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Abstract

Objective: As a critical feature of cancers, stemness is acknowledged as a contributor to the development of drug
resistance in gastric cancer (GC). LncRNAs have been revealed to participate in this process. In this study, we tried
to develop a stemness-related lncRNA pair signature as guidance for clinical decisions.

Methods: The analysis was initiated by collecting stemness-related lncRNAs in TCGA cohort. The differentially
expressed stemness-related lncRNAs between normal and tumor tissues in GC patients from TCGA datasets were
further collected to establish the signature based on Lasso and Cox regression analyses. The predictive efficacy of
the signature for chemotherapy and immunotherapy was also tested. The practicality of this signature was also
validated by Zhongshan cohort.

Results: A 13-DEsrlncRNA pair-based signature was established. The cutoff point acquired by the AIC algorithm
divided the TCGA cohort into high and low risk groups. We found that the low-risk group presented with better
survival (Kaplan-Meier analysis, p < 0.001). Cox regression analyse was also conducted to confirm the signature as an
independent risk factor for GC {p < 0.001, HR = 1.300, 95% CI (1.231–1.373)]}. As for the practicality of this signature,
the IC50 of cytotoxic chemotherapeutics was significantly higher in the high-risk group. The low-risk group also
presented with higher immunophenoscore (IPS) in both the “CTLA4+ PD1+” (Mann-Whitney U test, p = 0.019) and
“CTLA4- PD1+” (Mann-Whitney U test, p = 0.013) groups, indicating higher sensitivity to immunotherapy. The
efficacy of the signature was also validated by Zhongshan cohort.

Conclusions: This study could not only provide a stemness-related lncRNA signature for survival prediction in GC
patients but also established a model with predictive potentials for GC patients’ sensitivity to chemotherapy and
immunotherapy.

Introduction
As a heterogeneous disease with a worldwide presence,
GC is ranked as the fifth most common malignant
tumor and the fourth leading cause of cancer-related
mortality worldwide [1, 2]. Despite all the efforts devoted

to improving the curative effect in the last decade, the
treatment outcomes of GC remain unsatisfactory. As
concluded in previous studies, more than two-thirds of
GC cases are diagnosed at advanced stages globally [3].
Compared with the treatment outcomes in western
countries, GC patents in eastern Asia are diagnosed at a
relatively early stage and thus get better survival. How-
ever, there is still much room for improvement in treat-
ment outcomes since the median overall survival is only
11 months with combination chemotherapy [4]. Later
lines of systemic therapy, such as ramucirumab and
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trifluridine/tipiracil, improve survival by only 1 to 2
months compared with placebo. New effective therapeu-
tics are needed [5, 6].
Immune checkpoint blockade (ICB) has brought about

unprecedented hope for cancer patients losing the op-
portunity for radical surgery, yet the clinical benefits are
still limited. For the ICB treatments of GC, the current
circumstances are not satisfactory. In 2017, a pro-
grammed cell death–1 (PD-1) inhibitor named pembro-
lizumab was granted accelerated approval from the US
Food and Drug Administration for the treatment of re-
current locally advanced or metastatic gastric cancer.
Approval was made based on a single-armed phase 2
clinical trial [7]. Previous studies hold the opinion that
tumors with higher expression levels of programmed cell
death ligand 1 (PD-L1) are more likely to benefit from
PD-1 inhibitors. However, the objective response rate in
PD-L1– high tumors was finally revealed to be 11.6 and
11.2% in two independent PD-1 inhibitor-concerning
clinical trials [8, 9]. The development of a model for the
proper selection of GC patients who can benefit from
ICB therapy is urgently needed.
Stemness has long been recognized as one of the most

important characteristics of tumor cells. It is acknowl-
edged that stemness may lead to tumor recurrence and
chemotherapy resistance. However, it remains unknown
whether stemness may affect the efficacy of immuno-
therapy in GC. Defined as transcripts that are longer
than 200 nt, long noncoding RNAs (lncRNAs) have been
identified as crucial factors affecting tumor biological
function. The aberrant expression of lncRNAs has been
revealed to have a profound impact on cancer biological
behaviors such as proliferation, progression and metasta-
sis [10]. The correlations between lncRNAs and cancer
stemness cells (CSCs) have been revealed in previous
studies [10]. Many lncRNAs have been reported to affect
the biological functions of cancer by regulating the stem-
ness of cancer cells. It has been reported that DANCR
could enhance the stemness characteristics of hepatocel-
lular carcinoma by lowering the expression of CTNNB1,
which thus leads to chemotherapy resistance [11]. More-
over, the development of cancer stem cells (CSCs) in
breast cancers was found to be highly linked with a
novel lncRNA named lnc030, which may stabilize SQLE
mRNA and increase stemness features [12]. Recent evi-
dence has also suggested that lncRNAs contribute to the
malignant phenotypes of cancer not only through gen-
omic or transcriptomic alterations but also by altering
the immune microenvironment [13]. However, the stem-
ness related lncRNAs have still not been well elucidated
in GC and the interactions among them were also ob-
scure. Despite that multiple lncRNAs have been revealed
to participate in the development of stemness feature,
the most crucial lncRNAs also remained unknown.

