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Abstract 

Background:  Lung cancer is the most common malignant tumor, and it has a high mortality rate. However, the 
study of miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer (NSCLC) is insuf-
ficient. Therefore, this study explored the differential expression of mRNA and miRNA in the plasma of NSCLC patients.

Methods:  The Gene Expression Omnibus (GEO) database was used to download microarray datasets, and the differ-
entially expressed miRNAs (DEMs) were analyzed. We predicted transcription factors and target genes of the DEMs by 
using FunRich software and the TargetScanHuman database, respectively. The Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) was used for GO annotation and KEGG enrichment analysis of downstream target 
genes. We constructed protein-protein interaction (PPI) and DEM-hub gene networks using the STRING database 
and Cytoscape software. The GSE20189 dataset was used to screen out the key hub gene. Using The Cancer Genome 
Atlas (TCGA) and UALCAN databases to analyze the expression and prognosis of the key hub gene and DEMs. Then, 
GSE17681 and GSE137140 datasets were used to validate DEMs expression. Finally, the receiver operating characteris-
tic (ROC) curve was used to verify the ability of the DEMs to distinguish lung cancer patients from healthy patients.

Results:  Four upregulated candidate DEMs (hsa-miR199a-5p, hsa-miR-186-5p, hsa-miR-328-3p, and hsa-let-7d-3p) 
were screened from 3 databases, and 6 upstream transcription factors and 2253 downstream target genes were pre-
dicted. These genes were mainly enriched in cancer pathways and PI3k-Akt pathways. Among the top 30 hub genes, 
the expression of KLHL3 was consistent with the GSE20189 dataset. Except for let-7d-3p, the expression of other DEMs 
and KLHL3 in tissues were consistent with those in plasma. LUSC patients with high let-7d-3p expression had poor 
overall survival rates (OS). External validation demonstrated that the expression of hsa-miR-199a-5p and hsa-miR-
186-5p in peripheral blood of NSCLC patients was higher than the healthy controls. The ROC curve confirmed that the 
DEMs could better distinguish lung cancer patients from healthy people.
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Background
Lung cancer is the most common malignant tumor, and 
it is the main cause of cancer-related death worldwide. In 
2018, about 2.09 million people developed lung cancer, 
and nearly 1.8 million people died of lung cancer [1]. In 
China, lung cancer is the leading tumor in terms of male 
morbidity, male mortality, and female mortality, and it 
is the second leading tumor in terms of female morbid-
ity [2]. Non-small cell lung cancer (NSCLC) is the most 
common type of lung cancer, accounting for about 85% of 
lung cancer cases [3]. The main subtypes of NSCLC are 
lung adenocarcinoma (LUAD), lung squamous cell carci-
noma (LUSC), and large cell carcinoma [3]. The patho-
genesis of NSCLC is complex and involves genetic and 
immunologic changes. For instance, when tumor onco-
genes are upregulated or when tumor suppressor genes 
are downregulated, the downstream signaling pathways 
of the genes are activated or inhibited, respectively. On 
the one hand, the migration, invasion, and proliferation 
abilities of the tumor cells are promoted; on the other 
hand, the tumor cells develop resistance to anti-tumor 
drugs [4]. Patients with early-stage NSCLC usually have 
no obvious symptoms; therefore, most patients have 
stage III or IV NSCLC at the time of diagnosis, which 
seriously affects their quality of life and subsequent 
treatment [4, 5]. With continuous medical technology 
advancements, new treatment methods, such as tumor 
immunotherapy and targeted therapy, have been widely 
developed in clinical settings. Moreover, precise and 
individualized treatment plans for tumors are gradually 
maturing. However, due to the lack of early diagnostic 
markers, NSCLC patients often miss the best opportu-
nity for early treatment, and their 5-year survival rate is 
only 23% [6]. Therefore, identifying markers for the diag-
nosis and treatment of lung cancer has important clini-
cal significance when it comes to improving the rate of 
early NSCLC diagnosis and selecting appropriate medi-
cal treatments.

MicroRNAs (miRNAs) are very short noncoding RNAs 
comprising about 20–24 nucleotides. MiRNAs were dis-
covered in the research of Caenorhabditis elegans in 1993 
[7]. There are obviously conserved miRNA sequences, 
which play vital roles in the regulatory pathways between 
mononuclear and multinuclear eukaryotes [7, 8]. MiRNA 
specifically binds to the 3′ untranslated region of target 
gene messenger RNA (mRNA) through base comple-
mentary pairing; it thus regulates the expression of target 

