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Abstract

Background: To investigate the global expression profile of miRNAs, their impact on cellular signaling pathways,
and their association with poor prognostic parameters in African-American (AA) patients with triple negative breast
cancer (TNBQ).

Methods: Twenty-five samples of AA TNBC patients were profiled for global miRNA expression and stratified considering
three clinical-pathological parameters: tumor size, lymph node (LN), and recurrence (REC) status. Differential miRNA
expression analysis was performed for each parameter, and their discriminatory power was determined by Receiver
Operating Characteristic (ROC) curve analysis. KMplotter was assessed to determine the association of the miRNAs with
survival, and functional enrichment analysis to determine the main affected pathways and miRNA/mRNA target interactions.

Results: A panel of eight, 23 and 27 miRNAs were associated with tumor size, LN, and REC status, respectively. Combined
ROC analysis of two (miR-2117, and miR-3780), seven (let-7f-5p, miR-1255b-5p, miR-1268b, miR-200c-3p, miR-520d, miR-527,
and miR-518a-5p), and three (MiR-1200, MiR-1249-3p, and miR-1271-3p) MiRNAs showed a robust discriminatory power
based on tumor size (AUC=0917), LN (AUC = 0.945) and REC (AUC =0.981) status, respectively. Enrichment pathway analysis
revealed their involvement in proteoglycans and glycan and cancer-associated pathways. Fight miRNAs with deregulated
expressions in patients with large tumor size, positive LN metastasis, and recurrence were significantly associated with lower
survival rates. Finally, the construction of miRNA/MRNA networks based in experimentally validated mRNA targets, revealed
nodes of critical cancer genes, such as AKTT, BCL2, COKN1A, EZR and PTEN.
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Conclusions: Altogether, our data indicate that miRNA deregulated expression is a relevant biological factor that can be
associated with the poor prognosis in TNBC of AA patients, by conferring to their TNBC cells aggressive phenotypes that are

reflected in the clinical characteristics evaluated in this study.

Keywords: microRNA, Triple-negative breast cancer, African-American, Prognosis, Tumor size, Lymph node

Background

Breast cancer is one of the most frequent types of female
cancer worldwide and one of the main causes of death
in women [1]. Several new target therapies are currently
in development with significant potential to reduce mor-
tality in patients with varied breast cancer subtypes by
significantly increasing their overall survival [2]. How-
ever, for triple negative breast cancer (TNBC), there are
still few approved targeted therapies. Inhibitors of the
programmed death-ligand 1 (PDL1) have been recently
approved for the treatment of unresectable locally ad-
vanced or metastatic TNBC patients. This targeted ther-
apy is, however, only beneficial for patients with PDL1
positive tumor expression [3, 4].

TNBC is considered one of the most aggressive sub-
types of breast cancer, with high rates of progression
and poor prognosis [5]. Comprehensive molecular-based
studies have been extensively performed to identify new
biomarkers that can be used for diagnosis, prognosis,
and more efficient treatment regimens for this tumor
subtype. One class of biomarkers that has emerged with
promising therapeutic potential is the non-coding
microRNAs (miRNAs) [6, 7]. With the technological ad-
vances in nanoparticle delivery systems, this class of bio-
markers has been shown to be effective in inhibiting
tumor progression and metastasis in several tumor
models, including TNBC [8-10].

MiRNAs are conserved endogenous small RNA mole-
cules that can regulate a range of developmental and
physiological processes in the cells, in a tissue-specific
manner [11]. MiRNAs expression alterations are associ-
ated with the development of pathological processes and
chronic diseases [12]. In cancer, miRNAs play a critical
role in tumor initiation and progression, through their
regulatory role in the expression of gene targets involved
in multiple signaling pathways, such as cell proliferation,
differentiation, and cell death [13-17]. In TNBC, many
miRNAs with deregulated expression have been identi-
fied and associated with aggressive cancer phenotypes,
including larger tumor sizes, early tumor recurrence,
lymph node, and metastatic invasion, and lower survival
rates [18].

Several studies have shown that miRNAs present vari-
able expression patterns according to race and/or ethnic
groups [19-23]. However, few of them were conducted
in patients’ tumor samples. We have previously shown
in genomically characterized African-American (AA)

and Latina patients with TNBC, differential patterns of
tumor miRNA expression when compared to TNBC pa-
tients of European descent [24, 25]. These profiles were
shown to be associated with distinct signaling pathways,
commonly linked to poor prognosis and shorter survival.
Although there are a limited number of studies evaluat-
ing the somatic miRNA expression in tumors of genomi-
cally ancestral characterized populations, this data
supports the relevance of miRNAs as biological contrib-
utors to cancer disparities.

In this study, the main objective was to characterize
the global patterns of miRNA expression, and their im-
pact on cellular signaling pathways in the TNBC tissue
specimens of AA patients. The miRNA patterns were
also evaluated according to three selected clinical-
pathological parameters: tumor size, lymph node (LN),
and recurrence (REC) status.

Material and methods

Samples collection, clinical and demographic information

Formalin-fixed paraffin-embedded tissue blocks (FFPE)
of 25 TNBC patients were collected from the surgical
pathology archives of Howard University Hospital,
Washington DC. Clinical and histopathological data
were obtained for the patients in a codified manner ac-
cording to the approved institutional IRB protocols and
included age at diagnosis, histologic type, tumor size,
Nottingham Histologic Score and Grade [26], lymph
node (LN), recurrence (REC), and distant metastasis sta-
tus. This study was approved by the Office of Regulatory
Research Compliance — Institutional Review Board of
Howard University (IRB-16-MED-39).