Considering that lncRNAs were highly correlated to
exert similar biological functions, it is urgently needed
to find out the potential mechanisms hidden behind.
In this study, we aimed to develop a stemness-related

lncRNA pair signature with guiding significance for clin-
ical decisions. This study could not only provide a
stemness-related lncRNA signature for survival predic-
tion in GC patients but also established a model with
predictive potentials for GC patients’ sensitivity to
chemotherapy and immunotherapy.

Materials and methods
Data source and DEsrlncRNA collection
The RNA-seq data and clinical profiles of GC patients
were derived from the TCGA Data Portal (https://portal.
gdc.cancer.gov/, December 10, 2020). A total of 375 pa-
tients who had integral lncRNA and mRNA expression
profiles, survival information and common clinicopatho-
logical characteristics were enrolled in this signature es-
tablishment process. GTF files were downloaded from
Ensembl (http://asia.ensembl.org) for annotation to dis-
tinguish the mRNAs and lncRNAs. RNA-seq and sur-
vival data of 29 GC patients enrolled in clinical trial
concerning neoadjuvant chemotherapy were also ac-
quired. Mandard tumor regression grade (TRG) was ap-
plied as the criteria for calculating the chemotherapy
response of patients [14]. This system classifies patho-
logic response as follows: TRG 1 (complete regression/fi-
brosis with no evidence of tumor cells), TRG 2 (fibrosis
with scattered tumor cells), TRG 3 (fibrosis and tumor
cells with a dominance of fibrosis), TRG 4 (fibrosis and
tumor cells with a dominance of tumor cells), and TRG
5 (tumor without evidence of regression). Grade 1–2
was defined as major response while Grade 3–5 as
minor response. A list of stemness-related genes (SRGs)
was acquired from a previously published review [15]
and was used to screen stemness-related lncRNAs by a
coexpression strategy under the threshold of coefficient
value > 0.4 and p value < 0.05. To further collect the dif-
ferentially expressed stemness-related lncRNAs
(DEsrlncRNAs), differential expression analysis between
normal (N = 32) and tumor (N = 375) RNA-seq data was
conducted with the R package “limma” under the thresh-
old of |fold change (FC) > 1| and false discovery rate
(FDR) < 0.01.

Pairing DEsrlncRNAs
The DEsrlncRNAs were cyclically singly paired, and a 0-
or-1 matrix was constructed assuming C was equal to
lncRNA A plus lncRNA B; C was defined as 1 if the ex-
pression level of lncRNA A was higher than that of
lncRNA B; otherwise, C was defined as 0. Then, the con-
structed 0 or 1 matrix was further screened. No relation-
ship was considered between pairs and prognosis if the
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expression quantity of lncRNA pairs was 0 or 1 because
pairs without a certain rank could not properly predict
the patient survival outcome. When the number of
lncRNA pairs whose expression quantity was 0 or 1
accounted for more than 20% but less than 80% of the
total pairs, it was considered a valid match. The process
was originally and specifically described in previous pub-
lications [16].

Construction of the DEsrlncRNA pair-based Riskscore
Lasso regression was performed with 10-fold cross valid-
ation and a p value of 0.05 based on the results of the
univariate analysis for DEsrlncRNA pairs. A total of
1000 cycles were run, and random stimulation was per-
formed 1000 times in each cycle. Next, the frequency of
each pair was acquired, and pairs with frequencies
greater than 100 were collected for further Cox regres-
sion analysis. The pairs with independent prognostic
predictive value were finally enrolled for the construc-
tion of the Riskscore model with the following formula:

Riskscore ¼
Xn

i¼1
coef lncRNAi pairð Þ�expr lncRNAi pairð Þ

In this formula, lncRNA pair represents the prognosis-
related lncRNA pairs derived from Cox regression ana-
lysis. Expr (lncRNAi pair) indicates the value of the
lncRNAi pair (1 or 0). Coef (lncRNAi pair) is the correl-
ation coefficient of the lncRNAi pair in the Riskscore
model. The AUC value of each model was also calcu-
lated from ROC curves. The highest point of the drawn
curve represented the maximum AUC value. Different
time limitations (1-, 2-, and 3-years) for the ROC curves
were all tested. The 1-year ROC curve was applied to
evaluate the AIC values to identify the maximum inflec-
tion point, which was regarded as the cutoff point to
separate the high-risk group from the low-risk group in
the established Riskscore model.
Kaplan–Meier curves were drawn to compare the sur-

vival difference between the high and low-risk groups
with a threshold of p-value≤5%. The Wilcoxon signed-
rank test was applied to explore the correlations between
the Riskscore model and clinicopathological characteris-
tics. The Riskscore model was further tested by Cox re-
gression analysis to assess whether it is an independent
prognostic factor for GC patients.