genes and participates in the regulation of cell migration, 
invasion, proliferation, apoptosis, and other biological 
processes [9]. A variety of miRNAs play important roles 
in the occurrence and development of lung cancer. By 
combining with corresponding target genes and regu-
lating their expression levels, miRNAs can function as 
tumor suppressor genes or oncogenes to regulate the 
biological processes of lung cancer [10–15]. Previous 
studies have found that miRNAs can be stably expressed 
in blood, and different diseases have a distinct serum-
miRNA profile [16]. Mitchell et  al. found that many 
tumor-derived miRNAs existed in the peripheral blood 
of mice with prostate cancer xenograft models [17]. The 
expression of miRNAs in the blood may be related to 
miRNAs released by tumor cells into the surrounding 
environment [18]. Therefore, miRNAs in the circulation 
may provide new insight for the diagnosis and treatment 
of lung cancer. Leng et al. found that plasma miRNA bio-
markers may be helpful for the early diagnosis of lung 
cancer and the classification of lung cancer subtypes [19]. 
They also found that some miRNAs (miR-126, miR-145, 
miR-210, and miR-205-5p) in plasma have high sensitiv-
ity and specificity when it comes to the early diagnosis 
of lung cancer and are independent of the stage and his-
tological type of lung tumor as well as the age, sex, and 
race of the patient. Plasma miRNA signals may provide 
a blood-based detection method for the early diagnosis 
of lung cancer, thereby reducing related patient mortality 
and economic costs [19, 20]. Szczyrek et al. found that the 
expression levels of miR-27a-3p, miR-31, miR-182, and 
miR-195 in the plasma of lung cancer patients are differ-
ent from those in the plasma of healthy people; and the 
detection of these miRNAs in the plasma can be useful 
in the noninvasive diagnosis of lung cancer [21]. There-
fore, actively searching for miRNAs and mRNAs closely 
related to the occurrence of NSCLC can provide new tar-
gets for the diagnosis and treatment of the disease, which 
in turn may improve the prognosis of the disease.

Although many studies have reported on the expres-
sion levels and functions of miRNAs in lung cancer, there 
are still few studies regarding the miRNA-mRNA regu-
latory networks in the plasma of lung cancer patients. 
Therefore, the purpose of this study was to establish 
a potential miRNA-mRNA regulatory network in the 
plasma of NSCLC patients through corresponding analy-
sis in order to provide new targets for the diagnosis and 
treatment of lung cancer.

Conclusion:  The results showed that miR-199a-5p and miR-186-5p may be noninvasive diagnostic biomarkers for 
NSCLC patients. MiR-199a-5p-KLHL3 may be involved in the occurrence and development of NSCLC.

Keywords:  Non-small cell lung cancer, microRNA, Bioinformatics, miRNA-mRNA regulatory network
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Methods
Microarray data information
In the Gene Expression Omnibus (GEO) database 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/), the screening 
of miRNA datasets related to lung cancer plasma was 
accomplished by using the terms “lung cancer” (research 
keyword), “non-coding RNA profile” (research type), 
and “Homo sapiens” (organism). Three miRNA datasets 
(GSE24709 [22], GSE31568 [23], and GSE61741 [24]) 
were selected for subsequent analysis. These datasets 
were all based on the GPL9040 platform (febit Homo 
Sapiens miRBase 13.0). The GSE24709 dataset included 
47 samples (28 lung cancer samples and 19 healthy con-
trols), the GSE31568 dataset included 102 samples (32 
lung cancer samples and 70 healthy controls), and the 
GSE61741 dataset included 167 samples (73 lung can-
cer samples and 94 healthy controls). The details of the 3 
datasets are shown in Table 1.

Screening of DEMs
The miRNA gene names within the datasets were 
obtained by using the R software (3.6.1) and relevant 
annotation packages. The limma package (3.40.6) was 
used to compare and screen differentially expressed miR-
NAs (DEMs) between lung cancer patients and healthy 
groups and to make corresponding thermograms and 
volcano maps. Adjusted P-values were obtained by using 
the Benjamini-Hochberg false discovery rate method. 
The adjusted P-values were used to correct the occur-
rence of false positives. Adjusted P-values < 0.05 and 
|log fold change| values > 1 were set as the threshold 
for identifying DEMs within the 3 datasets (GSE24709, 
GSE61741, and GSE31568; Tables S1, S2 and S3). A Venn 
diagram was used to analyze DEM overlap within the 3 
datasets, and the overlapping miRNAs were selected 
as candidate DEMs. The research and design process is 
shown in Fig. 1.

Forecasting upstream transcription factors of DEMs
FunRich (http://​www.​funri​ch.​org/) is an independ-
ent software tool that is mainly used to analyze the 

functional enrichment of genes and proteins and to per-
form interaction network analyses. It was used to predict 
the potential upstream transcription factors of the candi-
date DEMs. P-values < 0.05 were considered statistically 
significant.

Forecasting downstream target genes of DEMs
The online database TargetScanHuman Release 7.2 
(http://​www.​targe​tscan.​org/​vert_​72/) was used to predict 
the biological targets of the miRNAs (Table S4), includ-
ing targets with conserved sites, as well as targets irre-
spective of conserved sites.

GO and KEGG analyses of target genes
To study the biological functions of the target genes of 
the DEMs, the online tool Database for Annotation, Vis-
ualization, and Integrated Discovery (DAVID; https://​
david.​ncifc​rf.​gov/) was used for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses.

Building the PPI network and screening hub genes
The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) online database (https://​string-​db.​
org/) was used to construct the protein-protein interac-
tion (PPI) network of the target genes of the DEMs. The 
network was then visualized by using Cytoscape soft-
ware (version 3.6.1). By using the cytoHubba plug-in, the 
nodes in the preloaded PPI network were sorted accord-
ing to several topology algorithms and their features. The 
Maximal Clique Centrality (MCC) method was used to 
select the hub genes, which were considered to be the top 
30 nodes of the PPI network, as this method has good 
performance when it comes to accurately predicting 
essential proteins [25].