Clinical and histopathological data of the variables
above were retrieved for all the cases analyzed. Most of
the patients (81.8%) were diagnosed with infiltrating
ductal carcinoma, with a mean age at diagnosis of
55.27 + 9.96 years old (range 32 to 78 years old). All tu-
mors, but one (grade 2), were classified as histological
high grade (grade 3). Wide variability in tumor size was
observed, with tumors presenting their largest dimension
between 1.1 and 22 cm in size (average 5.86 +5.17 cm).
Ten patients (62.5%) presented tumors smaller than 5
cm, while six patients (37.5%) presented tumors larger
than 5 cm. LN involvement (LN+) was present in ten pa-
tients (47.6%) affecting one or more LNs while eleven
patients (53.4%) were LN negative (LN-). Sixty-eight per-
cent of the patients became disease-free after treatment
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and had no recurrence, while 32% relapsed (with local
and/or distant metastasis) after the selected treatment
regimen or never reached a disease-free condition since
diagnosis (Table S1).

The classification of the TNBC phenotype was con-
firmed by immunohistochemistry analysis using estrogen
(ER), progesterone (PR), and human epidermal growth
factor receptor 2 (HER2) receptor markers, following
current guidelines [27, 28].

The AA race information of the patients was initially
obtained from self-reported medical records and later
confirmed by genotyping analysis for a subset of the pa-
tients. The genotyping was performed using the SNP
chip Illumina Infinijum QC Array (Illumina Inc., CA),
which contains 15,949 markers, including, 3000 ancestral
informative markers (AIMs). The genotype calling was
performed as we previously described [24, 25], using
GenomeStudio Software v. 2011.1. Genotypes from the
mitochondrial genome and on sex chromosomes were
excluded, as well as genotypes with a call rate < 98%.
The remaining autosomal genotypes (8687 in total) were
integrated with the variant calls from >1900 individuals
originating from 21 diverse populations in the 1000 Ge-
nomes Project. To explore population structure among
individuals, Principal Component Analysis (PCA) was
conducted on the genome-wide autosomal loci. First, a
genetic relationship matrix between pairs of individuals
(GRM files) was generated with the GCTA software
[29]. Then, using the GRM files as input, the PCA
method implemented in GCTA was applied. In these
analyses, the default setting (n = 20) was accepted, which
outputted the first 20 eigenvectors and all of the eigen-
values. Lastly, the top two Principal Components, PC1,
and PC2 were plotted using RStudio [30]. PC1 (account-
ing for 69.1% of the extracted variation) broadly distin-
guished individuals of African descent from non-
Africans, suggesting some genetic distance between Afri-
can and non-African populations consistent with previ-
ous studies of autosomal loci [31, 32] (Figure S1).

RNA isolation and global miRNA expression analysis

The FFPE tumor specimens were evaluated by a path-
ologist for the presence of at least 80% of tumor cells.
The selected tumor areas were microdissected from un-
stained 10 um FFPE tissue sections and total RNA was
isolated using TRIzol (Invitrogen Carlsbad, CA, USA)
after deparaffinization with Xylene solution. RNA con-
centration and quality were tested by measuring 260/280
and 260/230 ratios using Nanodrop 2000 spectropho-
tometer (Willington, DE, USA).

MiRNA expression analysis was performed using Nano-
string nCounter Human v3a miRNA Expression Assay (Se-
attle, WA, USA) that contains human probes derived from
miRBase version 22 (http://www.mirbase.org) targeting 827
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human miRNAs, six positive controls, eight negative con-
trols, three ligation positive controls, three ligation negative
controls, five internal reference genes (ACTB, B2M, GAPDH,
RPLIY, and RPLO), and five spike-in controls (ath-miR-159a,
cel-miR-248, cel-miR-254, osa-miR-414, and osa-miR-442).
Raw data were pre-processed using Nanostring’s Counter
RCC collector and normalized using Nanostring nSolver 4.0
software (Background subtraction: the geometric mean of
Negative Controls; Technical normalization: the geometric
mean of Positive Controls; Codeset content normalization:
all genes geometric mean). Normalized data was Log2 trans-
formed and analyzed using the MultiExperiment Viewer
software (MeV 4.9.0), GraphPad Prism 8.3.0, and IBM SPSS
Statistics 25.

Differential miRNA expression analysis among the TNBC
clinical groups

The tumor samples profiled for miRNA were stratified
in different clinical groups according to three selected
clinical-pathological parameters: tumor size (>5cm or <
5cm), LN status [positive (LN+) or negative (LN-) and
REC status (positive (REC+) or negative (REC-)]. Differ-
ential miRNA expression analysis was performed for
each of these parameters, resulting in three distinct
miRNA panels (Welch-based ¢-Test, p <0.05). Log2 Fold
Change (Log2FC) was calculated for each differentially
expressed miRNA. Unsupervised and Supervised Hier-
archical Clustering analysis was performed using Pear-
son’s correlation coefficient and average linkage and
visualized as heatmaps with a 3-color scheme blue-
black-yellow representing values below the median-
median-above median, respectively.

Receiver operating characteristic (ROC) curve analysis

The discriminatory power of the differentially expressed
miRNAs between the different clinical groups was tested
by constructing the ROC curve and calculating the Area
Under the Curve (AUC). Sensitivity was plotted against
specificity (%) for the binary classifiers (=5 cm vs <5 cm,
LN+ vs LN-, and REC+ vs REC-). An AUC of 1.0 (100%)
denotes perfect discrimination by the miRNA, whereas
an AUC of 0.5 (50%) denotes a complete lack of discrim-
ination by the miRNA. AUCs and 95% corresponding
confidence intervals (CI) were calculated for each
miRNA using GraphPad Prism v 8.3.0 and IBM SPSS
Statistics 25.

Multiple binary logistic regression analysis was used to
determine the effect of the panel of miRNAs in discrim-
inating the samples according to their tumor size, LN,
and REC status. The most robust miRNA panel combin-
ation was also determined for each clinical parameter
studied.
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Kaplan Meier (KM) plot analysis

The miRpower KM Plotter Tool [33] was used to calcu-
late hazard ratios, confidence intervals, and log-rank P
values for the miRNAs that were shown to present a
high discriminatory power in each clinical group evalu-
ated. This analysis was performed in relation to survival
in the aggregated breast cancer clinical studies extracted
from The Cancer Genome Atlas (TCGA) and Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) databases (extraction based on TNBC
cases in general, and TNBC cases with known LN
status).