Evaluation of the significance of the model in
Chemosensitivity prediction
To explore the sensitivity of different chemotherapeutic
agents for GC patients, the “pRRophetic” package in R
software (3.6.1) was applied to obtain the IC50 values of
GC-related chemotherapeutics and targeted drugs. This
algorithm was previously published and has been widely

used in multiple studies [17–19]. Mann-Whitney U test
was applied to compare the IC50 values between the low
and high-risk groups.

Functional enrichment analysis
The differentially expressed genes (DEGs) between the
low and high-risk groups were acquired with the
“limma” package in R software with a threshold of p
value < 0.05. Gene Ontology (GO) enrichment analysis
was conducted based on the DEGs. Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis for two risk
stratifications were also performed based on the
“cp.kegg.v7.4.symbols.gmt” reference package in GSEA
software.

Exploration of immune-related characteristics and tumor-
infiltrating immune cells
Tumor mutation burden (TMB) was defined as the total
amount of coding errors of somatic genes, base substitu-
tions, and insertions or deletions detected across per
million bases. The TMB score was acquired by calculat-
ing the mutation frequency with the number of variants/
the length of exons (38 million) for each sample via Perl
scripts based on the JAVA8 platform. Spearman correl-
ation analysis was further conducted to analyze the cor-
relations between the Riskscore and the TMB. A total of
17 immune checkpoints (IDO1, CD274, HAVCR2,
PDCD1, CTLA4, LAG3, CD8A, CXCL10, CXCL9,
GZMA, GZMB, PRF1, IFNG, TBX2, TNF, CD80, and
CD86) with potential therapeutic values were also com-
pared between the two risk stratifications.
To determine the relationship between the Riskscore

and the tumor immune microenvironment, the currently
well-known methods, including TIMER, XCELL,
QUANTISEQ, MCP-counter, EPIC, and CIBERSORT,
were applied to calculate the proportions of infiltrating
immune cells. Spearman correlation analysis was further
conducted to analyze the correlations between the Risk-
score and the immune cells. The correlation coefficients
of the results are shown in a lollipop diagram under the
threshold of R > 0.1 and p-value < 0.05.

Investigation of the significance of the model for immune
checkpoint blockade
The immunophenoscore (IPS) refers to the four main
parts (effector cells, immunosuppressive cells, MHC
molecules and immunomodulators) determining im-
munogenicity, and it is calculated without bias using ma-
chine learning methods. The IPS (range 0 to 10) was
calculated based on the gene expression in representa-
tive cell types. The IPS results of STAD patients were
downloaded from The Cancer Immunome Atlas (TCIA)
(https://tcia.at/home). The online tool Tumor Immune
Dysfunction and Exclusion (TIDE) (http://tide.dfci.
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harvard.edu) was used to predict the immunotherapeutic
responses of each sample based on the transcriptome
profiles. The TIDE score was compared between the
high and low ICI score groups. A lower TIDE score indi-
cated a relatively better response to immunotherapy.

RNA extraction and sequencing
Formalin fixation and paraffin embedding tissues of 29
patients enrolled in clinical trial concerning neoadjuvant
chemotherapy were acquired from the pathology depart-
ment of Zhongshan Hospital after obtaining the patient’s
informed consents. Total RNA was extracted from re-
cently cut 10 mm FFPE sections using the miRNeasy
FFPE kit (Qiagen, Valencia, CA) according to the manu-
facturer’s protocol, using 1–4 sections (10–40mm) per
case depending on assay. RNA yield and quality were de-
termined by UV absorption on a NanoDrop 1000 spec-
trophotometer and fragment size was analyzed using the
RNA 6000 Nano assay (Agilent Technologies, Santa
Clara, CA) run on the 2100 Bioanalyzer. DV200 values
representing the percentage of RNA fragments above
200 nucleotides in length were determined according to
Agilent and Illumina recommended protocols. To deter-
mine the minimal amount of tissue needed to yield ad-
equate RNA quantity for library preparation, RNA yield
per 10 mm section number was tested. Based on the test
results, one or two 10 mm sections of breast FFPE speci-
mens were used for RNA isolation. RNA quality was
assessed using DV200 values and cases with DV200
more than 27% were included for library preparation.
After Library preparation, Sequencing was performed on
a Hi-Seq 2500 using a 100 cycle, single read protocol
with a depth of approximately 90 million reads per sam-
ple. Following initial sequencing, 3 of the 6 libraries were
repooled and independently sequenced. Base call files
were converted to fastq format using Bcl2Fastq (Illu-
mina). All RNA-seq reads were aligned to the human
reference genome (GRCh38, release 84) using STAR
(version 2.5.2b). The studies were reviewed and ap-
proved by Ethics Committee of Zhongshan Hospital Af-
filiated to Fudan University (Approval No: B2017–003).

