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Abstract 

Background:  Glioblastoma (GBM) can be divided into subtypes according to their genomic features, includ‑
ing Proneural (PN), Neural (NE), Classical (CL) and Mesenchymal (ME). However, it is a difficult task to unify various 
genomic expression profiles which were standardized with various procedures from different studies and to manually 
classify a given GBM sample into a subtype.

Methods:  An algorithm was developed to unify the genomic profiles of GBM samples into a standardized normal 
distribution (SND), based on their internal expression ranks. Deep neural networks (DNN) and convolutional DNN 
(CDNN) models were trained on original and SND data. In addition, expanded SND data by combining various The 
Cancer Genome Atlas (TCGA) datasets were used to improve the robustness and generalization capacity of the CDNN 
models.

Results:  The SND data kept unimodal distribution similar to their original data, and also kept the internal expres‑
sion ranks of all genes for each sample. CDNN models trained on the SND data showed significantly higher accuracy 
compared to DNN and CDNN models trained on primary expression data. Interestingly, the CDNN models classified 
the NE subtype with the lowest accuracy in the GBM datasets, expanded datasets and in IDH wide type GBMs, con‑
sistent with the recent studies that NE subtype should be excluded. Furthermore, the CDNN models also recognized 
independent GBM datasets, even with small set of genomic expressions.

Conclusions:  The GBM expression profiles can be transformed into unified SND data, which can be used to train 
CDNN models with high accuracy and generalization capacity. These models suggested NE subtype may be not com‑
patible with the 4 subtypes classification system.

Keywords:  Deep neural network, Proneural, Neural, Classical, Mesenchymal, Machine learning, Molecular subtype, 
Glioma, Artificial intelligence, Support vector machines
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Background
Glioblastoma (GBM) is one of the most lethal tumors 
affecting human, which is the most common pri-
mary malignant tumor in brain [1]. Despite advanced 

therapeutic techniques, the medial survival of GBM 
patients is only about 15 months after combined treat-
ment of radio- and chemo-therapy after surgical 
resection of the tumor. The lack of effective treatment 
prompted investigation of the pathogenesis of GBM, 
especially by high-throughput molecular studies such 
as mRNA, miRNA, proteins, et  al. [2–4]. Along with 
the progression of bio-techniques, the cost of tumor 
genome sequencing is becoming lower, which might 
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be routine examinations for GBM in the future. Impor-
tantly, it is more and more widely recognized that high 
grade gliomas (HGGs) should be classified by molecu-
lar signatures rather than traditional WHO grades 
to more accurately reflect the therapeutic effects and 
clinical characteristics of HGGs [5, 6]. According to the 
molecular signature, GBM can be classified into 4 sub-
types: Proneural (PN), Neural (NL), Classical (CL), and 
Mesenchymal (ME) [4], or into 3 subtypes by previous 
[7] and recent studies [8]. The classification is mainly 
based on clustering algorithms such as consensus aver-
age linkage hierarchical clustering. Normally, a cohort 
of genes were used to determine the subtype of a single 
sample. However, because of the complicated unifica-
tion procedure of the gene expressions from different 
gene-chip platforms and research groups, for a given 
sample, it is still difficult to tell what kind of subtype it 
is.

Deep learning has great potential to deal with com-
plicated biological data, and has been used to recognize 
genetic, histopathological, and radiographic features 
of GBM or low-grade glioma [9–14]. Particularly, deep 
learning showed values to predict molecular subtypes 
of low and high grade gliomas [15, 16], and to differ-
entiate between gliomas and other central nervous sys-
tem diseases [17]. Here, we developed an algorithm to 
transform the genomic expression of a single sample 
into unified standardized normal distribution (SND) 
data (SND-data) based only on the internal relative 
gene expression ranks of the sample itself. The trans-
formed SND of GBM samples have same set of values 
but differed from each other by the orders of the values. 
This technique is rational according to the principles 
of delta-delta Ct methods widely used for quantita-
tive PCR (qPCR) [18, 19], which actually gives a more 
precise relative value for a gene. Next, we build con-
volutional deep neural network (CDNN) to classify 
samples based on the SND-data [20, 21]. Although the 
SND-data may loss some information, it is sufficient 
to classify their subtypes by the CDNN. Therefore, the 
procedure of rank information-based unification of the 
genomic data into SND-data kept the relative ranking 
information, while lose certain detailed quantitative 
relationships, which is trivial considering the relatively 
great fluctuations in high-throughput data. Interest-
ingly, as a result, subtype classification of GBM with the 
SND-data resulted in comparable or better accuracies 
to their original data, which can be used as a feasible 
tool to classify single GBM samples. More importantly, 
this unified procedure gives potential approaches to 
distinguish other molecular or clinical features of GBM 
or other kind of tumors by deep learning techniques.