Functional enrichment pathways analysis

The Diana miRPath v.3.0 [34] was used to identify the
top signaling pathways that were affected by the signifi-
cant differentially expressed miRNAs, which is based on
the online tool Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) annotation. For these analyses, micro-T-
CDS (v5.0) was used to identify the predicted gene tar-
gets regulated by the selected miRNAs, applying the p-
value of 0.05 and a microT threshold of 0.8.

The miRpathDB v.2.0 [35] was used to determine the
potential influence of the selected miRNAs in the Inte-
grated Breast Cancer pathway (WP1984) from Wikipath-
ways [36], considering experimentally validated and
predicted target genes. This pathway presents relevant
proteins and their interactions in breast cancer and has
been widely used in miRNA prediction analyses [37, 38].

In silico functional analysis

The databases miRTarBase [39] and miRnet [40] were
used to determine interactions between the selected
miRNAs and target genes validated based on strong (re-
porter assays, Western Blot, and qPCR) and less strong
experimental assays (microarray, NGS, pSilac). MirTar-
getLink Human online software was used to visualize
miRNA-mRNA interaction networks [41].

The STRING v.11 database [42] was used to verify
protein-protein interactions (PPI) between the validated
target genes of each group, applying the minimum inter-
action score of 0.9 (highest confidence). Cytoscape
v.3.8.0 [43] was used to construct molecular interaction
networks of selected miRNAs and target genes.

Results

Differential miRNA expression analysis among the TNBC
clinical groups

A total of 25 cases were successfully profiled for the ex-
pression of global miRNAs. The analysis of miRNAs ex-
pression was performed separately for each of the three
selected clinical groups (tumor size, LN, and REC status)
(Table 1, Fig. 1). In the analysis of the cases based on
tumor size, eight miRNAs were observed differentially
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expressed between the large (=5 cm) and small (<5 cm)
tumors, from which two miRNAs were upregulated and
six downregulated in the large tumor size cases (¢-Test
p <0.05, Fig. 1a). In the LN group analysis, 23 miRNAs
were observed differentially expressed between the LN+
and LN- cases, seven upregulated and 14 downregulated
in the LN+ cases (t-Test p<0.05, Fig. 1b). Finally, 27
miRNAs were observed differentially expressed between
REC+ and REC- cases, seven upregulated and 19 down-
regulated in the REC+ cases (¢-Test, p < 0.05, Fig. 1c).

MiRNA differential expression analysis was also per-
formed based on the four combined LN and REC status
groups, considering the representative number of pa-
tients in each of these sub-groups (especially for the
LN+/REC- which represented 23.8% of the patients):
LN+/REC+, LN-/REC+, LN+/REC- and LN-/REC-
(ANOVA, p<0.01). Twenty-two miRNAs were found
differentially expressed among these groups (Fig. 2). The
comparison of the differentially expressed miRNAs
among the LN, REC and combined LN/REC status
groups resulted in eight miRNAs: miR-10a-5p, miR-
1271-3p, miR-184, miR-18a-5p, miR-411-5p, and miR-
542-3p present in the REC and LN/REC comparisons,
and miR-1253 present in LN and LN/REC comparisons,
and miR-595 present in all the three comparisons.

ROC analysis

ROC analysis was performed for each miRNA in each of
the clinical groups evaluated. The analysis of the eight
miRNAs observed differentially expressed according to
tumor size, resulted in AUC values from 0.683 (miR-
1281) to 0.875 (miR-2117). Four miRNAs presented
AUC higher than 0.800 and were used to determine the
most robust miRNA panel for classifying the samples
based on tumor size (=5cm or<5cm). As a result, the
combination of miR-2117 and miR-378c showed the
highest discriminatory power with an AUC value of
0.917(Fig. 3a).

Eleven out of the 23 differentially expressed miRNAs ac-
cording to the LN status presented AUC =0.800, and the
combination of let-7f-5p, miR-1255b-5p, miR-1268b, miR-
200c-3p, miR-520d-5p + miR-527 + miR-518a-5p expression
levels presented the highest discriminatory power (AUC =
0.945; Fig. 3b).

Finally, the ROC analysis of miRNAs differentially
expressed according to REC status, showed an AUC ran-
ging from 0.695 (miR-491-5p and miR-517c-3p + miR-
519a-3p) to 0.914 (miR-1271-3p). Twelve miRNAs pre-
sented AUC values higher than 0.800, and a combined
ROC analysis indicates that the most robust miRNA
panel consisted of miR-1200, miR-1249-3p and miR-
1271-3p (AUC=0.981; Fig. 3c). The individual AUC
values for all the miRNAs differentially expressed per
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Table 1 Log2FC, p-value, AUC and corresponding 95%Cl for each differentially expressed miRNA observed in the tumor size, LN and
REC status groups

