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Abstract

Background: Radiation therapy is among the most effective and commonly used therapeutic modalities of cancer
treatments in current clinical practice. The fundamental paradigm that has guided radiotherapeutic regimens are
‘one-size-fits-all’, which are not in line with the dogma of precision medicine. While there were efforts to build
radioresponse signatures using OMICS data, their ability to accurately predict in patients is still limited.

Methods: We proposed to integrate two large-scale radiogenomics datasets consisting of 511 with 23 tissues and
60 cancer cell lines with 9 tissues to build and validate radiation response biomarkers. We used intrinsic radiation
sensitivity, i.e, surviving fraction of cells (SF2) as the radiation response indicator. Gene set enrichment analysis was
used to examine the biological determinants driving SF2. Using SF2 as a continuous variable, we used five different
approaches, univariate, rank gene ensemble, rank gene multivariate, MRMR and elasticNet to build genomic
predictors of radiation response through a cross-validation framework.

Results: Through the pathway analysis, we found 159 pathways to be statistically significant, out of which 54 and
105 were positively and negatively enriched with SF2. More importantly, we found cell cycle and repair pathways to
be enriched with SF2, which are inline with the fundamental aspects of radiation biology. With regards to the
radiation response gene signature, we found that all multivariate models outperformed the univariate model with a
ranking based approach performing well compared to other models, indicating complex biological processes
underpinning radiation response.

Conclusion: To summarize, we found biological processes underpinning SF2 and systematically compared different
machine learning approaches to develop and validate predictors of radiation response. With more patient data
available in the future, the clinical value of these biomarkers can be assessed that would allow for personalization of
radiotherapy.
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Background

Radiotherapy is the mainstay of treatment for most types
of cancers [1]. Clinically, it is known that over half of all
cancer patients undergo radiotherapy either as a primary
therapeutic regimen or in an adjuvant or a neoadjuvant
setting. Current radiotherapy regimens are largely ‘one-
size-fits-all’ and do not allow for patient-specific
individualization [2]. In recent years, we have witnessed
a rapid evolution of technological advancements in
radiotherapy treatment delivery and dose conformity
through particle therapies, image-guided techniques [3,
4] and the latest addition being the flash radiotherapy
technique [5]. These significant advances have allowed
the adaptation of radiation treatment planning fields
based on anatomical changes of the gross tumor volume
(in maximizing tumor control probability [6] and min-
imizing late toxicities either alone [7, 8] or in combin-
ation with chemotherapy [9]). However, designing
personalized radiotherapeutic regimens based on the tu-
mor’s biological features is still hindered by the lack of
appropriate clinical biomarkers [10]. It is well known
that radiotherapy techniques deliver a known physical
dose with a high degree of accuracy to similar tumors,
however the radiation efficacy varies widely due to the
inter-patient variability [11, 12] and intra-tumor hetero-
geneity [13]. To tailor radiation therapy to individual pa-
tients, it is important to build predictive assays that can
potentially be used to design genomically-driven dosing,
facilitating decision making between treatments such as
neoadjuvant or adjuvant radiotherapy or chemo-
radiotherapy. This could augment the existing radiobio-
logical therapeutic strategies to genomically-driven per-
sonalized radiation regimens. Along these lines, the
application of transcriptomic fingerprinting to adminis-
ter OMICS-driven therapies is making inroads to pre-
clinical and clinical settings in precision radiation oncol-
ogy [14].

Access to OMICS data (such as, transcriptomics, pro-
teomics, epigenomics, etc.) has led to the emergence of
data-driven approaches to better understand the bio-
logical factors that influence tumor sensitivity response
to various therapies. Many physical and biological fac-
tors are known to influence tumor response to irradi-
ation that include total radiation dose [15], hypoxia [16],
reoxygenation [17], tumor doubling time, fractionation
scheme [18] and intrinsic radiosensitivity [16]. The con-
tinuous inflow of transcriptomics data holds great prom-
ise to develop novel molecular biomarkers of radiation
response. Several groups have conducted comprehensive
gene expression profiling and built genomic predictors
of radiation sensitivity under both oxic and hypoxic con-
ditions using cancer cell lines and patient data [10].