Material and methods
Data acquisition
Totally 10 GBM datasets were used in the present 
study, among which 9 GBM datasets were used to train 
the neural networks (NNs, Fig. 1): 1 unified data and 1 
validation data combining several datasets from Ver-
haak et  al. (Unified and Validation data) [4], 1 stand-
ardized data from Ceccarelli et al. (Cell2016 data) [22], 
3 original data provided in Verhaak et  al. (Broad202, 
LBL202, UNC 202 data, which were processed in 
platforms of Affymetrix-HT-HG-U133A, Affymetrix 
HuEx GeneChip and Custom Agilent 244,000 feature 
Gene Expression Microarray, respectively) [4], and 3 
TCGA datasets downloaded at different time points 
with different microarray platforms (TCGA2014Broad, 
TCGA2014UNC, TCGA2017 data). In addition, an 
independent GBM dataset downloaded from NCBI 
(GSE84010) [23], which was not included in the train-
ing dataset, was used as an additional validation 
dataset.

There are totally 4 kinds of datasets used for the DNN 
training: original Unified data (Original-Unified); Unified 
data transformed into “unified standardized normal dis-
tribution N(0, 1)” data (SND-Unified, see details below in 
Data Unification section); a combined dataset including 
Unified and Validation data transformed in to SND-data 
(SND-Train2Sets data); a combined data including all of 
the 9 training datasets (SND-Train9Sets). All of the data-
sets can be found in online materials.

Deep learning training
Two kinds of NNs were developed: deep neural net-
works (DNNs) and convolutional deep neural networks 
(CDNNs). DNNs were composed by 4 layers, and CDNNs 
contained totally 5 layers: 2 convolutional layers, 1 sub-
sampling layer, 1 density layer and 1 output layer. Large 
ranges of super-parameters were trained to get optimized 
DNNs with high accuracies, including number of itera-
tions, epochs, dropout and momentum values, number 
of layers and number of nodes in each layer, activation 
functions in each layer, et al. For CDNNs, there are more 
super-parameters, including kernel size in the convolu-
tional layers and stride values in the subsampling layer. 
For each kind of the above 4 training datasets, to train 
the DNNs, the dataset was shuffled and split into train-
ing (70%) and testing (30%) datasets. The trained DNNs 
was further validated in untrained datasets. For the SND-
Train9Sets dataset, 10% of the randomly selected samples 
were first preserved as validation data (Train9Sets-Vali-
dateData), then the remaining 90% samples (Train9Sets-
TrainTestData) were further split into training (70%) and 
test (30%) datasets to train the DNNs.
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Totally 6 kinds of NNs were trained in the present 
study (Fig. 1): 1. a DNN obtained by training the origi-
nal Unifies dataset (Original-DNN); 2. a DNN obtained 
by training the SND-Unifies dataset (SND-DNN); 3. a 
CDNN obtained by training the SND-Unifies dataset 
(SND-CDNN); 4. a CDNN obtained by training the 
SND-Train2Stes (SND-CDNN-Train2Sets); 5. a cohort 
of CDNNs obtained by training the SND-Train9Sets 
(SND-CDNN-Train9Sets, and totally 9 SND-CDNN-
Train9Sets models were obtained for statistical analy-
sis); 6. a cohort of CDNNs obtained by training the 
IDH wide type GBM samples in the SND-Train9Sets 
(SND-CDNN-Train9Sets-IDH-WT, totally 5 SND-
CDNN-Train9Sets-IDH-WT models were obtained for 
statistical analysis). All of the trained NNs were saved 
as files for further investigation and can be found in 
online materials.

Gene expressions unified into SND‑data
The widely used q-PCR is actually a method based on 
ranks of gene expression levels which determines the 
relative expression level of genes normalized to internal 
reference genes such as β-Actin or GAPDH. Based on 
these assumptions, the gene expressions of each sample 
were unified into SND-data by the following procedures 
(Fig. 2A):

1.	 Produce standardized normal distribution N(0, 1). 
Let the number of genes for each sample is n. We first 
generated a value array containing n elements obey-
ing the N(0, 1) distribution, which is denoted as N(0, 
1).

2.	 Rank the genes according to their internal expression 
levels. Order the gene expressions for each sample by 
their expression levels.