Tumor size (=5 cm/< 5 cm) Log2FC p-value AUC 95% CI
miR-1281 —0.87487 0.0479 06833 04101 to 0.9565
miR-2117 -1.51124 0.0026 0.875 0.6826 to 1.0000
miR-378c 1.24370 0.0457 0.8083 0.5528 to 1.0000
miR-452-5p -0.81783 0.0329 0.7000 04376 to 0.9624
miR-5196-5p -1.27827 0.0132 0.7500 05050 to 0.9950
miR-519¢-3p —1.27906 0.0187 0.8000 0.5804 to 1.0000
miR-617 -0.82711 0.0402 0.7167 04536 to 0.9797
miR-934 1610418 0.0193 0.8333 0.6295 to 1.0000
LN status Log2FC p-value AUC 95% Cl
let-7f-5p 1.308153 0.0345 0.8091 0.6141 to 1.000
miR-1253 —-2.23171 0.0436 0.7909 0.5984 to 0.9834
miR-1255b-5p —1.43984 0.0298 0.8091 0.6201 to 0.9981
miR-1268a -0.9362 0.0441 0.7682 05632 to 0.9732
miR-1268b 0.7279 0.0084 0.8636 0.6882 to 1.000
miR-128-1-5p —1.49312 0.0254 0.7818 0.5838 to 0.9799
miR-133a-5p 1.097722 0.0369 06727 04348 to 09106
miR-200c-3p 2602164 0.0187 0.8182 0.6375 to 0.9988
miR-301a-5p 0.583352 0.0212 0.8091 0.6170 to 1.000
miR-3074-3p —0.85799 0.0301 0.7273 0.4976 to 0.9570
miR-323b-3p -1.30263 0.0324 0.7636 0.5366 to 0.9907
miR-367-3p -0.653 0.0438 0.7545 0.5444 to 0.9647
miR-378f 1.143995 0.0356 0.8000 0.6058 to 0.9942
miR-513b-5p —-1.04378 00115 0.7864 0.5790 to 0.9938
miR-520d-5p + miR-527 + miR-518a-5p —1.53273 0.0161 0.8364 0.6645 to 1.000
miR-520f-3p —-1.7368 0.0355 0.7909 0.5852 to 0.9966
miR-548 —0.59929 0.0187 0.7909 0.5936 to 0.9882
miR-548q —1.98804 0.0105 0.7727 0.5600 to 0.9855
miR-580-3p 1.266989 0.0094 0.8045 0.5962 to 1.000
miR-595 -1.17619 0.0070 0.8182 0.6281 to 1.000
miR-873-5p -0.86919 0.0434 0.7045 04769 to 0.9321
REC status Log2FC p-value AUC 95% Cl
miR-10a-5p —0.86382 0.022 0.7905 0.5801 to 1.000
miR-1200 -1.55119 0.0004 0.8571 0.7004 to 1.000
miR-1249-3p —1.54646 0.0211 0.8286 0.6493 to 1.000
miR-1271-3p 0.962012 0.0108 09143 0.7968 to 1.000
miR-130a-3p —1.45528 0.0144 0.7810 0.5850 to 0.9769
miR-184 -2.01337 0.0005 0.8857 0.7442 to 1.000
miR-18a-5p —-1.2983 0.0226 0.7667 0.5637 to 0.9696
miR-197-3p 1.067639 0.0412 0.7714 0.5689 to 0.9740
miR-208a-3p —0.94776 0.0372 07333 0.5162 to 0.9505
miR-362-5p —-1.31405 0.0486 0.7619 0.5401 to 0.9837
miR-376a-2-5p —-1.07002 0.0055 0.7048 04876 to 0.9220

miR-411-5p 1.185286 0.0084 0.7810 0.5876 to 0.9743
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Table 1 Log2FC, p-value, AUC and corresponding 95%Cl for each differentially expressed miRNA observed in the tumor size, LN and

REC status groups (Continued)

miR-449b-5p —1.76057
miR-4536-3p —1.25336
miR-491-5p —-0.97535
miR-495-5p -1.18756
miR-5001-5p —1.12657
miR-517¢-3p + miR-519a-3p -131722
miR-518f-3p 1.233145
miR-542-3p —1.47531
miR-548n 1427446
miR-587 1.032396
miR-593-3p 1172516
miR-595 —1.00655
miR-891a-5p -1.23041
miR-99b-5p —1.3409

0.0003 0.8571 0.6997 to 1.000
0.0292 0.8000 0.6039 to 0.9961
0.0373 0.6952 04761 to 09144
0.0291 0.7238 0.5092 to 0.9385
0.0165 0.7905 0.5968 to 0.9841
0.0364 0.6952 04759 to 09146
0.003 0.8286 0.6538 to 1.000
0.0253 0.8095 0.6106 to 1.000
0.0044 0.8619 0.6799 to 1.000
00112 0.7714 0.5633 to 0.9796
0.0446 0.8190 0.6257 to 1.000
0.0136 0.8381 0.6600 to 1.000
00142 0.7619 0.5570 to 0.9668
0.0267 0.8286 0.6574 to 0.9998

clinical group and their corresponding 95% CI are pre-
sented in Table 1.

Association of the Target miRNA genes with survival
using KM plot database

The miRNAs that were shown to present a high discrim-
inatory power (AUC 20.8) in each clinical group ana-
lyzed were queried concerning survival in TNBC
samples of the TCGA and METABRIC cohorts, using
the KM Plot database. In the tumor size group, only one
(miR-2117) out of four miRNAs, was observed in associ-
ation with survival (Fig. 4a). Lower expression of this
miRNA, as we observed in the group of patients with
larger tumor sizes, was significantly associated with
shorter survival. In the LN group, eight (miR-1225b,
miR-301a, miR-378f, miR-518a, miR-520d, miR-527,
miR-580; miR-595) out of 12 miRNAs were associated
with survival, some of which specifically associated with

LN- (miR-1225b, miR-301a, miR-520d, and miR-580) or
LN+ (miR-378f, miR-527) patients (Fig. 4b). From these
miRNAs, all, except miR-580a and miR-595, presented
in the KM Plot, the same direction of the expression
levels as we observed in our cases in the LN+ group. Fi-
nally, in the group of patients based on REC status, four
out of 11 miRNAs, presented the association with sur-
vival in the TNBC samples of the TCGA and METAB-
RIC cohorts. In this group, only miR-4536, which we
observed with lower expression in the REC+ group of
patients, was associated with shorter survival (Fig. 4c).