Results
Identification of DEsrlncRNAs and DEsrlncRNA pair
construction
The workflow of this study is shown in sFigure 1. The
RNA-seq data of the TCGA STAD cohort were firstly
applied to annotate and collect the lncRNAs according
to gene transfer format (GTF) files from Ensembl. The
expression level of 42 SRGs were also extracted from the
TCGA STAD RNA-seq data (Supplementary Table 1).
To find out the roles SRGs played in GC, we make com-
parison of them between tumor and normal tissues in
TCGA cohort. Besides, we also conducted univariate

Cox regression analysis of 42 genes. The results revealed
that most of the SRGs were differentially expressed and
most of them were found increased in tumor tissues ex-
cept for KIT, NGFR, SOX2 and KLF4 (sFigure 2A). Fur-
thermore, more than half of SRGs indicated prognostic
values based on univariate Cox regression analysis (sFi-
gure 2B). The results suggested that the SRGs might be
important for GC development. After that, differentially
expressed LncRNAs were secondarily acquired based on
the comparisons between 32 normal and 375 tumor
RNA-seq data points (p ≤ 0.01, log2 fold change = 1). A
total of 240 lncRNAs were acquired (Fig. 1A) (Supple-
mentary Table 2). Coexpression analysis was further
conducted between stemness-related genes and 240 dif-
ferentially expressed lncRNAs (Spearman correlation
analysis, p ≤ 0.05). A total of 98 lncRNAs (88 upregu-
lated and 10 downregulated) were identified as
DEsrlncRNAs. The DEsrlncRNAs are presented in a vol-
cano plot (Fig. 1B) (Supplementary Table 3). The 98
lncRNAs were further processed to obtain 13 lncRNA
pairs for further establishment of the Riskscore model
based on Cox and Lasso regression algorithms (Fig. 1C).
The process of pairing the lncRNAs is described

below. Using an iteration loop and a 0-or-1 matrix
screening among 98 DEsrlncRNAs, 3231 valid
DEirlncRNA pairs were identified. The 3231 pairs were
first processed with a univariate Cox regression analysis
preliminarily to extract 57 pairs with prognosis-
predictive values. After a single factor test followed by
Lasso regression analysis, 26 DEsrlncRNA pairs were
further selected from the 57 pairs (sFigure 3A and B).
Afterwards, univariate Cox regression analysis by the
stepwise method was conducted to finally select 13 pairs
out of the 26 pairs (sFigure 3C). The 13 pairs were con-
firmed as independent prognostic factors by a further
multivariate Cox regression analysis (Fig. 1C).

Development of the DEsrlncRNA pair-based Riskscore
Next, we calculated the areas under the curve (AUCs)
for each receiver operating characteristic (ROC) curve of
the 13 pairs, drew the curved line, and found the highest
point referring to 0.746 for the maximum AUC value
(Fig. 2A). The maximum inflection point is also the cut-
off point (risk value = 1.557) obtained by the Akaike in-
formation criterion (AIC). To validate the optimality, the
1-, 2-, and 3-year ROC curves of the model were also
drawn. The corresponding AUC values were 0.746,
0.791 and 0.802 (Fig. 2B). The comparison of the AUC
value between the 1-year ROC curve and other clinical
characteristics showed the superiority of the Riskscore
(Fig. 2C). The survival state of each patient is also pre-
sented with scatter plots, and the cutoff point separated
the low-risk group (N = 238) from the high-risk group
(N = 112) (Fig. 2D). Patients in the low-risk group
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experienced better survival based on the Kaplan-Meier
test (p < 0.0001) (Fig. 2E). The univariate and multivari-
ate Cox regression analyses finally confirmed the signa-
ture as an independent risk factor for GC (p < 0.001,
HR = 1.300, 95% CI [1.231–1.373]) (Fig. 2F and G). Con-
sistently, grade (p = 0.034, HR = 1.463, 95% CI [1.027–
2.085]) and stage (p < 0.001, HR = 1.597, 95% CI [1.274–
2.002]) were also revealed as independent risk factors
(Fig. 2F and G).

Analysis of the correlations between the Riskscore and
chemotherapeutics and targeted drugs
Stemness has been acknowledged as a predictor of worse
response to chemotherapy. Based on the “pRRophetic”
package from R software, the IC50 values of 6 GC-
related chemotherapeutics and targeted drugs (cisplatin,
doxorubicin, gemcitabine, vinblastine, pazopanib, and
dasatinib) were calculated for each case. The results re-
vealed that the IC50 values for cytotoxic