Fig. 1  All datasets and trained NNs used in the present study. Totally 10 datasets, including 9 TCGA GBM datasets with different expression 
forms and 1 additional GBM dataset (GSE84010). Totally 2 types of NNs were used: DNN and CDNN. At last 6 kinds of NNs were trained, including 
original-DNNs trained in the unified dataset without data unification; SND-DNN trained in the unified dataset with data unification; SND-CDNN 
trained in the unified dataset with data unification; SND-CDNN-Train2Sets, which are trained in the combined unified and validation datasets with 
data unification; SND-CDNN-Train9Sets, which are trained in the combined 9 TCGA GBM datasets with data unification; SND-CDNN-9Sets-IDH-WT. 
which are trained in the IDH wide type GBM samples in the SND-Train9Sets with data unification

(See figure on next page.)
Fig. 2  Data unification process of the GBM genomic expressions. A the expression data were first transformed into a unified N(0, 1) distribution 
based on the internal expression level ranks of all genes for each sample. Then the genes were ordered according to a fixed reference order. B the 
original-data and the SND-data kept certain correlations. C the one-dimensional expression data were arranged into a 2D-array data, which can be 
viewed as a “picture” and used in the CDNN training and testing
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Fig. 2  (See legend on previous page.)
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3.	 Transform the rank values of each gene into corre-
sponding values with the same rank value in N(0, 1).

To ensure that different samples have comparabil-
ity from each other, the genes were re-ordered accord-
ing to a same fixed gene order (the reference gene 
list, RGL). In the present study, the RGL were defined 
by ordering the genes ascendingly according to their 
expression levels in the PN subtype in the unified data-
set. If the gene in the RGL was not found in the dataset, 
then its value was set to a default value of 0. In addi-
tion, if the gene was not included in the RGL, then the 
value would be discarded.

Implementation details
Our NNs implementation was based on the Deeplearn-
ing4J package, which is an open source, distributed deep-
learning project in Java and Scala (Eclipse Deeplearning4j 
Development Team. Deeplearning4j: Open-source dis-
tributed deep learning for the JVM, Apache Software 
Foundation License 2.0. http://​deepl​earni​ng4j.​org).

Analysis of classification accuracies for each GBM subtype
To investigate the detailed information of the classifica-
tion results by the NNs, the classified results for each 
subtype were studied to calculate the accuracies for 
each subtype. For example, when we used the SND-
CDNN-Train9Sets model trained on the Train9Sets-
TrainTestData to classify the Train9Sets-ValidateData, 
samples in the Train9Sets-ValidateData labeled as PN 
subtype were classified by model as PN, NE, CL and 
ME for 52, 1, 0, and 4 times, respectively. Therefore, 
the accuracy for the PN subtype classification is 52/
(52 + 1 + 0 + 4) = 91.23%. The classification accuracies 
for other subtypes were similarly calculated.

Analysis of classification consistency between different 
groups
Classification of GBM samples based on their genomic 
expressions had been performed by different groups pri-
marily based on data cluster analysis. The same TCGA 
datasets were then classified by different researchers with 
certain inconsistency. Here, we investigated the common 
GBM samples (totally 459 samples) classified by Brennan, 
C. W. et  al. and Ceccarelli et  al. (cell2013 and cell2016 
data), respectively [2, 22]. Similarly, classification consist-
ency for each subtype between the two groups was also 
calculated with the same procedures described above.

Statistical analysis
Statistical analyses were performed using Student’s t-tests 
and one-way ANOVAs with least-squared-difference 
post-hoc tests, as appropriate. All P-values are 2-tailed, 
and P < 0.05 was considered statistically significant. Sta-
tistical analysis was performed with SPSS v.13.0.0.

Results
Deep Neural Network (DNN) classified GBM subtypes 
with high accuracy
The datasets used and DNN models investigated in the 
present work were elucidated in Fig.  1. We first used 
multilayer deep neural network (DNN) to classify GBM 
subtypes by using the TCGA dataset (Unified dataset) 
[4] containing 197 samples, which were classified into 
four subtypes: Proneural (PN), Neural (NL), Classi-
cal (CL), and Mesenchymal (ME). The unified dataset 
was split into training (70%) and testing datasets (30%) 
in random. Next, DNNs were constructed by using the 
gene expressions as input and the subtype of the sample 
as output (original-DNN). By investigating a large num-
ber of super parameters of the DNN, the best results 
can reach to accuracies at about 95.65% for the testing 
dataset. The architecture of the network was as follows: 

Table 1  Classification accuracies of the different networks to classify TCGA datasets into 4 subtypes: Proneural (PN), Neural (NL), 
Classical (CL), and Mesenchymal (ME)