Analysis of hub gene expression in the GSE20189 dataset
Since there is no other data on mRNA expression in the 
plasma of lung cancer patients, the GSE20189 dataset 
[26] was downloaded from the GEO database in order to 
analyze hub gene expression levels. This dataset, based 

Table 1  Details of lung cancer data in GEO datasets

Accession Platform Sample Normal Lung cancer Gene/microRNA

GSE24079 GPL9040 Blood 19 28 microRNA

GSE31568 GPL9040 Blood 70 32 microRNA

GSE61741 GPL9040 Blood 94 73 microRNA

GSE20189 GPL571–17391 Blood 81 81 gene

GSE17681 GPL9040 Blood 19 17 microRNA

GSE137140 GPL21263 Blood 2178 1746 microRNA

https://www.ncbi.nlm.nih.gov/geo/
http://www.funrich.org/
http://www.targetscan.org/vert_72/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org/
https://string-db.org/
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on the GPL571 platform (Affymetrix Human Genome 
U133A 2.0 Array), contained 81 lung cancer patient 
plasma samples and 81 normal patient plasma sam-
ples. Student’s t-test was used to identify differentially 
expressed genes in the lung cancer and normal plasma 
samples. The key hub gene had to meet the follow-
ing conditions: first, the upregulated target genes of the 
DEMs were downregulated or the downregulated target 
genes were upregulated; second, the P-value was < 0.05.

Verifying the expression levels of the key hub gene 
and DEMs in tissues and performing the survival analysis
The University of Alabama Cancer (UALCAN) data-
base (http://​ualcan.​path.​uab.​edu) is a website for the 
online analysis and mining of datasets from The Can-
cer Genome Atlas (TCGA). It was used to analyze the 
expression levels of the key hub gene and DEMs in LUAD 
and LUSC tissues as well as the different stages of LUAD 
and LUSC, and to analyze the overall survival (OS) asso-
ciated with the expression levels of these hub genes and 
DEMs in patients with lung cancer. A P-value < 0.05 was 
considered statistically significant.

Fig. 1  Flow chart of the construction of the miRNA-mRNA network of lung cancer patients

http://ualcan.path.uab.edu
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The raw counts of the RNA sequencing data of the key 
hub gene and DEMs (Supplementary Tables  S5, S6, S7, 
S8, S9, S10, S11, S12, S13, S14) and the clinical informa-
tion of NSCLC patients (Supplementary Table S15) were 
obtained from the TCGA dataset (https://​portal.​gdc.​
cancer.​gov/). The Kaplan-Meier survival analysis with 
the log-rank test was used to compare the 2 groups’ pro-
gression-free survival (PFS). All of the analytical meth-
ods described above were performed using R software. A 
P-values < 0.05 were considered statistically significant.

Subsequently, univariate and multivariate Cox analy-
ses were performed to evaluate the proportional hazards 
model using the survival package of the R software. Vari-
ables included age, sex, and tumor stage. Nomogram and 
receiver operating characteristic (ROC) curves were used 
to evaluate the impact of DMEs on patient’s prognosis.

Verifying the translation levels of the key hub gene
The Human Protein Atlas (HPA) database (https://​www.​
prote​inatl​as.​org/) provides information regarding the 
distribution of human proteins in tissues and cells. The 
expression of target protein in tissues is characterized by 
the annotations Intensity and Quantity. According to the 
previous study, we transformed the four values (Strong, 
Moderate, Weak, and Negative) that used to describe 
Intensity into 3,2,1, and 0, respectively; and also trans-
formed the five values (>75, 75–25%, <25%, Rare, and 
Negative) that used to describe Quantity into 75,50,25,5, 
and 0, respectively [27]. I and Q expressed the trans-
formed Intensity and Quantity. The expression of the hub 
gene in NSCLC tissues and normal tissues was calculated 
using I ×  Q (Tables  S16, S17, S18) [27]. Student’s t-test 
and Wilcoxon test were used to compare the expression 
of key genes in LUAD and normal tissues, and LUSC and 
normal tissues, respectively. A P-values < 0.05 were con-
sidered statistically significant.

External validation and efficacy evaluation
The GSE17681 [28] and GSE137140 [29] datasets were 
used for external validation data to verify DEMs expres-
sion in the peripheral blood of lung cancer patients and 
healthy controls. The GSE17681 dataset, based on the 
GPL9040 platform, included 17 lung cancer samples and 
19 control samples, and the GSE137140 dataset, based 
on the GPL21263 platform, included 1746 lung cancer 
samples and 2178 control samples. GraphPad Prism 8.0 
software was used to calculate ROC curves to assess the 
ability of the DEMs to distinguish between lung cancer 
patients and healthy people. The student’s t-test was used 
to compare the expression of 4 DEMs in blood of lung 
cancer patients and healthy groups. A P-values  <  0.05 
were considered statistically significant.

Results
Identification of DEMs in the plasma of lung cancer 
patients
After screening with adjusted P-values < 0.05 and |log 
fold change| values > 1, a total of 72 DEMs were found 
in the GSE24709 dataset, of which 52 were upregulated 
and 20 were downregulated; 14 DEMs were found in the 
GSE31568 dataset, of which 11 were upregulated and 3 
were downregulated; and 64 DEMs were found in the 
GSE61741 dataset, of which 37 were upregulated and 27 
were downregulated. The heat and volcano maps of these 
data are shown in Fig.  2A-F. Through observation of 
Venn diagram intersections, 4 upregulated DEMs (hsa-
miR-199a-5p, hsa-miR-328-3p, hsa-miR-186-5p, and hsa-
let-7d-3p) were found to overlap between the 3 datasets 
(Fig. 2G, H).