Fig. 1 Establishment of the risk assessment model based on DEsrlncRNA pairs. Identification of differentially expressed stemness-related lncRNAs
(DEsrlncRNAs) using TCGA STAD datasets. A and B The lncRNAs are shown by the heatmap (A) and volcano plot (B). C A forest map showing 13
DEsrlncRNA pairs identified by multivariate Cox proportional hazards regression with the stepwise method
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Fig. 2 Validations of the prognostic predictive value of the established DEsrlncRNA pair-based signature. A The maximum inflection point was
the cutoff point obtained by the Akaike information criterion (AIC). B The 1-, 2-, and 3-year ROC curves of the model were drawn and revealed
that the AUC values were all over 0.7. C A comparison of 1-year ROC curves with other common clinical characteristics shows the superiority of
the Riskscore. D The Riskscores and survival state of all patients are shown. E Patients in the low-risk group had a longer survival time, as
determined by the Kaplan-Meier method. F and G Univariate and multivariate Cox analyses confirmed the signature as an independent risk factor
for the TCGA STAD cohort
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chemotherapeutics [cisplatin (p= 0.018) (Fig. 3A), gemcita-
bine (p= 0.02) (Fig. 3B), doxorubicin (p= 0.0031) (Fig. 3C),
and vinblastine (p= 0.0021) (Fig. 3D)] were significantly
higher in the high-risk group. Moreover, the IC50 values for
the targeted drugs {pazopanib (p < 0.0001) (Fig. 3E) and dasa-
tinib (p= 0.03) (Fig. 3F)} were significantly higher in the low-
risk group.

Functional enrichment analysis
Differentially expressed gene (DEG) analysis between the
low- and high-risk groups was performed, and 760 DEGs

were acquired (Supplementary Table 4). The DEGs were
further processed with ID transformation to conduct
GO enrichment analysis. The top 5 enriched pathways
of the low-risk group were all immune-related, namely
“positive regulation of leukocyte cell-cell adhesion”,
“regulation of leukocyte cell-cell adhesion”, “lymphocyte
differentiation”, “positive regulation of cell-cell adhe-
sion”, and “T cell differentiation” (q value filter< 0.05)
(Fig. 4A). The 5 immune-related pathways may suggest
that the tumors with lower Riskscore were more likely
to be immune-activated since the 5 pathways were all

Fig. 3 IC50 values for cytotoxic chemotherapeutics between different risk stratifications. A-D The IC50 values of 4 cytotoxic chemotherapeutics
acquired from pRRophetic algorithm, A cisplatin, B gemcitabine, C doxorubicin, and D vinblastine, were significantly lower in the low-risk group.
E and F The IC50 values of 2 targeted drugs acquired from pRRophetic algorithm, including E pazopanib and F dasatinib, were significantly lower
in the high-risk group. (Mann-Whitney U test * for p < 0.05, ** for p < 0.01, and *** for p < 0.001)
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related to immune activation. Furthermore, the top 5
enriched pathways and corresponding genes are de-
scribed in detail by correlation Circos plots (Fig. 4B).
GSEA KEGG analysis was also conducted. The results

revealed that the low-risk group was also highly enriched
in immune-related pathways, such as “KEGG_PRI-
MARY_IMMUNODEFICIENCY” (NES = 1.86, P =
0.006), “KEGG_NATURAL_KILLER_CELL_MEDI-
ATED_CYTOTOXICITY” (NES = 1.63, P = 0.036) and
“KEGG_ANTIGEN_PROCESSING_AND_PRESENTA-
TION” (NES = 1.69, P = 0.043) (Fig. 4C). The results
showed consistency with to the GO enrichment analysis
results above.

Immune-related characteristics and ICB therapy response
based on the DEsrlncRNA pair-based Riskscore
The functional enrichment analysis above suggested that
the Riskscore was obviously related to tumor immunity.
Tumor mutation burden (TMB) and the expression level
of immune checkpoints are well known as important

indicators for the application of ICBs. The Riskscore
presented negative correlations with TMB values based
on the Spearman correlation analysis (R = -0.14, p
value = 0.012) (Fig. 5A). Since TMB is recognized as a
better treatment response predictor of ICB, the lower
value of the Riskscore was again shown to have similar
potential. The expression levels of 17 immune check-
points, including IDO1, CD274, HAVCR2, PDCD1,
CTLA4, LAG3, CD8A, CXCL10, CXCL9, GZMA,
GZMB, PRF1, IFNG, TBX2, TNF, CD80, and CD86,
were collected from the RNA-seq data. The comparisons
between the two risk groups revealed that most of the
markers presented with significant differences in expres-
sion levels (Kruskal-Wallis test) (Fig. 5B). Of all the dif-
ferentially expressed immune checkpoints, PRF1 (p <
0.01), CTLA4 (p < 0.01), IFNG (p < 0.001), CXCL9 (p <
0.05), CD274 (p < 0.05), GZMA (p < 0.05), IDO1 (p <
0.01), GZMB (p < 0.01), CD8A (p < 0.01), PDCD1 (p <
0.001) and LAG3 (p < 0.01) were higher in the low-risk
group, while only TXB2 (p < 0.01) was higher in the