Dataset/DNN model DNN SND-DNN SND-CDNN SND-CDNN-2Sets SND-CDNN-9Sets

Broad202 20.27% 49.89% 52.56% 94.65% 94.92%

LBL202 28.43% 37.06% 60.91% 67.51% 95.94%

UNC202 28.43% 33.50% 59.39% 76.14% 94.42%

TCGA2014Broad 50.76% 57.87% 71.57% 82.74% 88.43%

TCGA2014UNC 20.98% 37.84% 50.78% 61.37% 91.07%

TCGA2017 36.72% 46.15% 57.07% 83.87% 76.55%

Mean 30.93 43.72 58.71 77.71% 90.22

SD 11.42% 9.25% 7.40% 12.03% 7.26%

http://deeplearning4j.org
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4 layers with 1 input layer (11,234 nodes), 2 deep layers 
(760 and 120 nodes, respectively), and 1 output layer 
(4 nodes) (Supplementary Fig.  S1, Table  1). The super 
parameters are: iterations = 5, number of epochs =2, 
learning rate = 0.005 (Table  1). We next used this net-
work to classify other datasets that were not trained by 
the model. First, we tested the validation data contain-
ing about 260 samples [4]. As a result, our DNN model 
classified the validation data with an accuracy of 81.63%. 
Because the validation data is normalized with the simi-
lar process of the unified data which is used to train the 
DNN, we next tested whether the original-DNN have 
capacity to classify more generalized datasets. To do this, 
we used the original-DNN to classify the other 6 original 
TCGA GBM datasets which are not processed, includ-
ing Broad202, LBL202, UNC202, TCGA2014Broad, 
TCGA2014UNC, and TCGA2017 datasets. As a result, 
the original-DNN classified these 6 datasets at accuracies 
only between 20.27% ~ 50.76% (30.93% ± 11.42%; Supple-
mentary Table S1, Fig. 2), indicating the trained original-
DNN may be over fitted or have difficulty to recognize 
datasets without normalization.

Data unification based on internal ranks of gene levels 
improved DNN performance
One of the major problems is that gene expressions 
in the above datasets were normalized with different 
approaches. Therefore, a key issue is to unify these data-
sets into a uniformed pattern. After data unification, gene 
expressions from different datasets should have the simi-
lar distribution. However, data unification is normally 
based on the distribution features of the whole dataset, 
making it difficult to transform and test single or a few 
samples. Therefore, we are trying to establish a simple 
unification method dependent on as few as additional 
data and investigate whether it can be used as input to 
classify the GBM samples by the DNN.

To unify the gene expressions, we first observed the 
data distribution of the gene expression. The frequency 
chart analysis revealed that the expressions are uni-
modally distributed and similar to normal distribution 
(Gaussian distribution, Fig.  2A). Therefore, the data 
unification process should keep this feature and the 
relative level ranks of all the genes. Notably, the widely 
used q-PCR is actually a method based on gene expres-
sion level ranks which gives the relative expression level 
of genes normalized to internal reference genes such 

as GAPDH or β-actin. Based on these assumptions, 
we transformed the gene expression data into a unified 
standardized normal distribution N(0, 1) (SND-data, see 
methods) (Fig. 2A).

After unification, the Original-data and the SND-data 
for each sample retained specific positive correlations 
similar to a sigmoid function (Fig.  2B). Interestingly, 
although the data is transformed independently for each 
sample, the data for each gene also kept specific corre-
lations between the Original- and SND-data (Fig.  2B). 
These results demonstrated that our unification proce-
dure kept key features of the dataset. The critical point 
of the unification procedure is that it transformed all of 
the expression data into unified form and can be feasibly 
used as input data for the DNN.

Next, we used the normalized SND-data to train a 
DNN (SND-DNN). As a result, we got SND-DNNs with 
an accuracy of 97.10% at the testing dataset, slightly 
higher than that of DNN. Then we used the SND-DNN to 
classify the 6 original GBM datasets. The 6 GBM datasets 
were normalized into SND-data and then classified by 
the CDNN. As a result, the SND-CDNN classified these 
GBM datasets with accuracies between 33.5 ~ 57.87% 
(43.72% ± 9.25%), whose performance was improved 
when compared to the original-DNN (p < 0.01, paired 
t-test; Fig. 3A).

Convolutional Deep Neural Network (CDNN) classified GBM 
subtypes with high accuracy and generalization capability
To further improve the classification accuracy and gen-
eralization capability, we next developed Convolutional 
Deep neural network (CDNN) to train the dataset. 
Because we have addressed that SND-data had better 
performance, we first normalized the data as described 
above, after which perform CDNN training (SND-
CDNN). In fact, CDNNs obtained by training the orig-
inal-data but not SND-data (original-CDNN) got an 
accuracy of more than 97% at the testing dataset, but 
these original-CDNN also have problems of generaliza-
tion, which classified the other original-data with accura-
cies between 15.74 ~ 73.10%. Therefore, we next trained 
CDNNs by using the SND-data (SND-CDNN).