Prediction of upstream transcription factors 
and downstream target genes of the DEMs
The FunRich software was used to predict the upstream 
transcription factors of the 4 candidate upregulated 
DEMs. Specificity protein 1 (SP1), early growth response 
protein 1 (EGR1), POU domain class 2 transcription 
factor 1 (POU2F1), RXR-alpha (RXRA), ROR-alpha 
(RORA), and E74-like factor1 (ELF1) were considered 
to potentially be involved in regulating the expression of 
the candidate DEMs (Fig. 3A, B). Further, a total of 2253 
potential downstream target genes of the DEMs were 
predicted by using the TargetScanHuman 7.2 database 
(Fig. 3C-F). The number of target genes corresponding to 
each DEM is listed in Table 2.

GO and KEGG enrichment analyses of the downstream 
target genes of the DEMs
The DAVID database was used to perform GO and 
KEGG enrichment analyses of the 2253 target genes 
of the DEMs. As shown in Fig.  4A-F, biological process 
analysis results showed that the target genes were mainly 
concentrated in transcription, positive regulation of 
transcription, positive regulation of transcription from 
RNA polymerase II promoter, and negative regulation of 
transcription from RNA polymerase II promoter. Addi-
tionally, cell component analysis results showed that the 
target genes were mainly enriched in the nucleus, cyto-
plasm, and nucleoplasm. Furthermore, molecular func-
tion analysis results showed that the target genes were 
enriched in protein binding, metal ion binding, DNA 
binding, poly(A) RNA binding, and transcription fac-
tor activity sequence-specific DNA binding. KEGG 
pathway analysis results showed that the target genes 
were significantly enriched in cancer pathways, PI3K-
Akt signaling pathways, proteoglycans, focal adhesions, 
endocytosis, Ras signaling pathways, actin cytoskeleton 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Fig. 2  Heat and volcano maps of DEMs in lung cancer and normal plasma samples. A, B. GSE24709 dataset. C, D. GSE31568 dataset. E, F. GSE61741 
dataset. Red indicates higher expression, and green indicates lower expression. G. Venn diagram of the expression levels of the DEMs in the 3 
datasets. H. Log fold change heat map of the candidate DEMs
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Fig. 3  The upstream transcription factors and downstream target genes of the DEMs. A-B. FunRich prediction of potential upstream transcription 
factors of the candidate DEMs. C-F. miRNA-target genes network diagram of the 4 DEMs. C. hsa-let-7d-3p. D. hsa-miR-186-5p. E. hsa-miR-199a-5p. F. 
hsa-miR-328-3p
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regulation, HTLV-I infection, and MAPK signaling path-
ways (Fig. 5A, B).

PPI and DEM‑hub gene networks
The STRING database was used to establish a PPI net-
work for the target genes of the DEMs, then the cyto-
Hubba plug-in was used to screen the top 30 hub 
genes (Fig.  6A, Table  3). To better study the molecular 
mechanisms of these DEMs in the plasma of lung can-
cer patients, Cytoscape was used to construct a DEM-
hub gene network (Fig.  6B). The interactions between 
the miRNAs and genes were as follows: miR-199a-5p 
interacted with 8 hub genes (KLHL3, FBXO9, BTRC​, 
ARIH2, ITCH, UBE2Q1, FBXO30, and RLIM); let-7d-3p 
interacted with 4 hub genes (FBXL5, ATG7, HACE1, 
and SH3RF1); miR-328-3p interacted with 2 hub genes 
(TRIM71 and KLHL42); and miR-186-5p interacted with 
20 hub genes (NEDD4, SKP1, CUL3, KLHL11, BTRC​, 
CCNF, ATG7, SMURF2, KBTBD7, SPSB1, ASB7, UBE2K, 
TRAF7, ARIH2, UBE2R2, UBE2Q2, SH3RF1, UBAC1, 
UBE2B, and UBR2).

Verification of hub gene expression
The GSE20189 dataset was used to identify the expres-
sion levels of the first 30 hub genes in the plasma sam-
ples. Some of these genes (FBXO30, RLIM, HACE1, 
SH3RF1, KLHL42, KBTBD7, SPSB1, TRAF7, UBE2R2, 
UBE2Q2, and SH3RF1) were not checked in the data-
set. Compared with the healthy people, in the plasma of 
lung cancer patients, only the expression of KLHL3 was 
continuously downregulated, while NEDD4 and UBAC1 
were increased. (Fig.  7A-S). Therefore, miR-199a-5p-
KLHL3 may be a potential regulatory pathway in lung 
cancer plasma.

