473 1.799–6.706 <0.001

Fig. 6  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 4 biomarkers in The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts. a GO enrichment analysis of the 4 PRGs in TCGA cohort. b KEGG enrichment analysis of 
the 4 PRGs in TCGA cohort. c GO enrichment analysis of the 4 PRGs in the GEO cohort. d KEGG enrichment analysis of the 4 PRGs in the GEO cohort
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immune-related function using ssGSEA. The correla-
tions between ssGSEA scores and different risk groups 
showed that the scores of iDCs, aDCs, CD8 + Tcells, T 
helper cells, NK cells, Macrophages, Th2-cells, Treg were 
higher in the low-risk group (Fig. 7a, b). Meanwhile, APC 
costimulation, cytolytic_activity, inflammation−promot-
ing, parainflammation, etc. were significantly different 
between the low- and high-risk groups in both TCGA 
and GEO database (Fig. 7c, d).

Associations with immunity, tumor stemness, and drug 
sensitivity
The constructed risk signature was significantly nega-
tively correlated with the immune and stromal scores 
(Fig.  8a, b). Furthermore, there are no significant cor-
relation between PyroptosisScore and DNAss (Fig.  8c), 
but positively correlated with RNAss (Fig.  8d). When 

studying the relationship with immune checkpoints, con-
sidering the role of PD-L1 (also known as CD274) and 
PD-L2 (also known as PDCD1LG2) in immune micro-
environment and immune escape, we analyzed the dif-
ference in the expression of these two proteins between 
high and low risk groups. The results showed that the 
protein expression levels of PD-L1 and PD-L2 in the high 
risk group were significantly lower than those in the low 
risk group (Fig.  8e, f ), and the protein expression level 
was negatively correlated with the risk score (Fig.  8g, 
h). As shown in Table 3, the PRGs are resistant to most 
drugs (p < 0.05). For example, Paclitaxel, Vinorelbine, 
Gemcitabine and Epirubicin are commonly used drugs 
to treat breast cancer, the expression levels of IL18 were 
negatively associated with tumor cell sensitivity to Pacli-
taxel, Vinorelbine and Epirubicin. In contrast, sensitivity 
to the chemotherapy drug Gemcitabine was positively 

Fig. 7  Comparison of the ssGSEA scores for immune cells and immune pathways. a, c Comparison of the enrichment scores of 16 types of immune 
cells and 13 immune-related biological processes between low- (blue box) and high-risk (red box) group in the TCGA cohort. b, d Comparison of 
the tumour immunity between low- (blue box) and high-risk (red box) group in the GEO cohort
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associated with the expression levels of GSDMD in 
tumor cells (Fig. 9).

Expression levels of key genes in the clinical samples 
and RT‑qPCR
To confirm the bioinformatics prediction, we detected 
the expression of the four PRGs by RT-qPCR. It showed 
a low mRNA expression trend of GPX4, GSDMD and 
GSDMC in all three types of breast cancer cells, while 
the mRNA expression of IL18 varied (Fig.  10a). The 
immunohistochemistry results were studied by using the 
HPA database in normal breast tissue and tumor tissue 
to explore the clinical significance of the signature. The 
results showed the expression and distribution of GPX4, 
GSDMD, GSDMC, IL18 in breast cancer and normal tis-
sues (Fig. 10b).

Discussion
Breast cancer is one of the most common tumors 
in women. At present, the treatment of breast can-
cer includes surgery, chemotherapy and radiotherapy. 
Although the cure rate has been greatly increased, so 
far, there is still no effective method to accurately pre-
dict the prognosis of patients with BC. Previous studies 
have found many tumor molecular markers of BC. The 
detection and targeted treatment of estrogen receptor, 
progesterone receptor and human epidermal growth fac-
tor receptor 2 have been widely used in clinical practice 
[46]. But the lack of accurate prognostic biomarkers are 
still the main problem with improve clinical outcomes 

in patients with breast cancer. In recent years, with the 
correct understanding of pyroptosis, the latest research 
has found that pyroptosis plays an important role in the 
occurrence and development of tumors [47, 48]. There-
fore, the study of biomarkers related to pyroptosis is 
expected to treat breast cancer more accurately.

In this study, 4 pyroptosis-related genes were found 
differently expressed in breast cancer and related to 
prognosis according to TCGA. So, we firstly establish a 
pyroptosis-related genes signature in the context of BC 
before evaluating its prognostic value and clinical signifi-
cance. Then, patients with BC were classified according 
to the expression of pyroptosis-related genes. In order to 
obtain more samples and verify the feasibility of signa-
ture, two sets of GEO data were downloaded, normalized 
and integrated. Our gene signature was found to be able 
to predict prognosis in BC patients with high accuracy in 
training and testing cohorts. In addition, the risk score 
was identified as an excellent independent prognostic 
factor characterized by good sensitivity and specificity.