First, the data were normalized into SND-data, after 
which the one-dimensional gene expression SND-
data were arranged into two-dimensional data array 
(2D-array) with square of the gene numbers as the length 
of the 2D-array. The missing data in the 2D-array was set 

Fig. 3  Architecture and classification accuracies of the CDNN. A Averaged classification accuracies of the DNN models on the 6 original TCGA 
datasets (Broad202, LBL202, UNC202, TCGA2014Broad, TCGA2014UNC, and TCGA2017). B-D The architecture and classification accuracies of the 
CDNN trained in the combined 9 TCGA GBM datasets (SND-CDNN-Train9Sets): B Architecture of the CDNN models; C Accuracies of a series of 
trained SND-CDNN-Train9Sets models on the Train9Set-validation data; D Subtype classification accuracies of the series of SND-CDNN-Train9Sets 
models on the Train9Set-validation data

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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into default value of 0 (Fig. 2C). Therefore, the 2D-array 
data can be viewed as pictures with different patterns and 
can be used as input data in a CDNN model (Fig. 2C). By 
using these 2D-array gene expression data as input, we 
trained the CDNN by optimizing the super parameters 
in a wide range of values, including the kernel size of the 
convolutional layer, number of layers, nodes numbers in 
each layer, et  al. The detailed architecture of the SND-
CDNN was shown in Fig.  3B, and the detailed super 
parameters are listed in Supplementary Table S2. At last, 
we got SND-CDNNs with accuracies more than 99% at 
the testing datasets, indicating SND-CDNN had better 
performances than multilayer DNNs. The SND-CDNN 
classified the validation dataset at an accuracy of 75.92%, 
smaller than that of SND-DNN. However, the SND-
CDNN classified the other original datasets at accuracies 
between 50.78 ~ 71.57% (58.71% ± 7.40%), much better 
than that of SND-DNN (p < 0.01, paired t-test; Supple-
mentary Table S1; Fig. 3A), indicating a higher generali-
zation capacity of the SND-CDNN.

Expended sample data improved the accuracy 
and generalization capacity of the CDNNs
We have addressed that SND-CDNN can significantly 
improve the accuracy and have high generalization 
capacity by introducing two critical techniques: 1. Nor-
malizing the expression data into SND-data; 2. trans-
forming the SND-data into 2-dimensional data as input 
for a CDNN. However, it should be noted that sample 
size is a critical factor for CDNN training and we only 
used a unified dataset counting 197 samples (actually 
70% of the samples were used as training data) to train 
the CDNN. Therefore, we next added the validation data 
to the training datasets (designated as “Train2Sets”) and 
trained a new CDNN with the same super-parameters 
(SND-CDNN-Train2Sets). As a result, we obtained SND-
CDNN-Train2Sets with accuracies more than 99% at the 
testing dataset. Interestingly, these SND-CDNN-Train-
2Sets classified the 6 original GBM datasets at accuracies 
of 61.37 ~ 83.87% (77.71% ± 12.03%; Table 1), which were 
significantly higher than that of the above SND-CDNN 
trained on only the unified dataset.

Next, we are trying to further expand the sample size 
of the training datasets. An important technique in deep 
learning is to expand the sample size by transforming the 
pictures such as scaling, rotation, et  al. For the TCGA 
GBM dataset, many studies provided datasets processed 
with different procedures. Therefore, to expand the sam-
ple size, we combined totally 9 datasets, including the 
above unified data, validation data, the 6 original data-
sets and 1 dataset from Ceccarelli et al. [22], totally 2540 
samples, which are designated as “Train9Sets”. First, 10% 
of the Train9Sets samples (Train9Sets-validate dataset) 

were randomly selected which were not used in the pro-
cess of training the CDNN models and would serve as 
a validate dataset. Next, the remaining 90% Train9Sets 
samples were shuffled and split into training (70%) and 
testing samples (30%). By using the same super param-
eters of the above CDNN, we got SND-CDNN-Train-
9Sets models with accuracies of about 89% for the testing 
samples. The accuracies for the test datasets were rela-
tively lower because these data comprised a wide range 
of expression patterns. Interestingly, a representative 
network model of SND-CDNN-Train9Sets classified 
the 6 original datasets with accuracies of 76.55 ~ 95.94% 
(90.22% ± 7.26%; Table 1, Fig. 3A; C), significantly better 
than the above SND-CDNN-Train2Sets.