Expression levels of the DEMs and KLHL3 in tissues
To further explore the function of DEMs and KLHL3 
in lung cancer, we analyze the expression of the DEMs 
and KLHL3 in lung cancerous tissues by using UAL-
CAN database. As a result, an elevated expression 
of miR-199a-5p, miR-186-5p, and miR-328-3p were 
observed in LUAD and LUSC tissues compared to nor-
mal tissues (Fig. 8A, C, E, G, I, K). Also, the miR-199a-5p, 

miR-328-3p, and miR-186-5p expression were increased 
in diverse stages in LUAD patients (Fig.  8B, F, J). Nev-
ertheless, in LUSC patients with stage 4, the expres-
sion of miR-199a-5p, miR-328-3p, miR-186-5p were 
not significantly increased (Fig.  8D, H, L). The expres-
sion of let-7d-3p in LUAD samples and diverse stages 
of LUAD patients were lower than the normal controls 
(Fig. 8M, N). In LUSC samples, the let-7d-3p expression 
was increased compared to the normal samples, but the 
expression of let-7d-3p was not obvious in different can-
cer stages with LUSC patients (Fig.  8O, P). In addition, 
the expression of KIHL3 was decreased in LUAD and 
LUSC patients, but the phenomenon was unconspicu-
ous in different cancer stages (Fig.  8Q, R, S, T). Next, 
using HPA database, we found that a lower expression of 
KLHL3 protein was explored in LUAD and LUSC tissue 
versus normal tissues (Fig. 8U). As shown in Fig. 8V, the 
expression of KLHL3 was reduced in LUSC tissues.

Survival analysis and prognostic roles of the DEMs 
and KLHL3
Subsequently, we explored the prognostic value of the 
DEMs and KLHL3 in lung cancer patients. The expres-
sion levels of miR-199a-5p, miR-186-5p, miR-328-3p, and 
KLHL3 in the LUAD and LUSC patients did not affect OS 
(Fig.  9A-F, I-J). For LUSC, patients with high let-7d-3p 
expression had poor OS, but not in the LUAD (Fig. 9G, 
H). Therefore, let-7d-3p may be a potential prognostic 
marker of LUSC. The expression levels of the DEMs and 
KLHL3 did not affect PFS in NSCLC patients (Fig. 10).

Kaplan-Meier curves showed that high hsa-let-7d-3p 
expression was closely associated with low OS in LUSC 
patients. Univariate and multivariate Cox regression 
analyses, nomograms, and ROC curves are required to 
evaluate the accuracy of differential expression genes 
for patient prognosis [30, 31]. Therefore, we researched 
whether hsa-let-7d-3p and variables such as age, sex, 
and tumor stage were risk factors for survival in LUSC 
patients.

Using univariate Cox regression, we know that hsa-
let-7d-3p was not a risk factor in LUSC patients. The 
multivariate Cox regression revealed that let-7d-3p was 
not an independent prognostic factor in LUSC patients 
(Table  4). We also constructed a nomogram and ROC 
curve (Fig. 11A, B).

External validation and effectiveness assessment
To further verify the reliability of our results, we used 
GSE17681 and GSE137140 datasets to verify the expres-
sion levels of the 4 DEMs in the peripheral blood of lung 
cancer patients and healthy controls. In both GSE data-
sets, we found that the expression of hsa-miR-199a-5p 
and hsa-miR-186-5p in lung cancer patients were higher 

Table 2  Potential Target Genes of the DEMs

DEMs Number

hsa-miR-199a-5p 621

hsa-let-7d-3p 479

hsa-miR-328-3p 204

hsa-miR-186-5p 949

Total 2253
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A B

C D

E F

Fig. 4  GO annotation analysis of the DEMs target genes in biological processes, cell components, and molecular functions. A, C, E. Bar plots. B, D, F. 
Bubble charts
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Fig. 5  KEGG pathway enrichment analysis of the DEMs target genes. A. Bar plots. B. Bubble charts
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than those in the healthy controls, while the expression 
of hsa-let-7d-3p and hsa-328-3p was contrary to previous 
prediction results (Fig. 12A-H). In addition, ROC curves 
were used to assess the ability of the 4 DEMs to distin-
guish between lung cancer patients and healthy people. 
As shown in Fig. 12I-L, the 4 DEMs had good accuracy 
in the diagnosis of lung cancer, with the following results: 
hsa-miR-328-3p (AUC = 0.7416, 95%CI [0.6856–0.7977], 

P  <  0.0001); hsa-let-7d-3p (AUC  =  0.8021, 95%CI 
[0.7513–0.8529], P  <  0.0001); hsa-miR-186-5p 
(AUC  =  0.6970, 95%CI [0.6375–0.7565], P  <  0.0001); 
and hsa-miR-199a-5p (AUC  =  0.8013, 95%CI [0.7520–
0.8506], P < 0.0001).