Functional enrichment pathways

The potentially affected KEGG pathways by the differen-
tially expressed miRNAs were determined for each of
the clinical groups evaluated. The top 10 KEGG path-
ways ranked by p-value for each analysis are shown in
Table 2.

Fig. 1 Differentially expressed miRNAs in the analysis of the TNBC cases distributed by tumor size (a), LN (b) and REC (c) status

sa-miR-527+hsa-miR-518a-5p

c-3pthsa-miR-519a-3p
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Fig. 2 Differentially expressed miRNAs in the analysis of the TNBC cases distributed in the four combined LN and REC status groups
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The analysis of differentially expressed miRNAs, in the
tumor size group, resulted in 21 pathways, including
ubiquitin-mediated proteolysis (hsa04120), proteoglycans in
cancer (hsa05205), and signaling pathways regulating pluri-
potency of stem cells (hsa04550). In the LN group, 51 KEGG
pathways potentially affected by these miRNAs were identi-
fied, including mucin type-O-glycan biosynthesis (hsa00512),
TGF-beta signaling pathway (hsa04350), glycosaminoglycan

biosynthesis — heparan sulfate/heparin (hsa00534), hippo
signaling pathway (hsa04390), ErbB signaling pathway
(hsa04012). Finally, considering the REC status of the pa-
tients, 41 KEGG pathways were identified potentially affected
by these miRNAs, including proteoglycans in cancer
(hsa05205), cell adhesion molecules (CAMs) (hsa04514), N-
Glycan biosynthesis (hsa00510), and thyroid hormone signal-
ing pathway (hsa04919). The thyroid hormone signaling

a miR-2117 + miR-378c b let-7f + miR-1255b-5p + miR-1268b c miR-1200 + miR-1249-3p +
+ miR-200c-3p + miR-520d-5p + miR1271-3p
miR-527 + miR-518a-5p
ii ROC Curve is ROC Curve Vi ROC Curve
g 06 g 06 g 06
§ 04 § 0.4 § 04
AUC=0.917 AUC= 0.945 AUC= 0.981
) 1 - Specificity ) 1 - Specificity ) 1 - Specificity
Fig. 3 Combined ROC analysis for the most robust discriminatory miRNA panels for tumor size (a), LN (b) and REC (c) status
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pathway was predicted to be affected by eight miRNAs
(miR-1200, miR-1271-3p, miR-449b-5p, miR-4536-3p, miR-
542-3p, miR-548n, miR-593-3p and miR-595) indicating that
this signaling pathway may be important in the development
of breast cancer recurrence.

Considering all the miRNAs selected from the three
comparisons among the three clinical groups, 15 miR-
NAs were found to be involved in the Integrated Breast
Cancer Pathway, potentially targeting 133 genes, some
of them targeted by more than one miRNA (Table S2).

In silico functional analysis and miRNA/mRNA target
networks
To further elucidate the potential biological impact of
each differentially expressed miRNA in the clinical
groups evaluated, experimentally validated interactions
between miRNA and their target genes were assessed
(only strong evidence of interaction was considered for
this analysis). Thirty-three of the 58 selected miRNAs
(2/8 for the tumor size group, 13/23 for LN status and
18/27 for REC status) presented interactions experimen-
tally validated, regulating a total of 295 target genes
(Table S3). When considering only miRNAs with high
power to discriminate among the cases in each clinical
group (based on ROC analysis), a total of 13 miRNAs
were observed (one for the tumor size group, seven for
LN status and five for REC status) (Table 3).
Protein-protein interactions (PPI) were evaluated con-
sidering the selected validated miRNA target genes for
each clinical group and used to construct a miRNA/

mRNA network (Fig. 5). For the tumor size, one network
was generated based on the six target genes of miR-
519¢-3p (Table 3, Fig. 5a); considering their involvement
in the biological process (GO), four of these targets were
reported as related to negative regulation of growth
(PTEN, CDKNIA, HIF1A), of the mitotic cell cycle
(PTEN, CDKNIA, TIMP2), and vascular smooth muscle
cell proliferation (PTEN, CDKNIA).

PPI analysis for the LN group was generated consider-
ing the 113 experimentally validated target genes of
seven miRNAs (Table 3). Considering PPI with the high-
est confidence (interaction score > 0.9000) and removing
nodes without connections, a network was generated
with 68 target genes of five miRNAs (Fig. 5b).

For the REC comparison, 41 experimentally validated target
genes of five miRNAs (Table 3) were used for the PPI ana-
lysis. The miRNA/mRNA network was constructed consider-
ing the same settings as the LN network (interaction
score > 0.900, nodes without connection were hidden), result-
ing in a network with 21 genes and four miRNAs (Fig. 5c).

Finally, considering the eight miRNAs common to
LN/REC, LN and REC comparisons and the miRTarbase
data (Fig. 6), a network was generated with 89 genes ex-
perimentally validated as a target of the 8 selected miR-
NAs. Most of them were validated through weak
evidence of interaction, however strong evidence of
interaction was also reported for miR-10a and PTEN,
miR-184 and BCL2 and EZR, miR-18a-5p and EZR,
PTEN, TGFBR2, CDK19, PIAS3, and BCL2, and miR-
542-3p and BIRCS.
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Table 2 Top 10 KEGG pathways potentially affected by the differentially expressed miRNAs in each clinical group evaluated: tumor

size, LN, and REC status (ranked by p-value)