To avoid biases derived from only one trained network 
model, we trained and got a series of SND-CDNN-Train-
9Sets models (totally 9 models). First, importantly, these 
SND-CDNN-Train9Sets classified the 10% Train9Sets-
validate data, which are not included in the training pro-
cess either as training or as testing data, at accuracies 
between 83% ~ 87% (Fig. 3D), indicating a high generali-
zation capacity of the SND-CDNN-Train9Sets to recog-
nize untrained data. This accuracy is acceptable, because 
the same GBM data classified by different research 
groups had a consistence of about 80%. For example, 
GBM subtype classification from studies of Brennan, 
C. W. et  al. and Ceccarelli et  al. (cell2013 and cell2016) 
resulted in a total consistency of about 80.61% to each 
other [2, 22] (Fig.  4A-B). Interestingly, the PN subtype 
showed the lowest consistency between the two results 
(Fig. 4A-B). In summary, the accuracy and generalization 
capacity of SND-CDNN can be improved substantially 
by expanding the GBM sample size with the same super 
parameters.

SND‑DCNN classified neural subtype with low accuracy
When we analyzed the detailed classification accuracies 
of the SND-CDNN-Train9Sets models to classify the 10% 
Train9Sets-validate data for each subtype, we noted that, 
interestingly, these models classified the NE subtype with 
an averaged accuracy of only 64.17% (55.00% ~ 70.00%), 
much lower than that of PN, CL and ME subtypes, 
which were classified at averaged accuracies of 91.23% 
(84.21% ~ 98.25%), 85.14% (82.43% ~ 86.49%) and 91.37% 
(89.16% ~ 92.77%), respectively (p < 0.001, ANOVA, 
Fig.  3D; Supplementary Table  S3). Similar results were 
observed when these models were used to classify the 
whole Train9Sets data (Supplementary Fig.  S2, Supple-
mentary Table  S4). Considering the recent report that 
the NE subtype may be non-tumor specific and should be 
excluded [8, 24], our identified CDNN actually implied 
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the fact that the Neural subtype may be not compatible 
with the classification system.

To further confirm that CDNN classified NE subtype in 
a lower accuracy, we next used the SND-CDNN-Train-
9Sets models to classify all of the 9 GBM datasets. To 
get more reliable results, we analyzed the average values 
of all the models. We noted that the network classified 
most of the sets with accuracies more than 90% (7 of the 
9 datasets were classified at accuracies more than 90%; 
Fig. 4C, Supplementary Table S5). Then we analyzed the 
detailed classification results for each subtype in these 
datasets. As a result, the SND-CDNN-Train9Sets clas-
sified NE subtype with an averaged accuracy of 80.36%, 
while they classified PE, CL and ME subtypes with aver-
aged accuracies of 91.52, 91.99 and 93.40%, respectively 
(p < 0.05, ANOVA, Fig. 4C-D). These data suggested that 
SND-CDNN-Train9Sets models consistently classified 
the NE subtype with low accuracies, further supporting 
the concept that the NE subtype may not be compatible 
with the 4 subtypes classification system of GBM.

SND‑DCNN classified neural subtype with low accuracy 
in IDH‑WT GBMs
The new classification results which suggested to 
exclude the NE subtype, was obtained primarily from 
the IDH-WT GBMs [8]. Therefore, we next trained 

SND-CDNN-Train9Sets to classify the IDH-WT GBMs 
in the whole 9 sets data (SND-CDNN-Train9Sets-IDH-
WT). Totally, 1210 IDH-WT samples were obtained. 
Similarly, 10% of the Train9Sets-IDH-WT samples 
(Train9Sets-validate-IDH-WT) were randomly selected 
as independent validation datasets not involved in train-
ing process. Next, the remaining 90% samples were 
shuffled and split into training (70%) and testing sam-
ples (30%). We obtained 5 SND-CDNN-9Sets-IDH-WT 
models, which classified the IDH-WT GBMs at accura-
cies between 78.66% ~ 83.90% (Fig.  5A; Supplementary 
Table  S4). Interestingly, these models classified the PN, 
CL, and ME subtypes at highly comparable accuracies 
between 84.56% ~ 85.80%, while classified the NE subtype 
at accuracy of only about 53.88% (Fig. 5A; Supplementary 
Table  S6), further confirming the above results that NE 
subtype may not be compatible with the 4 subtypes clas-
sification system of GBM, especially for IDH-WT GBMs.