Fig. 6  PPI and DEM-hub gene networks. A. PPI network of the top 30 hub genes of the DEMs. B. miRNA-hub gene regulatory network
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Discussion
Although many studies regarding the diagnosis and treat-
ment of lung cancer have been performed in recent years, 
the 5-year survival rate of lung cancer patients remains 
low due to the lack of biomarkers for early diagnosis and 
insufficient research on lung cancer pathogenesis. The 
number of studies involving microarrays is gradually 
increasing, which will help to reveal the genetic changes 
involved in disease progression. However, most micro-
matrix studies on lung cancer are focused on tumors and 
adjacent tissues. Invasive operations can cause compli-
cations, such as hemothorax, pneumothorax, and infec-
tion; therefore, it is extremely important to actively seek 
effective noninvasive operation inspection strategies. 
Leidinger et  al. found that miRNA in the blood can be 
used as a diagnostic marker for lung cancer, and it can 
also distinguish lung cancer from chronic obstructive 
pulmonary disease [32]. In this study, we found that 4 
upregulated DEMs (hsa-miR-328-3p, hsa-miR-199a-5p, 
hsa-miR-186-5p, and let-7d-3p) had overlap in the 3 
datasets, so they were used as candidate DEMs for fur-
ther research. Recent studies have found that these 
DEMs play important roles in the diagnosis, treatment, 
and progression of different tumors. Ma et al. found that 
overexpressed miR-328-3p can improve the sensitivity of 
cancer cells to radiotherapy by changing the DNA dam-
age and repair signaling pathway in NSCLC patients [33]. 
Yang et al. found that hsa-miR-574-5p, hsa-miR-328-3p, 
and hsa-miR-423-3p are involved in the Wnt/β-catenin 
signaling pathway to promote bone metastasis in lung 
cancer and may be biomarkers for bone metastasis in 
NSCLC patients [34]. Zheng et  al. showed that plasma 
exosomal miR-30d-5p and let-7d-3p can be used as valu-
able biomarkers for the noninvasive screening of cervical 
cancer and its precancerous lesions [35]. Furthermore, 
the upregulation of miR-186-5p expression can increase 
the sensitivity of NSCLC to cisplatin by targeting the 

expression of the SIX1 protein; on the other hand, tar-
geting the expression of the PTEN protein can promote 
LUAD migration, invasion, and proliferation [36, 37]. 
Some studies have found that miR-199a-5p dysregulation 
is related to the progression and pathogenesis of cancer. 
However, miR-199a-5p has conflicting roles in tumor 
progression and carcinogenesis. In thyroid cancer, oral 
squamous cell carcinoma, liver cancer, and ovarian can-
cer, miR-199a-5p can inhibit tumor growth and metasta-
sis [38–41]. Conversely, miR-199a-5p can promote tumor 
growth and invasion in osteosarcoma, cervical cancer, 
and skin squamous cell carcinoma [42–44]. MiR-199a-5p 
can also inhibit the growth of lung cancer cells by target-
ing the MAP3K11 protein, as shown through in vivo and 
in  vitro experiments of lung cancer [45]. It is believed 
that miR-199a-5p and miR-495 can be used in NSCLC 
as diagnostic biomarkers for activated unfolded protein 
response. Ahmadi et  al. found that miR-199a-5p and 
miR-495 can regulate the endoplasmic reticulum stress 
response by regulating the expression of the GRP78 pro-
tein, thereby regulating the progression of lung cancer. 
In addition, the manipulation of the expression of these 
miRNAs may have potential therapeutic applications 
when it comes to lung cancer [46]. A recent study found 
that miR-199a-5p expression was significantly reduced in 
doxorubicin-resistant A549 and H469 cells. Increasing 
the expression of miR-199a-5p leads to the resistance of 
NSCLC to doxorubicin via the regulation of the expres-
sion of the ABCC1 and HIF1A proteins [47]. Therefore, 
the roles of miRNA-mRNA regulatory networks in the 
occurrence and development of lung cancer deserve fur-
ther research.

Transcription factors can regulate the expression of 
miRNAs, so the transcription factors that might regu-
late the candidate DEMs in this study were predicted. We 
found that SP1, EGR1, and POU2F1 accounted for a high 
proportion of the transcription factors of the candidate 