# KEGG pathways p-value # genes # miRNAs
Tumor size (=5cm, <5cm)
1 Ubiquitin mediated proteolysis 1.46E-05 40 7
2 Circadian rhythm 0.002970639 14 7
3 Proteoglycans in cancer 0.002970639 42 7
4 Renal cell carcinoma 0.0044878%4 18 7
5 Signaling pathways regulating pluripotency of stem cells 0.004646529 33 6
6 Endocytosis 0.004646529 44 8
7 Glioma 0.007370446 17 7
8 Oocyte meiosis 0.015388458 25 7
9 RNA degradation 0.022814164 21 6
10 Prolactin signaling pathway 0.022814164 17 6
LN status
1 Mucin type O-Glycan biosynthesis 342E-10 14 8
2 Proteoglycans in cancer 6.78E-10 32 9
3 Signaling pathways regulating pluripotency of stem cells 3.68E-07 55 9
4 TGF-beta signaling pathway 3.17E-06 68 8
5 Glycosaminoglycan biosynthesis — heparan sulfate/heparin 5.72E-06 38 7
6 Hippo signaling pathway 6.54E-06 2 2
7 FoxO signaling pathway 6.94E-06 49 8
8 Circadian rhythm 2.90E-05 52 9
9 ErB signaling pathway 3.54E-05 44 9
10 Phosphatidylinositol signaling system 6.34E-05 25 7
REC status
1 Prion diseases 1.07E-05 10 8
2 Proteoglycans in cancer 1.07E-05 91 20
3 Mucin type O-Glycan biosynthesis 1.34E-05 15 12
4 Cell adhesion molecules (CAMs) 1.84E-05 65 18
5 TGF-beta signaling pathway 345E-05 40 16
6 Axon guidance 345E-05 65 16
7 Oxytocin signaling pathway 0.001164 76 18
8 N-Glycan biosynthesis 0.003947 21 15
9 Thyroid hormone signaling pathway 0.003947 53 19
10 Signaling pathways regulating pluripotency of stem cells 0.004389 65 20
To determine the interference of all differentially expressed ~ Discussion

miRNAs obtained in our analysis in the process related to
breast tumorigenesis, a network was constructed considering
only experimentally validated target genes presented in The
Integrated Breast Cancer pathway (Table 4, Figure S2). In
this network, several key oncogenes and tumor suppressor
genes were found to be targeted by at least one of the differ-
entially expressed miRNAs in our clinical group compari-
sons, indicating the importance of these miRNAs in breast
tumor initiation and progression, affecting cell proliferation,
migration and invasion capacity, and response to treatment.

In TNBC several miRNAs were observed with deregu-
lated expression presenting with major roles in cancer
progression [44, 45]. Most of the studies reporting on
the miRNA expression in TNBC do not focus on minor-
ity groups or biological disparities based on the race of
the patients. In fact, a search on PubMed database using
the words “African American” OR “African women” OR
“biological disparity” AND microRNA OR microRNAs
OR miRNA OR miRNAs resulted in 83 studies related
to AA women and microRNAs with only six of them
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Table 3 MiRNAs and corresponding target genes identified in each clinical group evaluated (only miRNAs with high discriminatory

power (AUC 20.8) were included)

Clinical groups miRNAs Target Genes
Tumor size miR-519¢-3p HIFTA, ABCG2, ELAVLI, TIMP2, PTEN, CDKN1A
(25cm/<5cm)
LN status let-7f-5p KLK10, KLK6, PRDM1, IL3, CYP19A1, COPS8, GPS1, CCND1, COPS6, MYHS,
SOCS3, ELF4, CCL7, AGOI, IL6, POSTN
miR-200c-3p TUBB3, BMI1, GEMIN2, BAPI1, ZEB2, ZEB1, FN1, ZFPM2, PTPN13, RNF2, RCOR3,
BRD7, ACVR2B, MSN, NTRK2, ERRFI1, CCNE2, XIAP, BCL2, TIMP2, FBLN5, VEGFA,
NCAM1, IKBKB, FLTI1, KLF9, TBK1, PMAIPI, NTF3, LPART, EDNRA, RHOA, KLHL20,
PTPRD, ELMO2, ERBIN, WDR37, VAC14, TCF7L1, RASSF2, HOXBS, RIN2, KLF11,
SEPT7, SHCI1, MYB, ETS1, DUSP1, USP25, EFNA1, RND3, DNMT3A, DNMT3B, SP1,
CFL2, CDH11, SEC23A, KDR, HFE, DLCI1, ATRX, ZNF217, BTC, ZFPM1, PINT,
KRAS, NOTCH1, GATA4, SUZ12, ROCK2, UBQLNT, E2F3, MALATI1, CDK2, PRKCZ,
NOS3, SIRT1, FOXO1, PDCD10, ADAM12, PTEN, LEPR, CRKL, MYLK, SH3PXD2A,
DNAJC3, JAZF1, RPS6KBI, SLCTA2
miR-301a-5p PTEN, BTG1, NDRG2
miR-520d-5p PPIB
miR-518a-5p MCL1, PIK3C2A, CCL2
miR-580-3p TWIST1
miR-595 PARDG6A
REC status miR-184 AKT2, INPPL1, NFATC2, SOX7, AGO2, MYC, BCL2, EZR, SND1, GAS1, ZFPM?2,
PDGFB, PLPP3, AKT1, BIN3, PRKCB, PPP1R13L, TNFAIP2, PKM
miR-449b-5p SIRT1, CCNE2, MET, GMNN, HDAC1, CDC25A, CDK6, MYCN, NEATT
miR-542-3p BIRCS, ILK, MTDH, PIM1, AKT1, BMP7, RPS23, ANGPT2, OTUBI, IGFBPI, CTTN,
PIK3R1, FZD7
miR-593-3p CDC274, PROPT
miR-595 PARD6A

with TNBC patients, which included the previous study
of our group [24].

In this study, we report on the global miRNA profiling
of genomically ancestral characterized AA patients with
TNBC stratified in three clinical groups of patients based
on tumor size, LN metastasis and breast cancer recur-
rence status.