The CDNN also recognized gene profiles without full gene 
expressions
The above CDNN recognized a wide range of gene 
expression from TCGA data. We next tested whether the 
SND-CDNN-Train9Sets can classify dataset beyond the 
TCGA GBM data. In addition, the CDNN used whole 
gene expression as input, but in some situations, only a 

Fig. 4  Consistencies of subtype classifications of TCGA GBM samples between different studies (A-B) and Averaged subtype classification 
accuracies of the SND-CDNN-Train9Sets models on each of the GBM dataset (C-E). * p < 0.01 compared to NE
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portion of the gene expressions were provided. Next, we 
used a Bevacizumab treated patients gene expression data 
(GSE84010) [23], which only contained 770 core genes 
for each sample. Here, the GSE84010 dataset used core 
genes for classification of the GBMs, which preserved the 
key gene expression features of each subtype. As a result, 
the 9 SND-CDNN-Train9Sets models classified the data-
set at an averaged accuracy of 75.88% (70.65% ~ 79.34%). 
Strikingly, however, these CDNN models classified 
the Neural subtype with an averaged accuracy of only 
14.29% (9.52% ~ 23.81%), while they classified the PN, 
CL and ME subtypes with averaged accuracies of 72.71% 
(57.28% ~ 83.50%), 80.22% (70.73% ~ 89.02%) and 75.88% 
(73.44% ~ 86.72%), respectively (p < 0.001, ANOVA, 
Fig. 5B, Supplementary Table S7). Although not ideal, the 
accuracies still reached to a high level comparable to the 
consistence (about 80%) between classification results of 
TCGA GBM samples from different groups (Fig. 4A-B). 
These results indicated that even for small set of gene 
expressions, the SND-CDNN-Train9Sets can recognize 
the essential expression features and classify the GBM 
samples with high accuracy.

Discussion
In this study, we demonstrated the utility of deep learning 
to classify GBM subtypes. As a kind of malignant brain 
tumor without ideal treatment, more and more studies 
were performed to decipher the molecular and patholog-
ical characteristics of GBM. Molecular classification was 
considered to be more important than traditional patho-
logical classifications in recent years. Based on genomic 
and clinical investigations, GBMs were classified into 4 
subtypes with different features of genomic mutations, 
expression profiles and clinical characteristics, that is PN, 

NE, CL and ME subtypes. In addition, core gene signa-
tures were identified to define each subtype. The initial 
classification of GBM subtypes were primarily based on 
genomic expression data clustering analysis. However, 
genomic based classification is mainly used for clustering 
analysis, and infeasible to classify single or a few samples.

Deep learning is useful to classify dataset, even for 
complicated data, such as genome expression profile, 
which is infeasible for human to recognize. Another 
critical issue in genomic data analysis is the normaliza-
tion procedure of expression values. The normalization 
approach used in different research groups would have 
inconsistences, and would result in differences in the 
expression profiles. For example, the same TCGA sam-
ples classified by two groups have a total consistency 
of about 80% (cell2013, 2016, Fig.  4A, B). Therefore, it 
would be important to normalize the expression profiles 
into a unified pattern. Here we unified the expression 
data based on the internal sample gene level ranks, which 
would dependent only on the relative expression levels of 
the sample itself, but not on other samples. Apparently, 
this unification process would loss a considerable portion 
of detailed information. As elucidated in Fig. 2A, the data 
frequency curves are similar before and after the unifi-
cation process, except that the unified data has a more 
regular rank among all genes. However, critical informa-
tion was kept, such as the relative expression level ranks, 
and the distribution feature. This rank-based unification 
is reasonable, given that the commonly used qPCR actu-
ally calculates the relative levels of genes normalized to 
the internal reference genes. In addition, considering that 
high-throughput data are not as accuracy as traditional 
qPCR methods, the detailed information lost during 
the unification process is acceptable. Interestingly, our 

Fig. 5  Averaged subtype classification accuracies of the SND-CDNN-Train9Sets-IDH-WT models on the IDH-WT GBM validation data (A), and 
Averaged subtype classification accuracies of the SND-CDNN-Train9Sets models on the independent GSE84010 GBM dataset (B). * p < 0.01 
compared to NE
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deep learning study revealed that the DNN performed 
on SND-Data is better than in Original-Data. Further 
training on more datasets confirmed the conclusion that 
the SND-Data can be used to classify the GBM sam-
ples with high accuracy. Notably, the correlation curves 
between SND-data and the original-data showed a “S” 
shape (Fig.  2), an important feature in many biological 
processes, and, notably, similar to the sigmoid activation 
function commonly used in DNNs.

Another technique we employed is to transform 
1-dimeantinal expression data into 2-dimentional data 
like images. This process is used to take the advantages 
of the CDNN, which has been proved to have excellent 
performance to classify images. As a result, this process 
significantly improved the classification accuracy, imply-
ing this process is better for the deep learning based clas-
sification of GBM subtypes. Actually, when we observe 
the 2-dimentional data as images, we can distinguish the 
typical PN and ME samples (Fig. 2C).