Mainly, two sets of approaches have been applied to
predict the radiation sensitivity, namely, bottom-up
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(data-driven) methods and top-down (hypothesis-based)
methods. A comprehensive set of various techniques ap-
plied to build radiation response gene signatures can be
found in a recently published work by Manem et al.
[10]. All the genomic signatures of radiation sensitivity
were built using the NCI-60 panel dataset with limited
to no independent external validation raising concerns
about their reproducibility. Some of the reasons include
noise in the cell line data and relatively low number of
samples compared to the number of predictors. Re-
cently, Yard et al. published a large radiogenomic dataset
of unprecedented size consisting of 511 cancer cell lines,
which were subjected to different types of high-
throughput screening. One of them is a radiation sensi-
tivity screen where radiation was administered to the cell
lines to see how well they inhibit the growth to obtain
radiation response data. Concurrently, the same cancer
cell lines were profiled at the transcriptomic level with
the goal of trying to correlate the molecular features of
these cells with radioresponse allowing for generation of
predictive models. Till date, none of the studies in the
literature have utilized these two radiogenomics datasets
in developing and validating radiation response bio-
markers. Given the complexity of the radiation response
predictions and the risk of discovering biological arti-
facts, there is a dire need to combine these two large-
scale radiogenomic datasets and build robust and repro-
ducible multivariate genomic predictors and validate
them on fully independent datasets. There has been a
paucity of studies that systematically explored various
modelling approaches based on data from the two lar-
gest radiation cell line screens. With the overall goal to
improve the accuracy of radiation sensitivity predictions,
we attempt to address these gaps in the current work.

In this study, we used two large-scale radiation gen-
omic datasets and compared different machine learning
approaches to predict radiation sensitivity. To the best
of our knowledge, this is the first time that both these
datasets were analyzed in a single study, which should
provide us with enough sample size to build robust gen-
omic predictors and validate them in a fully independent
dataset (discovery dataset = 511 cancer cell lines and
validation dataset = 60 cancer cell lines). The generation
of molecular predictors of radiation response in the pre-
clinical setting like the models we validated in this study
can be incorporated into the design of clinical trials.
This can potentially accelerate the emergence of
biologically-driven radiation regimens based on the gen-
omic characteristics of an individual’s tumor.

Methods

To develop robust molecular predictors of radiation re-
sponse, we used the recently published by Yard et al,
termed as Cleveland data set (CL) and Amundson et al.,
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termed as NCI-60 (NCI). We collected, curated and an-
notated these two large-scale radiogenomics datasets
using our recently published RadioGx, a computational
platform to perform radiogenomic analyses [19]. The CL
dataset consists of 511 cancer cell lines spanning across
23 histologies, while the NCI dataset has 60 cell lines
spanning across 9 histologies. This large compendium of
datasets will be used to build and validate genomic pre-
dictors of radiation sensitivity.

Radiation dose response data

In the CL dataset, multiple radiation doses ({1Gy, 2Gy,
3Gy, 4Gy, 6Gy, 8Gy}) were administered to obtain the
dose response data, while in the NCI dataset only three
radiation doses of {2Gy, 4Gy, 6Gy} were administered.
Through this radiation dose response data, we can ob-
tain summary indicators that will be useful for preclin-
ical investigations. Radiation sensitivity can be described
by the area under the curve (AUC) of the fitted radiobio-
logical model to the dose response data or at a specific
dose level such as surviving fraction at 2 Gy (SF2). Al-
though both AUC and SF2 have frequently been used in
the literature, there is currently no consensus regarding
the optimal indicator for use across studies when prob-
ing the biological determinants of radioresponse. How-
ever, the conventional indicator to determine intrinsic
radiation sensitivity is the surviving fraction at 2 Gy
(SF2) measured by clonogenic survival assays. This has
been supported by ex vivo studies that demonstrated
that tumor control probability may be associated with
SF2 following radiotherapy treatment [20]. In the
current study, we will use SF2 as the indicator of radi-
ation response to build and validate the genomic predic-
tors of radiation sensitivity.