Table 3  Top 30 Hub genes of the DEMs in the PPI Network Ranked by MCC

Gene Symbol Score Gene Symbol Score Gene Symbol Score

NEDD4 8.68E+ 36 TRIM71 8.68E+ 36 ARIH2 8.68E+ 36

SKP1 8.68E+ 36 ITCH 8.68E+ 36 HACE1 8.68E+ 36

FBXO9 8.68E+ 36 FBXO30 8.68E+ 36 UBE2R2 8.68E+ 36

CUL3 8.68E+ 36 KLHL3 8.68E+ 36 UBE2B 8.68E+ 36

KLHL11 8.68E+ 36 KLHL42 8.68E+ 36 UBE2Q2 8.68E+ 36

FBXL5 8.68E+ 36 KBTBD7 8.68E+ 36 SH3RF1 8.68E+ 36

BTRC​ 8.68E+ 36 SPSB1 8.68E+ 36 UBE2Q1 8.68E+ 36

CCNF 8.68E+ 36 ASB7 8.68E+ 36 RLIM 8.68E+ 36

ATG7 8.68E+ 36 UBE2K 8.68E+ 36 UBAC1 8.68E+ 36

SMURF2 8.68E+ 36 TRAF7 8.68E+ 36 UBR2 8.68E+ 36
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Fig. 7  Identification of the mRNA expression levels of the top 30 hub genes in the GSE20189 dataset. A. NEDD4. B. SKP1. C. FBXO9. D. CUL3. E. 
KLHL11. F. FBXL5. G. BTRC​. H. CCNF. I. ATG7. J. SMURF2. K. ITCH. L. KLHL3. M. ASB7. N. UBE2B. O. ARIH2. P. UBE2K. Q. UBE2Q1. R. UBAC1. S. UBR2. **p<0.01, 
****p<0.0001
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Fig. 8  Expression levels of the DEMs and KLHL3 in NSCLC tissues. A-D. hsa-miR-199a-5p. E-H. hsa-miR-186-5p. I-L. hsa-miR-328-3p. M-P. 
hsa-let-7d-3p. Q-T. KLHL3. U. KLHL3 protein expression in lung cancer tissue and normal tissue was verified by using the Human Protein Atlas 
database. Sample size (8 LUAD, 4 LUSC, 3 normal). *p<0.05, ***p<0.001, ****p<0.0001
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Fig. 9  Overall survival analysis of the DEMs and KLHL3 in NSCLC patients. A-B. hsa-miR-199a-5p. C-D. hsa-miR-186-5p. E-F. hsa-miR-328-3p. G-H. 
hsa-let-7d-3p. I-J. KLHL3 
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Fig. 10  Progression free survival analysis of the DEMs and KLHL3 in NSCLC patients. A-B. hsa-let-7d-3p. C-D. hsa-miR-186-5p. E-F. hsa-miR-199a-5p. 
G-H. hsa-miR-328-3p. I-J. KLHL3 
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DEMs. These transcription factors have been widely 
reported in studies of lung cancer and other tumors. 
Hu et al. found that high SP1 expression can inhibit the 
expression of the prenyl diphosphate synthase subunit 2 
(PDSS2) promoter in lung cancer cells [48]. Higher SP1 
expression and lower PDSS2 expression have been found 
to be significantly associated with poor prognosis in lung 
cancer patients [48]. SP1 can be combined with long 
noncoding RNA (lncRNA) promoters to promote the 
proliferation, migration, and invasion of lung cancer cells 
by regulating lncRNA expression [49, 50]. When hypoxia 
occurs, the level of EGR1 expression decreases, but SP1 
and HIF1A expression levels increase, which can induce 
erythropoietin secretion and promote NSCLC growth 
[51]. POU2F1, which is also known as OCT1, promotes 
tumor growth and metastasis by activating downstream 
signaling pathways in liver cancer, colon cancer, ovarian 
cancer, and gastric cancer [52–55]. Xiao et al. found that 
ELF1/CASC2/miR-18a axis-mediated IRF2 expression is 

significantly related to the proliferation, migration, and 
invasion of cisplatin-resistant NSCLC, and they believe 
that this regulatory axis may be a new therapeutic target 
for NSCLC [56]. In general, many transcription factors 
have been reported in lung cancer, which supports the 
importance of the candidate DEMs in the pathogenesis of 
lung cancer.

The KEGG pathway enrichment analysis results of this 
study showed that the target genes of the DEMs were 
mainly enriched in cancer pathways, PI3K-Akt signaling 
pathways, proteoglycans, focal adhesions, endocytosis, 
Ras signaling pathways, actin cytoskeleton regulation in 
cancer, HTLV-I infection, and MAPK signaling pathways. 
In addition, cancer pathways included many pathways 
of growth factors, such as insulin-like growth factor I, 
fibroblast growth factor, recombinant human epidermal 
growth factor, platelet-derived growth factor, and human 
hepatocyte growth factor. These factors play important 
roles in the development and resistance of lung cancer 

Table 4  Univariate and multivariate Cox proportional risk regression analysis of factors affecting the overall survival of LUSC patients

HR Hazard ratio, CI Confifidence interval
* signifificant risk factor, p < 0.05
** signifificant risk factor, p < 0.01

Variables Number of patients Univariate Multivariate

HR (95% CI) p Value HR (95% CI) p Value

Age(y)

   ≤ 65 178 reference

  >65 290 1.274(0.9313–1.742) 0.13

Gender

  Male 350 reference

  Female 123 0.932(0.6665–1.304 0.682

Tumor stage

  stageI/II 384 reference

  stageIII/IV 85 0.999(0.5198–1.992) 0.9986

T stage

  T1/T2 383 reference reference

  T3/T4 90 1.761(1.1188–2.773) 0.0145* 1.721(1.23–2.408) 0.0015**

N stage

  N0 297 reference

  N1 126 1.025(0.7169–1.466) 0.8912

  N2 40 1.373(0.6291–2.995) 0.4262

  N3 4 4.473(0.9326–21.456) 0.0611

  NX 6 2.342(0.7388–7.421)

M stage

  M0 387 reference reference

  M1 6 3.418(1.2156–9.611) 0.0198* 3.308(1.349–8.115) 0.009**

  MX 76 1.566(1.044–2.348) 0.0301* 1.611(1.078–2.401) 0.0201*

hsa-let-7d-3p

  Low expression 236 reference

  High expression 237 0.873(0.6523–1.168) 0.3593
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Fig. 11  Nomogram and ROC curve for the prognostic value of hsa-let-7D-3p. A. Nomogram. B. ROC curve
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[57–64]. Previous studies have shown that PI3k/Akt sign-
aling pathway activation is closely related to lung cancer 
progression. Li et al. found that overexpressed miR-133b 
inhibits the proliferation of cisplatin-induced NSCLC 
cells through the regulation of the PI3K/Akt and JAK2/
STAT3 signaling pathways by targeting epidermal growth 
factor receptor (EGFR) [65]. Wu et  al. showed that the 
PAX6 protein can directly bind to the promoter region of 
the ZEB2 gene and mediate the downregulation of E-cad-
herin through the PI3K/AKT signaling pathway, thereby 
mediating cell migration, stem cell transformation, and 
cisplatin resistance, and ultimately affecting the survival 
of NSCLC patients [66]. In addition, some studies have 
found that the Ras and MAPK signaling pathways are 
involved in lung cancer progression. Wei et  al. showed 
that miR-330-3p promotes NSCLC brain metastasis by 
activating MAPK/ERK signaling pathways and enhanc-
ing cell proliferation, migration, invasion, and angiogen-
esis [67]. A recent study found that miR-148a-3p, which 
is a tumor suppressor, is often downregulated in NSCLC 
cells and can inhibit the proliferation and epithelial-mes-
enchymal transition processes of NSCLC by regulating 
SOS2/MAPK/ERK signal transduction, thereby provid-
ing new insight into the pathogenesis of NSCLC [68]. 
These studies suggest that the downstream target genes 
of DEMs are involved in many biological processes of 
lung cancer. They further suggest that the 4 upregulated 
DEMs in this study play key roles in the pathogenesis of 
lung cancer.