Fig. 4 Functional enrichment analysis. A Gene Ontology enrichment analysis based on differentially expressed genes (Risk-L vs. Risk-H) indicated
that immune-related pathways were highly enriched in low-risk groups. B The top 5 pathways and corresponding genes are described in detail
by the correlation Circos plot. C GSEA Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis based on differentially expressed genes (Risk-L
vs. Risk-H) also revealed that the immune-related pathways were highly enriched in low-risk group
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Fig. 5 Correlations between the DEsrlncRNA pair-based signature and immunotherapy. A Tumor mutation burden was negatively correlated with
the Riskscore. B The comparisons of 17 immune checkpoints between the two risk groups revealed that most of the markers were higher in the
low-risk group. (Mann-Whitney U test’s t test, * for p < 0.05, ** for p < 0.01, and *** for p < 0.001 and ns for not significant). C Correlation analysis
revealed that immune components were more enriched in the low-risk group (Spearman correlation analysis, p ≤ 0.05). (D) IPS analysis revealed
that the Riskscore may present a better performance in predicting PD1 blockade therapy than CTLA4 blockade therapy. {“ctla4+ pd1+” (Mann-
Whitney U test, p = 0.019) and “ctla4- pd1+” (Mann-Whitney U test, p = 0.013)}
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high-risk group. The above results all strongly indicated
the potential predictive value of the Riskscore model for
ICB therapy efficacy.
To further elucidate the immune spectrum variations

between the two risk stratifications, the currently used
software with the function of calculating the compo-
nents of immune cells, including TIMER, XCELL,
QUANTISEQ, MCP-counter, EPIC, and CIBERSORT,
was applied. The Spearman correlation analysis revealed
that immune components are distinctly variable. Cells
with antitumor effects, such as CD8+ T cells, CD4+ T
cells, B cells and plasma cells, presented negative corre-
lations with the Riskscore, while cells with pro-cancer
functions, such as M2 macrophages and cancer-
associated fibroblasts, presented positive correlations
(Fig. 5C).
Considering all the results above, we further investi-

gated the predictive value of the Riskscore for ICB ther-
apy. The results of IPS analysis for TCGA STAD were
downloaded from the TCIA website. PD1 and CTLA4
were enrolled for IPS analysis. Higher IPS represented
better accuracy for the more corresponding result (Sup-
plementary Table 5). The results were further classified
into 4 groups, namely, ips_ctla4_neg_pd1_neg (CTLA4-
negative response and PD1-negative response), ips_
ctla4_neg_pd1_pos (CTLA4-negative response and PD1-
positive response), ips_ctla4_pos_pd1_neg (CTLA4-posi-
tive response and PD1-negative response), and ips_
ctla4_pos_pd1_pos (CTLA4-positive response and PD1-
positive response). A pairwise comparison of the two
risk stratifications in the four groups revealed that the
low-risk group was more likely to benefit from treatment
with PD1 inhibitors. The average IPS of the low-risk
group was higher than that of the high-risk group in
both “CTLA4+ PD1+” (Kruskal-Wallis test, p = 0.019)
and “CTLA4- PD1+” (Kruskal-Wallis test, p = 0.013)
(Fig. 5D). For the CTLA4 inhibitor group, the average
IPS was not significantly different between the two risk
groups (Fig. 5D). The results may indicate a better effi-
cacy of this Riskscore model for PD1 therapy response
prediction.

Validation of DEsrlncRNA pair-based signature with
Zhongshan cohort
To further validate the application value of DEsrlncRNA
pair-based signature, we conduct analysis using
Zhongshan cohort. The log rank test shown by Kaplan-
Meier curves indicated a better overall survival for low-
risk group in Zhongshan cohort based on best cutoff
method (P < 0.001) (Fig. 6A). The conclusion was highly
consistent with our previous finding. To further validate
the potential value of this signature for clinical applica-
tion, we calculated the TIDE value of each sample to
make comparisons. The TIDE value was significantly

decreasing in low-risk group, confirming a better re-
sponse potential to immunotherapy (Mann-Whitney U
test. **p < 0.01) (Fig. 6B). Since the Zhongshan cohort
was composed of patients receiving neoadjuvant, we
compared the risk score between major response (Man-
dard TRG 1–3) and minor response (Mandard TRG 4–
5) groups. Despite no statistical significance was ob-
served, the risk score in major response group presented
with a decreasing trend (Fig. 6C).

Discussion
In this study, we aimed to develop a stemness-related
lncRNA pair signature with guiding significance for
chemotherapy and immunotherapy. The analysis was initi-
ated by collecting stemness-related lncRNAs in GC based
on the correlation analysis between stemness genes and
lncRNAs. The differentially expressed stemness-related
lncRNAs (DEsrlncRNAs) (normal tissues vs tumor tissues)
in GC patients from TCGA datasets were further acquired
to establish the Riskscore model with Lasso and Cox re-
gression analyses. Since stemness is acknowledged as an
important cause of chemotherapy resistance, the Riskscore
was tested for its predictive value for chemotherapy re-
sponse. After that, functional enrichment analysis was
conducted. The immune-related pathways were revealed
to be highly correlated with lower Riskscore. The results
prompted us to explore the relevance between the Risk-
score model and immune-related signatures. Immune
checkpoint blockade (ICB) therapy-related features, such
as microsatellite instability (MSI), tumor mutation burden
(TMB) and immune checkpoints, also presented signifi-
cant correlations with the Riskscore model. We further
examined the predictive efficacy of ICB therapy based on
immunophenoscore (IPS) analysis. This study could not
only provide a stemness-related lncRNA signature for sur-
vival prediction in GC patients but also established a
model with predictive potentials for GC patients’ sensitiv-
ity to chemotherapy and immunotherapy.
With the popularity and development of transcriptome