Gene expression data

Raw Illumina RNA-seq profiles of the CL dataset were
retrieved from the CCLE website (http://www.
broadinstitute.org/ccle/) and for the NCI dataset, we re-
trieved the gene expression profiles using the R package,
rcell miner. This data has earlier been processed using
our RadioGx platform [19]. Analyses was restricted to
the genes common to the CL and NCI datasets, for a
total of 12,258 genes.

Modelling approaches

To build genomic predictors of radiation sensitivity, we
used the following regression-based linear methods as
described below -

1. Single gene: Gene that is strongly correlated with
SF2 was computed using the Spearman correlation.
This gene was then used to fit a univariate
regression model. This was the simplest approach
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and will serve as a benchmark for multivariate
models.

2. Rank gene ensemble: The most significant genes
were selected based on the ranking of correlation
between SF2 and gene expression. These genes
were then combined with their respective univariate
regression models using an ensemble approach. The
simplest ensemble approach was done by
aggregating the predictions obtained from each
univariate model.

3. Rank gene multivariate: This approach was similar
to the rank gene ensemble method, except that the
most significant genes were used to fit a
multivariate regression model.

4. mRMR: Two feature selection techniques were
employed that use minimum redundancy and
maximum relevance technique to select genes that
were most relevant and non-redundant through ex-
haustive and bootstrap methods [21]. The exhaust-
ive method initializes multiple feature selection
procedures, and K mRMR solutions were produced
in which the first selected feature was guaranteed to
be different. While the bootstrap method resamples
the original dataset with replacement to generate k
bootstraps, and classical mRMR feature selection
was performed for each of the bootstrapped data-
sets, thus generating K mRMR solutions. These
genes are then used to fit in a multivariate regres-
sion model.

5. ElasticNet: This is a widely used regularized
multivariate regression technique with L1/L2 penalty
that is optimized by a 10-fold cross-validation. We
fixed the value of a = 0.5, and selected the optimal
regularization parameter \ = e’, where y e (- 6, 5)
(taken from drug response modeling done on cell
lines [22]), through optimizing the mean squared
error of the model in inner cross-validation.

Although the ‘rank gene ensemble’ and ‘rank gene
multivariate’ are multivariate by nature, they do not take
into consideration the redundancy in features. Hence, we
implemented the mRMR feature selection, as it selects
genes that are strongly correlated with SF2 while minimiz-
ing their redundancy. As carried out in previous compara-
tive studies, in order to facilitate the comparison between
different modelling strategies, a 30 gene signature has
been demonstrated to be a trade-off between the model-
ling complexity and its relevance [23]. Hence, we fixed the
number of features to 30 for the ‘rank gene ensemble’,
‘rank gene multivariate’ and ‘mRMR’ approaches.

Model performance
The performance of each model was evaluated using the
concordance index metric, which is a generalization of
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the area under the ROC curve. The concordance index
is defined as the probability that two variables will rank
a random pair of samples in the same order. A random
predictive would result in an index of 0.5, while a perfect
predictor yields an index of 1.

Analysis framework

The analysis pipeline is illustrated in Fig. 1. The CL data-
set was used as the discovery cohort, while the NCI data-
set was used as the validation cohort. We first carried out
the pre-validation phase on the discovery dataset that con-
sisted of 10 iterations/repetitions of 10-fold cross-
validation for each of the models presented above. We
then trained each of the models on the CL dataset, tested
them on the NCI dataset and calculated the accuracy
using the concordance index. This was repeated ten times
to obtain an average value of accuracy for each model.