Tumor size is one of the most important prognostic deter-
minants for breast cancer [46]. Larger tumors can be a result
of late diagnosis, high proliferation rate, lack of treatment, or
poor response to neoadjuvant treatment. In this study, the
average tumor size in the non-treated TNBC patients was
5.86 +5.17 cmy; six of these patients were diagnosed with tu-
mors larger than 5 cm, being categorized as at least Stage IIB
(no regional LN metastasis and no clinical or radiological evi-
dence of distant metastasis), which as expected, presents
lower 5-year survival rates when compared to patients with
smaller tumors [47]. Eight miRNAs were found differentially
expressed between the groups of patients based on tumor
size, among them, the miR-2117, miR-378c, miR519¢-3p and
miR-934 presented high power (AUC = 0.8) to discriminate
the patients in this group. Among these miRNAs, the expres-
sion of miR-2117 was observed in colorectal cancer inversely
correlated with the expression levels of the target gene

TGFBRI1 [48]. This gene is found overexpressed in breast
cancer [49] and is involved in the MAPK-signaling pathway
[48]. Downregulation of miR-378c was observed in head and
neck squamous cell carcinoma (HNSCC) and appeared as
one of the most important prognostic variables for HNSCC
[50]. However, in our study, we observed lower levels of
miR-519¢-3p from patients diagnosed with larger tumors
(=5 cm). Increased levels of miR-519¢-3p were found to pro-
mote tumor growth and proliferation in hepatocellular car-
cinoma cells, by targeting the BTG3 gene [51]. Increased
expression of miR-934 was previously reported on TNBC
samples compared to ER+ tumors, however, its expression
level was not associated with tumor size [52].

Lymph node (LN) status is still one of the strongest
prognostic factors in breast cancer [53]. In this group,
23 miRNAs were found differentially expressed between
the LN+ and LN- patients, among them, miR-1253,
miR548] and mIR-873-5p, indicating that these miRNAs
might be involved in conferring the invasion ability to
the tumor cells. A combination of seven of these miR-
NAs (let-7f-5p, miR-1255b-5p, miR-1268b, miR-200c-3p
and miR-520d-5p + miR-527 + miR-518a-5p), presented
a more robust discriminatory power (AUC>0.9). It is
important to mention, however, that miR-520d,
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Fig. 5 MiRNA/mRNA networks of the differentially expressed miRNAs observed in the tumor size (a), LN (b) and REC (c) clinical groups and their
corresponding experimentally validated target genes (Cytoscape v. 3.8.0). Brown rectangle: miRNAs, white rectangles: genes targeted by one
miRNA, blue rectangles: genes targeted by two miRNAs. True lines: protein-protein interaction (STRING database), doted lines: miRNA-target

gene interaction

irrespectively of the LN status, showed no differences in
overall survival in the analysis of the Kmplot database.
Interestingly, altered expression levels of miR-1253 and
miR-5481 were reported to interfere in the migration
and invasion capacity of non-small cell lung cancer
(NSCLQ). Altered expression of miR-5481 and miR-1253
was negatively associated with LN metastasis in NSCLC,
by targeting the AKTI and WNTS5A genes, respectively
[54, 55]. In our study, both of these miRNAs were ob-
served with lower expression levels in the LN+ group,
indicating as in NSCLC, a similar tumor suppressor ac-
tivity in breast cancer. The long non-coding RNA
DCST1-AS1 was reported to act as a “sponge” by bind-
ing miR-873-5p, resulting in the upregulation of other
target genes such as IGF2BPI, MYC, LEFI, and CDD4
and conferring the increase of cell proliferation and me-
tastasis capacity in TNBC cells [56]. The lower expres-
sion levels of this miRNA in the LN+ group of our study
could be among other mechanisms, a consequence of
high levels of this IncRNA.

In relation to recurrence (REC), 27 miRNAs were ob-
served differentially expressed between REC+ and REC-
groups, with 12 presenting an AUC value higher than
0.8; a combined analysis of three of these miRNAs (miR-

1200, miR-1249-3p, and miR-1271-3p), presented a ro-
bust power (AUC=0.9) in discriminating the patients
based on REC status. Deregulated expression levels of
miR-1249-3p in breast cancer cells were associated with
interference of IncRNA MIF-AS1 [57]. This IncRNA acts
as a sponge resulting in lower expression levels of miR-
1249-3p which impedes its interaction with the HOXBS8
target gene. In vitro upregulation of miR-1249-3p re-
sulted in suppression of proliferation and migration ac-
tivity and reversion of the Epithelial-Mesenchymal
Transition (EMT) progress, indicating a tumor suppres-
sor role of this miRNA in breast tumors, and corrobor-
ating with our findings that showed lower expression
levels of miR-1249-3p in the REC+ group. In gliomas
and osteosarcomas, it was observed that the downregula-
tion of miR-1200, led to the up-regulation of the HOXB2
gene, which increased proliferation and invasion capacity
of the tumor cells [58, 59]. These data indicate a tumor
suppressor activity of miR-1200, that as miR-1249-3p,
presented lower expression levels in the REC+ group. Fi-
nally, for miR-1271, to our knowledge, there is no re-
ported deregulation of its expression in tumor cells.
TNBC patients can show satisfactory response to
chemotherapy, especially in the neoadjuvant setting [60—
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62]. However early recurrence is more frequent in this  group [68], showed however that although a substantial
breast cancer subtype when compared to others, which  number of TNBC patients failed to receive and/or
usually occurs within the first 3 years after diagnosis [5, complete chemotherapy, AA patients presented a higher
63]. Chemotherapy adherence and uptake have also been  chemotherapy uptake than White patients. Interestingly,
shown to differ among patients’ racial/ethnic groups and aware of the limitation of the sample size of this
[64—67]. In TNBC, a previous study conducted by our present study, seven patients presented recurrence after