sequencing technology in recent years, GC-related stud-
ies focusing on constructing signatures with both coding
genes and noncoding RNAs to assist with clinical
decision-making are increasing [20, 21] . However, most
of these signatures were established based on quantifying
the expression levels of transcripts, and the predictive ef-
ficacy was more likely to be affected by batch effects. In-
spired by the strategy of the immune-related gene
pairing model, we tried to develop a reasonable Risk-
score signature with two-lncRNA combinations and did
not adopt their exact expression levels in the signature.
The predictive value of the signature was theocratically
more consistent between different RNA-seq data since
the batch effect was weakened [16] . Furthermore, this is
the first lncRNA pair model established in GC.

Jiang et al. BMC Cancer         (2021) 21:1067 Page 10 of 14



Though cancer stemness, lncRNAs and tumor immun-
ity have all emerged as important factors of cancer in re-
cent years, their covariation across cancers has not been
systematically elucidated. The first step of our study was
to collect stemness-related lncRNAs using coexpression
analysis. Screening for differentially expressed lncRNAs
between normal and tumor tissues helped further to se-
lect candidate stemness-related lncRNAs for signature
establishment. After that, we constructed and validated
the lncRNA pairs using the method of cyclical single
pairing along with a 0-or-1 matrix. The DEsrlncRNA
pair-based Riskscore model was finally established. The
Riskscore could be a quantitative indicator of stemness.
A higher score indicated higher stemness properties.
The clinical practicality of the Riskscore was first tested
by survival analysis. Patients in the low-risk group expe-
rienced better survival based on the Kaplan-Meier test.

Further, Cox regression analysis confirmed the Riskscore
model as an independent risk factor for GC. The results
were as expected since stemness is generally acknowl-
edged as a factor contributing to the malignant charac-
teristics of cancers [15] .
Cancer stem cells (CSCs) have attracted increasing at-

tention for their self-renewal and multipotent properties,
as well as their proliferative potential, which gives cer-
tain cellular subpopulations the ability to initiate, de-
velop, and progress to cancer [22] . Considering that
stemness may lead to chemotherapy resistance, we
tested the efficacy of the Riskscore for chemotherapy
and targeted therapy responses. Based on the “pRRophe-
tic” package from R software, the IC50 values of 6 GC-
concerning chemotherapeutics and targeted drugs (cis-
platin, doxorubicin, gemcitabine, vinblastine, pazopanib,
and dasatinib) were calculated for each patient. The

Fig. 6 Validation of DEsrlncRNA pair-based signature with Zhongshan cohort. A The log rank test shown by Kaplan-Meier curves indicated a
better overall survival for low-risk group in Zhongshan cohort (P < 0.001) B The TIDE value was significantly decreasing in low-risk group,
confirming a better response potential to immunotherapy. (Mann-Whitney U test. **p < 0.01). C As for chemotherapy response, a lower risk score
was also observed in patients diagnose as major response, but the result was not statistically significant. (Kruskal-Wallis test. ns for not significant)
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results revealed that the IC50 values for cytotoxic che-
motherapeutics was higher in the high-risk group. More-
over, the IC50 values for targeted drugs was higher in
the low-risk group. The results of chemotherapeutics
were easy to interpret since the high-risk group harbored
stronger stemness properties. The reason why the high-
risk group was more likely to benefit from targeted ther-
apy may partially be attributed to the pharmacological
actions of these therapies. Targeted drugs may block tar-
get proteins that are crucial for the development of
stemness properties. For example, hypoxia-inducing fac-
tors such as HIFs have been reported to enhance stem-
ness properties in multiple malignancies. Drugs
targeting these factors, such as “TH-302”, have been re-
vealed to overcome chemotherapy resistance caused by
stemness-related pathways [23]. As contributors to stem-
ness, YAP and TAZ are frequently observed in various
cancers and are associated with chemotherapeutic resist-
ance. Dasatinib may inhibit the nuclear localization and
target gene expression of YAP and TAZ and thus re-
verse chemotherapy resistance [24]. However, direct evi-
dence of our hypothesis is still limited.
To further determine the pathways related to the Risk-