Biological determinants of SF2

The pathway enrichment analysis on the gene expression
profiles was carried out using the gene set enrichment
analysis (GSEA) method [24] with pathways defined by
the REACTOME’ database consisting of 1498 pathways
(downloaded from MSIGDB). Genes were ranked based
on their coefficient of correlation between the gene ex-
pressions and the radiation response variable, SF2. GSEA
was then used to compute the enrichment score for each
pathway with statistical significance calculated using a
permutation test (10,000 permutations) as implemented
in the piano package [25]. Nominal p-values obtained
for each pathway were corrected for multiple testing
using the false discovery approach (FDR).
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Results
To assess differences in the radiation response distribution
across all profiled cancer cell lines in the largest dataset
(CL cohort), we plotted the probability density distribu-
tion of SF2 values (Fig. 2A). We observed a range of radi-
ation response profiles with mean value of 0.6 (SD = 0.2).
To investigate the molecular processes that drive
SF2, we performed pathway analysis on the largest
dataset consisting of 511 cancer cell lines. For an
FDR < 5%, we found a total of 159 molecular path-
ways that were enriched with SF2 (Fig. 2B). Out of
which, 54 pathways were positively enriched and 105
pathways negatively enriched. Importantly, we found
two categories of biological processes that were
enriched, namely, cell cycle and repair pathways. It is
well known that cell cycle progression post irradiation
is a known factor to determine cell survival or
radiation-induced cell death. We found three cell
cycle pathways to be significantly enriched - REAC-
TOME CELL CYCLE, REACTOME CELL CYCLE
CHECKPOINTS, and REACTOME CELL CYCLE MI-
TOTIC. DNA repair is a crucial component for cell
survival post irradiation. Among the DNA repair
pathways, we found REACTOME NUCLEOTIDE EX-
CISION REPAIR, REACTOME DNA REPAIR, REAC-
TOME SUMOYLATION OF DNA DAMAGE
RESPONSE AND REPAIR PROTEINS, REACTOME
DNA DOUBLE STRAND BREAK REPAIR, REAC-
TOME HOMOLOGY DIRECTED REPAIR, REAC-
TOME GLOBAL GENOME NUCLEOTIDE
EXCISION REPAIR [26]. To summarize, we charac-
terized the biological determinants underpinning SF2,
supporting the biological relevance of these pathways
in the context of radiation therapy.
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Fig. 1 Analysis pipeline of the study. We first performed the pre-validation analysis of genomic predictors for radiation sensitivity using the cross-
validation framework in the discovery cohort, CL dataset. Genomic predictors using the full training set are then built and evaluated their
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Comparison of models

We compared the five genomic predictive models in the
discovery dataset (CL) using a cross-validation strategy
consisting of 10 iterations of 10-fold cross-validations.
The basal gene expression profiles and SF2 of all cell
lines in the training set were used to identify genes that
were strongly associated with radiation response. To re-
duce the dimensionality of feature space, we selected
1000 genes exhibiting the highest variance in the discov-
ery cohort. We used six machine learning methods (with
two techniques from mRMR) to construct predictive
models from gene expression profiles. The performance
of the models is presented in Fig. 2. As can be seen in
Fig. 3, we observed a relatively good performance for
multivariate models with concordance index value close
to 0.6 and above. The performance of the univariate
model (single gene) was poor. Multivariate models based
on mRMR vyielded the same performance irrespective of
the two techniques (exhaustive and bootstrap). Overall,
Elasticnet resulted in a concordance index of greater
than 0.6.

We further validated the performance of the five gen-
omic models in the NCI data, which is a fully independ-
ent validation dataset. This is the most challenging as it
allows us to address whether the developed genomic
predictors are generalizable to new datasets. As pre-
sented in Fig. 4, the performance of the models (single
gene, rank gene multivariate and mRMR) predictive of
SF2 was close to what was estimated in the pre-
validation phase. Although ElasticNet performed well in
the pre-validation phase, however, its performance de-
creased on the new samples. Overall, rank gene ensem-
ble performed well in the validation dataset compared to
other models (with a concordance index of 0.59).