Then we further explore the relationship between 
pyroptosis and BC, The high-risk group was also rich in 
biological processes related to malignant progression, 
and there were significant differences between the two 
risk model subgroups of BC patients in both the train-
ing and testing cohorts. In the high-risk group, almost all 
immune cell infiltration and immune function were sup-
pressed. Given the critical roles of these immune cells in 
stimulating anti-tumor immunity [49], it is reasonable 
to conclude that anti-tumor immunity was significantly 

Fig. 8  Potential role of risk signature in BC immune status, tumor stemness. a immune scores (b) stromal scores (c) DNAss (d) RNAss (e) Expression 
levels of genes PD-L1 among two risk subgroups in BC patients. f and PD-L2 (g) Correlation analysis between risk score, PD-L1 (h) and PD-L2
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reduced in the high-risk group of BC patients. In addi-
tion, the ESTIMATE algorithm showed that the stromal 
and immune cell scores were both inversely associated 
with risk scores, confirming poor immune cell infiltra-
tion in the high-risk subgroup. Triple negative breast 
cancer (TNBC) has a poor prognosis and high mortal-
ity compared to other breast cancers [50], so intensive 
efforts have been made to develop treatments targeting 
TNBC. Cancer immunotherapy targeting PD-L1 has 
improved outcomes for TNBC [49], and shown efficacy 
in other several cancers [51]. PD-L1 and PD-L2 are key 
regulators of immune responses [52, 53]. This study also 

Table 3  Sensitivity correlation analysis between the 
independent prognostic genes and drugs based on the 
CellMiner Database

Gene Drug cor p value

GSDMC Ixazomib citrate −0.57595479 1.47E-06

IL18 Pipamperone −0.509024906 3.28E-05

IL18 Bortezomib −0.508793631 3.31E-05

GSDMC Midostaurin −0.491860473 6.57E-05

GSDMC Bortezomib −0.463557491 0.000191399

IL18 Actinomycin D −0.448998313 0.00032019

IL18 Estramustine −0.440708258 0.000424876

IL18 Vemurafenib −0.439369013 0.000444445

GSDMC pralatrexate −0.436058325 0.000496385

GSDMD Fludarabine 0.431453794 0.000577795

IL18 Vinblastine −0.402432989 0.001434584

IL18 Raloxifene −0.396260817 0.001723

IL18 Arsenic trioxide −0.394839745 0.001796347

IL18 Lomustine −0.389369145 0.002105486

IL18 Carfilzomib −0.387952286 0.00219293

IL18 Carmustine −0.382263852 0.002577528

IL18 Depsipeptide −0.380139576 0.002735875

GSDMC Vismodegib −0.379539246 0.002782165

GSDMD Cladribine 0.379224295 0.002806728

GSDMC Gefitinib 0.378968948 0.002826784

IL18 Ixazomib citrate −0.377554717 0.002940186

IL18 Sulfatinib −0.373232429 0.003312239

GSDMC Vincristine −0.368981618 0.003718274

IL18 Paclitaxel −0.368430241 0.003774044

IL18 VINORELBINE −0.360484258 0.00466406

GPX4 Selumetinib −0.359505 0.004785642

IL18 Mithramycin −0.359091919 0.004837761

IL18 Dabrafenib −0.354169816 0.005498363

IL18 Homoharringtonine −0.349851754 0.006141874

IL18 Vincristine −0.341962731 0.007489547

GPX4 ARRY-162 −0.329858532 0.010058815

IL18 Vinorelbine −0.328589792 0.010367904

IL18 Doxorubicin −0.323741261 0.011626145

IL18 ETHINYL ESTRADIOL −0.321734287 0.012184365

IL18 ARSENIC TRIOXIDE −0.321556026 0.012235046

GPX4 Cobimetinib (isomer 1) −0.319111208 0.012948702

GSDMD Vinorelbine −0.317517609 0.013432945

IL18 Irofulven 0.314947083 0.014246885

IL18 Epirubicin −0.314263548 0.014470323

GPX4 Digoxin 0.312582561 0.015032651

GSDMD Depsipeptide −0.308463009 0.016490554

IL18 Teniposide −0.308415202 0.016508159

IL18 Tamoxifen −0.305102479 0.017767832

GPX4 Floxuridine 0.304346956 0.018066337

GSDMD Ixazomib citrate 0.302574225 0.018783572

GSDMC Dacomitinib 0.297738692 0.020864437

IL18 Tegafur −0.296503111 0.021426482

IL18 Crizotinib −0.296205911 0.021563573

Table 3  (continued)