score model, functional enrichment analysis was per-
formed based on the different risk stratifications. GO
enrichment analysis based on the DEGs between the two
risk groups revealed that immune-related pathways were
highly enriched in the low-risk group. Most of the
enriched pathways were found to exert antitumor func-
tions. To validate the results, we further conducted
GSEA KEGG analysis. The low-risk group was also
enriched in immune-related pathways. To further clas-
sify the responsible immune proportions, the currently
well-known methods, including TIMER, XCELL,
QUANTISEQ, MCP-counter, EPIC, and CIBERSORT,
were applied to calculate the proportions of infiltrating
immune cells. Cells with antitumor effects, such as
CD8+ T cells, CD4+ T cells, B cells and plasma cells,
were higher in the low-risk group, while cells with pro-
cancer functions, such as M2 macrophages and cancer-
associated fibroblasts, were higher in the high-risk
group. The results indicated that stemness may lead to a
suppressive immune landscape. After reviewing the pre-
vious studies, we found that the hypothesis had been
partially proven. Alex et al. used gene expression–based
metrics to evaluate the association of stemness with im-
mune cell infiltration and genomic, transcriptomic, and
clinical parameters across 21 solid cancers. The authors
found pervasive negative associations between cancer
stemness and anticancer immunity [25]. Ma et al. also
proposed the opinion that glioma stem cells (GSCs) and
other nontumor cells present in the glioma microenvir-
onment serve as critical regulators of the immune land-
scape. The accumulation of stem cells is highly

correlated with the immunosuppressive microenviron-
ment in glioma [26].
Considering that distinct tumor immunity was ob-

served, we further examined whether the Riskscore was
applicable for immunotherapy prediction. Many indexes
are regarded as vital criteria for the enrollment of pa-
tients suitable for ICB therapy. Of all the indexes, MSI,
TMB and the expression levels of immune checkpoints
such as PD1 are most important. Higher levels of MSI,
TMB and immune checkpoint expression levels have
been widely acknowledged as indicators for better ICB
therapy response [27]. Our analysis revealed that the
Riskscore was negatively correlated with all these in-
dexes. The results may suggest that the low-risk group
could better benefit from ICB therapy. To validate this
hypothesis, the IPS algorithm was applied to estimate
the GC patient response to PD1 and CTLA4 blockade.
A lower Riskscore may predict better treatment efficacy
for PD1 but not CTLA4.
In recent years, studies committed to constructing

stemness-related models to guide clinical decision-
making have emerged. Hao et al. conducted a network
analysis to collect stemness-related genes in lung can-
cers. The genes were further processed to establish a sig-
nature with predictive value for chemotherapy and
immunotherapy responses [28]. Zhang et al. built a 13-
mRNA-based prostate cancer stemness model that had
high predictive significance for progression-free survival
(PFS). The model was also revealed to be closely linked
to immune microenvironment changes [29]. Wang et al.
established a novel stemness-based classification with
appealing implications in discriminating the prognosis
and immunotherapy and temozolomide responses of 906
glioblastoma patients. Besides, miRNAs and circRNAs
have also been implicated in stemness feature develop-
ment and related to tumorigenesis. Zhao et al. designed
a risk model involving three miRNAs (miR-4521, miR-
3682-3p, and miR-1269a). The model could not only
served as prognosis predictor, but also being found to be
significantly positively or negatively associated with im-
mune infiltration, tumor microenvironment, cancer
stemness properties, and tumor mutation burden at dif-
ferent degrees in EC [30]. As a novel circular RNA im-
plicated in cancer development, evaluation of circFAT1
in squamous cell carcinoma (SCC) unifies and regulates
the positive association between cancer stemness and
immune evasion by promoting STAT3 activation [31].
Interestingly, all the studies mentioned above concluded
that stemness features may predict an immunosuppres-
sive landscape. A lower stemness feature was more likely
to benefit from ICB therapy.
As for the selection of appropriate patients for ICB

therapy, the criteria are still controversial. Of all the re-
ported standards, the Combined Positive Score (CPS) of
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PD-L1 attracts the most attention. The CPS focuses not
only on the percentage of PD-L1-positive cells but also
sheds light on the cell types [32]. However, the CPS re-
mains at the standard of manual reading. The efficacy
and accuracy of the CPS has actually not been well eluci-
dated [33]. Recently, an inflammatory gene signature
was tested for its efficacy to predict the treatment re-
sponse of ICB treatments for gastric cancer [34]. Consid-
ering that the criteria were established based on
objective indexes, the detection stability may be better
compared with the CPS. Therefore, the Riskscore we
established is worthy of further study for its predictive
efficacy.
Some limitations in this study inevitably exist. A high

predictive efficacy was observed in TCGA STAD data-
sets and the signature was also validated in Zhongshan
cohort. However, we failed to obtain an immunotherapy
cohort to validate the practicability of this model. A
proper explanation of the non-correlation between the
model and AJCC TNM stage is still needed. In addition,
all predictive results were derived from bioinformatic
methods. A real-world analysis is urgently needed.

Conclusion
In conclusion, we established a stemness-related lncRNA
pair signature for the prediction of GC patient survival.
The signature was established based on the comparison
of lncRNA expression levels instead of the expression
level itself. This method may help overcome the batch
effects caused by detection-relevant deviations. The
Riskscore was highly correlated with immune pathways.
The low-risk group was enriched with antitumor
immune-related cells. A lower Riskscore may help pre-
dict a better response to ICB therapies in clinical
practice.

Statistical analysis
Statistical analyses were performed utilizing R software
3.6.1, unless specifically noted elsewhere. The details of
the specific analysis methods were described in corre-
sponding results.
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