Discussion

Precision medicine has generally been drug-based using
preclinical model systems and very little attention has
been paid to the discipline of radiation oncology. In the
last few years, radiation genomics has emerged as a new
research field, which can help investigate changes in the
transcriptome induced by radiotherapy as well as de-
velop predictive biomarkers of radiation response. This
has spurred research towards building OMICS-driven
biomarkers using gene expression profiles from in-vitro
or cell line data [19].

Despite the growing field of biomarker research in
radiotherapy, none of these predictive biomarkers have
been translated to routine clinical use. Translation of
preclinical-based omics biomarkers to the standard of
care requires a rigorous model development and valid-
ation process. Along these lines, the Institute of Medi-
cine provided recommendations comprising clinical
utility to regulatory issues on OMICS-based methods.
Lisa McShane et al. developed a list of 30 criteria for
omics-based assays that were broadly classified into the
following components: specimen and assay issues, model
development, performance evaluation, clinical trial de-
sign, ethical, legal and regulatory issues [27]. With these
criteria in mind, evaluating the readiness of biomarkers
for standard of care would be a major advance to meas-
ure a patient’s radiation sensitivity allowing for personal-
ized treatments, particularly in: a) reducing the total
radiation dose for radiation sensitive patients; b) escalat-
ing the dose for radiation resistant patients; and, c) in-
creasing the efficacy with chemotherapy (radiation
sensitizing compounds) in radiation resistant patients.

Several efforts have been directed towards developing
radiation sensitivity gene signatures using cell data
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obtained from clonogenic survival assays [10]. Almost all
of the studies in the literature developed radiosensitivity
gene signatures using the NCI-60 panel and demon-
strated poor predictive performance on external valid-
ation datasets. One of the reasons is that the number of
cell lines used in these published studies were insuffi-
cient to develop robust predictors. Hence, none of these
signatures have been translated to clinical use, highlight-
ing the need to build robust and reproducible bio-
markers of radiation response for future interventional
studies [14].

Development and validation of robust biomarkers
will benefit from expanding the number of cancer cell
lines for which gene expression data and dose re-
sponse data are available. Along these lines, Yard
et al. recently published a large radiogenomic dataset
of unprecedented size, including 511 cancer cell lines,
in which each of the cell lines was screened for cell
viability and gene expression profiles. While these two
datasets were available in the literature, none of the
studies have analyzed them together to build robust
genomic predictors. We utilized this opportunity and
combined the datasets generated from the two largest
studies to build and validate robust gene expression
predictors of radiation response.

The main objective of our study was to i) investigate
the molecular processes underpinning radiation re-
sponse using SF2; and ii) compare different modeling
approaches to build genomic predictors of radiation re-
sponse. It is beyond the scope of this study to identify
which would be the best model to measure radiation
sensitivity. Radiosensitivity can be measured as the sur-
viving fraction of cells at 2Gy (SF2) of radiation dose.
SF2 is considered to be the gold standard and is sup-
ported by strong clinical evidence. Moreover, several
studies have also shown that in vitro measurements of
SF2 were associated with in-vivo radioresponse as well.
Based on this, we considered SF2 as the radiation re-
sponse variable or the outcome of interest.

We performed pathway analysis using the GSEA
method and obtained 159 statistically significant path-
ways. Among these pathways, we found cell cycle and
DNA repair pathways to be enriched, which are aligned
with the fundamental aspects of radiation biology. These
findings facilitate a potential understanding for the bio-
logical mechanisms behind the association of radiation
response at transcriptomic level, and eventually may lead
to a more mechanistically derived gene signature. For
the comparative study of machine learning approaches
to build predictors, we implemented four different
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multivariate models (rank gene ensemble, rank gene
multivariate, minimum redundancy and maximum rele-
vance and ElasticNet) and one univariate model (single
gene) with a total of five different modelling approaches.
Due to the availability of two datasets, we used the CL
dataset as the discovery cohort (n = 511 cancer cell
lines) and NCI dataset as the validation cohort (# = 60
cancer cell lines). We found that all the multivariate
models outperformed the univariate model, while Elas-
ticNet showed a significant gain of predictive power
compared to other models in the pre-validation phase.
On the contrary, applying these models in the validation
cohort indicated that rank gene ensemble approach to
be a better model with higher concordance index com-
pared to other models.