Table 4 MiRNAs and experimentally validated target genes involved in the Integrated Breast Cancer Pathway (Wikipathways) and
their involvement in the clinical groups of this study

miRNAs Experimentally validated targets Clinical groups
miR-1268a CDC25B, MAPK1, RAPIA LN status
miR-1268b CDC25B, MAPK1, RAP1A LN status
miR-130a-3p ESRI, MYC, PTEN, SMAD4, TGFBR2 REC status
miR-184 AKTI, BCL2, MYC REC status
miR-18a-5p ATM, BCL2, CCND1, ESRI, PTEN, RAP1A, SMAD2, SMAD4, TFGBR2, TP53 REC status
miR-18b-5p ESR1, MDM2, SMAD2 REC status
miR-200c-5p CDHI1, MDM_2, PTEN LN status
miR-449-5p CDC25A, FOSL1, HDACT, SIRT1, SMAD4, TGFBR2 REC status
miR-452-5p BMPR2, IRS1, KRAS, SMAD4 Tumor size
miR-519a-3p PTEN, RB1 REC status

miR-99b-5p CHEK1, MTOR, SP1 REC status
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treatment while fifteen patients were disease-free. Con-
sidering both LN and REC status, 22 miRNAs were
found differentially expressed among the LN+/REC+,
LN+/REC-, LN-/REC+, and LN-/REC- groups, eight of
them also presented in the comparison of LN and REC
clinical groups comparisons: miR-10a-5p, miR-1253,
miR-1271-3p, miR-184, miR-18a-5p, miR-411-5p, miR-
542-3p, and again miR-595. Finally, a query of the KM
Plot database of the TCGA and METABRIC TNBC
cases, showed that several of the miRNAs observed with
deregulated expression in the patients with larger tumor
size, positive LN and REC were significantly associated
with lower survival rates. It is important to mention,
however, that some miRNAs which expression levels
were associated with REC of the patients, in the KM Plot
showed higher survival rates. Considering that this data-
base, which compiles cases from the TCGA and Metab-
ric breast cancer patients, may not reflect the clinical
and biological characteristics of our AA patients, as well
as their socio-economic condition. The latter largely im-
pacts health access and ultimately overall survival rates.
In addition, the differences in specimen types, miRNA
profiling, and other technical variables can largely affect
miRNA expression levels.

Interestingly, the involvement of 12 of the miRNAs
observed in the TNBC cases of our study and that were
differentially expressed in the above clinical groups was
among the ones observed with differential expression in
our previous study in TNBC cases of AA and non-
Hispanic White (NHW) patients [24]. Among these
common miRNAs, 12 of them presented the same level
of expression of this study, two of which associated with
tumor size (miR-2117 and miR-617), eight with LN sta-
tus (miR-1253, miR-1268a, miR-200c-3p, miR-520d-5p,
miR-518a-5p, miR-528, miR-580 and miR-873-5p), and
two with REC status (miR-1200 and miR-449b-5p).
These associations could indicate that these 12 miRNAs
are intrinsically regulated in the TNBC of AA patients,
and could account for the observed more aggressive
phenotype of their tumors when compared to the NHW
patients. This suggestion can be supported by the ana-
lysis of the KEGG pathway of the differentially expressed
miRNAs observed in each clinical group of this study,
which revealed their involvement in signaling pathways
often associated with tumor aggressiveness. In the LN
group, for example, considering only the panel of seven
miRNAs that presented the best capability to discrimin-
ate LN+ and LN- cases, among the top ten KEGG path-
ways observed, three were affected by six of these
miRNAs: signaling pathways regulating pluripotency of
stem cells, TGF-beta and Hippo signaling pathways. In
the REC group, among the top ten KEGG pathways, the
thyroid hormone signaling pathway was potentially af-
fected by eight of the 12 miRNAs in the highest
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discriminatory panel (miR-1200, miR-1271-3p, miR-
449b-5p, miR-4536-3p, miR-542-3p, miR-548n, miR-
593-3p and miR-595). This signaling pathway can regu-
late tumor progression and apoptosis process through
thyroid hormones (TR) genomic and non-genomic ac-
tions [69]. TR expression was associated with higher 5-
year survival in metastasized BRCAI mutated breast can-
cer [70]. BRCAI-mutation carriers frequently develop
TNBC [71], and a disturbance of this signaling pathway
may interfere with the survival of TNBC patients. Con-
sidering these miRNAs in the above clinical groups,
miRNA/mRNA pairings that were experimentally vali-
dated showed a number of targets that play relevant
roles in breast cancer progression, including genes that
are part of the subclassification of the TNBC into the six
molecular subtypes [72] among them, genes involved in
the epithelial-to-mesenchymal transition (EMT) process,
which is essential to confer cell migration and invasion
and stem cell tumor capabilities [73, 74], and which
miRNAs are important regulators [75, 76]. Of note, one
of the most prevalent TNBC subtypes in AA patients,
the mesenchymal-like (ML) subtype [77-79], is enriched
in genes involved in the regulation of EMT and in the
biology of cancer stem cells, both markers that confer
clinical aggressiveness [80, 81]. In addition, some of the
differentially expressed miRNAs observed in our study
are highly involved in breast cancer progression as
shown by their predicted interactions with relevant
genes of the Integrated Breast Cancer Pathway. Some of
these interactions were already experimentally validated,
including miR-184 and AKTIK, BCL2 and MYC, and
miR-200c, miR-130a-3p, miR-18a-5p, miR-519a-3p and
PTEN. These interactions indicate an important role for
these miRNAs in the tumorigenesis of TNBC in AA pa-
tients, which should be further explored in other inde-
pendent well-characterized and large AA populations.

Conclusion

Altogether, our data indicate that alterations in miRNA
expression are relevant biological factors that can be as-
sociated with the poor prognosis in TNBC of AA pa-
tients, by conferring to their TNBC cells, increase cell
proliferation, elevate expression of angiogenesis markers
and/or high migration and invasive cellular capabilities
that are reflected in the clinical characteristics evaluated
in this study. Therefore, apart from the socioeconomic
and cultural factors that play a significant role in the ob-
served disparities in incidence and mortality rates in
TNBC of AA women, miRNAs deregulation can also be
included as drivers of these disparities.
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