Expanding the samples by transforming, rotating of the 
original images are important techniques to expand the 
training dataset commonly used in deep learning. Here, 
TCGA data were used and processed by many research 
groups, providing excellent expansions of the sample 
data. As revealed by the data of SND-CDNN-Train2Sets 
and SND-CDNN-Train9Sets, expanding sample size 
improved the performance of the SND-CDNN. Impor-
tantly, the SND-CDNNs trained with the expanding 
datasets showed excellent generalization capacity to rec-
ognize a wide range of datasets. It should be noted that 
the GBM subtype is classified according to data analysis, 
which is dependent on the algorithm process, and may 
result in certain inconsistencies (Fig.  4A-B). Therefore, 
the GBM samples are actually lack of definite labels like 
the common classification of labeled images in computer 
science. Given these considerations, the SND-CDNN-
Train9Sets, which classified the GBM samples at accu-
racies near 90%, exhibited excellent capacity to classify 
GBM subtypes.

Another important finding is that, the SND-CDNN 
classified the NE subtype with low accuracy, a phenom-
enon observed in various situations, especially in the 
SND-CDNN-Train9Sets-IDH-WT results, which is con-
sistent with the conclusions of recent study which sug-
gested to classify GBM into 3 subtypes [8]. These results 
suggested that the CDNN have capacity to find incom-
patible labels of the input data, a capacity similar to the 
unsupervised classification by deep learning. Therefore, 
the present result is actually a combination of labeled 
classification and unsupervised classification. The results 
of the “unsupervised classification” portion are based on 
the GBM research background, and is implicated by deep 
learning classification results.

The present study was focused on deep neural net-
works, one of the widely used machine learning model. 
Therefore, it would be interesting to compare it with 
the other classical machine learning models, such as 
Support Vector Machine (SVM). We also studied and 
compared the SVM model to classify the GBM data, by 
using a LIBSVM program [25]. As a result, interestingly, 
SVM also classified the SND-data at higher accuracies 
than the original-data (Supplementary Fig.  S3). When 
trained only on one GBM data (the unified GBM data), 
either on original or SND data, the SVM exhibited 
better performance to classify the 6 original datasets 
(Supplementary S3) than the SND-CDNN (Fig.  3A). 
However, when used larger datasets (Train2Sets and 
Train9Sets) as training data, SND-CDNNs exhibited 
better performances than SVM (77.71 ± 12.03% vs 
60.89 ± 15.07, 92.72 ± 3.40% vs 89.79% ± 9.55%, Fig. 3A 
and Supplementary Fig.  S3), indicating CDNNs have 
advantages in larger datasets with better generalization 
capacity. We further split the Train9Sets into training 
data (90%) and validation data (10%), which were used 
to train the SVM model (SVM- Train9Sets) and exam-
ine the prediction capacity. As a result, we got 6 SVM- 
Train9Sets models, which classified the validation data 
at accuracies of 85.43% ~ 88.58% (86.88% ± 1.33%, Fig. 
S4). Notably, SVM-Train9Sets also classified the NE 
subtype with the lowest accuracy (62.75% ± 9.05%, Sup-
plementary Fig.  S4). These results further supported 
our conclusions that, SND-data kept key information 
for classification and NE subtype is not compatible with 
the 4 subtypes classification.

Although exhibited better performance than the SVM 
models in larger datasets, the CDNN models still have 
some limitations. First, because the fundamental princi-
ples of the CDNN is not fully clarified, this model has lit-
tle value to provide insights into the underlying biological 
processes, and therefore has poor interpretability when it 
comes to translational cancer genomics. Next, similarly, 
although the CDNN models had better performances 
than the DNN, it is difficult to demonstrate the exact 
meanings of the transformed two-dimensional data of 
the genomic profiles. Nevertheless, in practice, given that 
obtaining the genomic profiles of a given sample would 
need lower price and shorter time in the future, it would 
be acceptable to identify the subtype of a GBM sample 
based on its genomic profile. The present work provided 
potential ways to make this process more feasible. Spe-
cifically, the internal-rank based SND transformation 
provides a concise algorithm to unify the genomic data. 
In addition, because sample size is important for the 
training of deep learning models, accumulated data in 
the future would further improve the performance of the 
CDNN models.
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Conclusion
In conclusion, the present work established approaches 
to normalize and classify GBM samples based only on 
their internal ranks of the genome data. Several net-
works were trained on the internal rank data of the 
genomic profile to classify GBM subtypes with high 
performance. In addition, the CDNNs analysis sug-
gested to exclude the NE subtype from the four GBM 
subtype classification system.
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