Through our previous works, we characterized the
biological imprecision of one-size-fits-all radiation
dosing regimens by assessing patient-specific
radiation-induced toxicities [6, 8]. Furthermore, we
curated a repertoire of published radiation response
gene signatures [10], and reported that all the gen-
omic signatures of radiation sensitivity were built
using the NCI-60 dataset with limited to no inde-
pendent external validation raising concerns about
their reproducibility. This has spurred the need to
develop pre-clinical radiotherapeutic discovery pipe-
line to build biomarkers. To achieve this, we build a
unique computational platform, RadioGx [19], that

could be accelerate pre-clinical research in radiation
medicine. The current study builds upon our recent
work of RadioGx, showcasing the utility of the plat-
form by integrating two largest radiogenomic data-
sets to develop robust biomarkers of radiation
response, which is a first modeling effort in this
field. The novelty of this work stems from integrat-
ing two largest independent datasets to build pre-
clinical biomarkers through comparing various mod-
eling approaches. We obtained reasonably accurate
predictions that will advance our approaches to build
robust radiation response biomarkers through inte-
grating large-scale radiogenomics datasets in the fu-
ture. Genomic predictors built in this study have
shown promising performance in independent pre-
clinical datasets, which is a step towards assessing
their clinical relevance on patient data. Once suc-
cessful, these predictors could be used to identify ra-
diation sensitive and radiation resistant populations,
thereby, improving the therapeutic efficacy of radio-
therapy. More importantly, with the availability of
pre-clinical and patient OMICS data in the future, it
will be possible to validate genomic predictors on
those cohorts and identify groups of samples in
which the association of radiation sensitivity with
genomic features are transferable from cell lines to
patients and samples in which they are not. This can
potentially accelerate the emergence of biologically-
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driven radiation biomarkers based on the genomic
characteristics of an individual’s tumor.

Our study could be extended in a couple of ways to
improve the accuracy of model predictions with gene ex-
pression data through the following means: i) One of the
challenges in the statistical analyses of biological data in-
clude assay types, complexity of experimental designs
along with the non-standard distributions of measured
data that result in noisy measurements. This is especially
true for high-throughput radiation cell line screening
studies. Through replicate measurements under the
same cell culture conditions, it is feasible to measure the
degree of noise for a given experimental protocol and
assay. Therefore, introducing new statistical approaches
to measure noisy biological data could potentially im-
prove the model predictions; ii) Exploring the sensitivity
of radiation response variables such as AUC (area under
the curve of the fitted radiobiological model) and 1-
AUC could shed light into the choice of a radiation re-
sponse characterization metric on the accuracy of
predictions.

Conclusion

Precision medicine has generally been driven by drug-
based approaches and has eluded the field of radiation
oncology. Availability of OMICS data has made it pos-
sible to build genomically-driven approaches to pre-
scribe personalized radiation therapeutic regimens. The
application of transcriptomic fingerprinting to build bio-
markers of radiation sensitivity are at the horizon and
require rigorous pre-clinical assessment before translat-
ing them to the standard of care. Current genomics-
based radiation sensitivity biomarkers have shown lim-
ited external validation raising concerns about their re-
producibility. Based on this premise, in our current
study we were able to build genomic predictors by inte-
grating two large-scale radiation genomics datasets,
which is the first of a kind of effort in this field. The
genomics predictors built in this study have shown
promise, however we need to assess their clinical rele-
vance in other pre-clinical and patient data sets (when
available) before building a predictive assay for clinical
setting. As radiation therapy is a commonly adminis-
tered therapeutic modality, clinically validated radiation
sensitivity biomarkers will have a great potential to im-
prove the treatment outcomes, which could eventually
have a huge impact on radiation oncology practice.
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