Gene Drug cor p value

GSDMD Eribulin mesilate −0.290597914 0.024293174

IL18 Afatinib 0.288715478 0.02527245

GSDMD Nelarabine 0.283957854 0.027896746

IL18 Ixabepilone −0.282683139 0.028637519

IL18 Encorafenib −0.282663266 0.028649197

GSDMD 6-THIOGUANINE 0.281349635 0.029430039

IL18 Dacomitinib 0.281147048 0.029552033

IL18 Abiraterone −0.278419627 0.031236075

GSDMD Clofarabine 0.278163601 0.031398193

GSDMD Floxuridine 0.278052059 0.031469043

GSDMD Vismodegib 0.277730639 0.03167395

GSDMD Gemcitabine 0.276118299 0.032718712

GPX4 LEE-011 −0.275011314 0.033452526

GPX4 Trametinib −0.273321502 0.034599099

IL18 Erlotinib 0.273073537 0.034770066

IL18 Etoposide −0.271955429 0.035549733

IL18 Nilotinib −0.270877836 0.036314838

GPX4 Denileukin Diftitox Ontak −0.27071664 0.036430455

GSDMD Actinomycin D −0.270591993 0.036520068

GPX4 Temsirolimus 0.270096569 0.036878052

GSDMC Idarubicin −0.26925671 0.037491565

GSDMD Mithramycin −0.268870062 0.03777684

GPX4 LDK-378 −0.268764945 0.037854707

IL18 Eribulin mesilate −0.267440211 0.038847471

GSDMC Carmustine −0.266647795 0.039451539

GSDMC DAUNORUBICIN −0.265426515 0.040397727

GSDMC Erlotinib 0.263596821 0.041850285

GPX4 Ibrutinib 0.26305371 0.042289643

GSDMD Cytarabine 0.263023079 0.042314535

GSDMD Vinblastine −0.261927998 0.04321241

GSDMC Bisacodyl, active ingredient of 
Viraplex

0.258236502 0.046355329

GSDMC Pazopanib −0.257997618 0.046565006

GSDMD Neratinib −0.25748124 0.047020905

GPX4 Vinorelbine −0.257398217 0.047094544

GSDMD Paclitaxel −0.25630594 0.048072193
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verified that PD-L1 and PD-L2 were significantly differ-
ent in the two risk subgroups, and both were negatively 
correlated with risk score. The levels of nearly all immune 
checkpoints were significantly lower in the high-risk sub-
group than in the low-risk subgroup, indicating that the 
immune response was dramatically altered in this group. 
Comprehensive analysis of immune cells, immune func-
tion, immune-related markers and PRGs confirmed the 
important role of pyroptosis in immune regulation in 
TME landscape. CSCs are considered as the major cause 
to tumor initiation, recurrence, metastasis, and drug 
resistance, driving poor clinical outcomes in patients 
[54]. In this study, the risk signature was positively corre-
lated with the stem cell score, confirming that our newly 
constructed gene signature was a risk factor for BC. 
Some researchers have been studying the role of pyrop-
tosis-related genes in the development of cancer. And 
the downregulation of GSDMD was found to attenuate 
tumor proliferation via the intrinsic mitochondrial apop-
totic pathway and inhibition of EGFR/Akt signaling and 
predicted a good prognosis in non-small cell lung cancer 
[24]. However, it has also been proved that down-regu-
lation of GSDMD promotes gastric cancer proliferation 

by regulating cell cycle-related proteins and over-expres-
sion of GSDMC is a prognostic factor for predicting a 
poor outcome in lung adenocarcinoma [20, 55]. So, more 
experiments should be done to confirm our findings.

Despite the prognostic value of the risk signature, there 
are several limitations in this study. First of all, this was 
a retrospective analysis, thus, prospective studies are 
needed to confirm the results. Secondly, there is a lack 
of experimental analysis to validate the results of bioin-
formatics analyses. In the future, more functional studies 
are needed to understand pyroptosis-related genes and 
their role in BC development.

Conclusion
In conclusion, 4 pyroptosis-related genes were found 
associated with BC prognosis in this study. The signa-
ture was proved to be independently associated with 
OS in TCGC cohort and GEO validation cohort. More 
significantly, it was found extremely valuable in func-
tional analysis, tumor microenvironment, and drug 
sensitivity, providing insight for predicting the prog-
nosis of BC. But the specific potential mechanism 
between pyroptosis-related genes and tumor immunity 

Fig. 9  Scatter plots of top 16 classes of associations between hub pyroptosis genes and drug sensitivity
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is still unclear and deserves further study. Our work 
will help shed light on the role of pyroptosis in tumgen-
esis, particularly in the areas of immune response, 
tumor microenvironment and drug resistance, which 
are crucial for the development of personalized cancer 
therapies.
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