A DEM-hub gene network was constructed, and it was 
found that most of the hub genes may be targeted by 
miR-328-3p, miR-199a-5p, miR-186-5p, and let-7d-3p. 
Due to different samples, among the top 30 hub genes, 
only the expression of KLHL3 was consistent with the 
expression in the GSE20189 database. Further, it was ver-
ified that the expression levels of KLHL3 in tissues were 
consistent with those in plasma. The KLHL3 (kelch-like 
3) and CUL3 proteins are components of the Cullin-
RING E3 ubiquitin ligase complex, and they belong to 
the ubiquitin proteasome system. Their function is to 
degrade proteins, and they have important roles in main-
taining cell function. The complex interacts with WNK1 
and WNK4, which are part of the WNK kinase family, to 
induce WNK1 and WNK4 ubiquitination and regulate 
the levels of these proteins through proteasome degrada-
tion [69]. The secreted protein acidic and rich in cysteine 
(SPARC) secreted by extracellular matrix components 

can activate the expression of the WNK1 protein to pro-
mote the migration and invasion of lung cancer cells [70]. 
Hsu et  al. found that activated lung fibroblasts produce 
the tryptophan metabolite kynurenine, which promotes 
the migration and growth of lung cancer cells by activat-
ing AKT and WNK1 [71, 72]. KLHL3 can degrade the 
expression of the WNK1 protein through ubiquitination, 
so it may have an important role in the progression of 
lung cancer.

Our research found that the expression levels of miR-
199a-5p and miR-186-5p were increased in both blood 
and tissues. In this study, only GSE24709, GSE137140, 
and GSE20189 datasets provide the clinical informa-
tion of patients, who were mainly concentrated in TNM 
stages I and II. Therefore, we speculated that the identi-
fied DEMs might be useful for diagnosing early stage 
lung cancer, while more experiments are needed to 
validate our hypothesis. Survival analysis showed that 
let-7d-3p expression was negatively correlated with the 
prognosis of patients with LUSC. However, the univariate 
Cox regression, the multivariate Cox regression and ROC 
curves showed that hsa-let-7d-3p might not be predict-
ing the outcomes of LUSC patients. Through the above 
assessments, a potential miRNA-mRNA regulatory net-
work in the plasma of NSCLC patients was constructed 
and analyzed for the first time.

There are some limitations in our research. First, we 
only focused on the expression levels of miRNAs and 
mRNAs in the plasma of lung cancer patients and healthy 
subjects. However, some miRNA and mRNA expression 
levels may differ in the peripheral blood of lung cancer 
patients with different tumor stages, tissue types, sexes, 
ages, and smoking statuses. Second, our data are mainly 
from public databases, some of which do not provide 
clinical information of patients, and due to the lim-
ited sample sizes of these datasets, the results may be 
biased. Third, we did not perform external experimen-
tal verification. The molecular mechanisms and roles of 
the miRNAs and target genes in regulating lung cancer’s 
migration, invasion, proliferation, and immune microen-
vironment need to be further studied. Therefore, in sub-
sequent research, we will collect more clinical samples 
to verify the ability of the DEMs and target genes on the 
diagnosis and prognosis of NSCLC patients. At the same 
time, we need to further study the effects of DEMs and 
target genes on lung cancer biological characteristics and 

Fig. 12  External validation and ROC analysis of the 4 DEMs. A-H. External validation of the 4 DEMs. A. hsa-miR-199a-5p (GSE17681). B. 
hsa-miR-186a-5p (GSE17681). C. hsa-miR-199a-5p (GSE137140). D. hsa-186-5p (GSE137140). E. hsa-let-7d-3p (GSE176181). F. hsa-miR-328-3p 
(GSE176181). G. hsa-let-7d-3p (GSE137140). H. hsa-328-3p (GSE137140). I-J. ROC analysis of the 4 DEMs. I. hsa-miR-328-3p. J. hsa-let-7d-3p. K. 
hsa-miR-186-5p. L. hsa-miR-199a-5p. *p<0.05, ****p<0.0001

(See figure on next page.)
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Fig. 12  (See legend on previous page.)



Page 21 of 23Zhang et al. BMC Cancer          (2022) 22:299 	

the immune microenvironment by in  vitro and in  vivo 
experiments.

Conclusion
In conclusion, we found that miR-199a-5p and miR-
186-5p may be noninvasive diagnostic biomarkers for 
NSCLC patients. MiR-199a-5p-KLHL3 may be involved 
in the development of NSCLC. We hope that more deep 
studies can provide new targets for the noninvasive diag-
nosis and treatment of lung cancer.
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