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A stemness-based eleven-gene signature
correlates with the clinical outcome of
hepatocellular carcinoma
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Abstract

Background: Cumulative evidences have been implicated cancer stem cells in the tumor environment of
hepatocellular carcinoma (HCC) cells, whereas the biological functions and prognostic significance of stemness
related genes (SRGs) in HCC is still unclear.

Methods: Molecular subtypes were identified by cumulative distribution function (CDF) clustering on 207
prognostic SRGs. The overall survival (OS) predictive gene signature was developed, internally and externally
validated based on HCC datasets including The Cancer Genome Atlas (TCGA), GEO and ICGC datasets. Hub genes
were identified in molecular subtypes by protein-protein interaction (PPI) network analysis, and then enrolled for
determination of prognostic genes. Univariate, LASSO and multivariate Cox regression analyses were performed to
assess prognostic genes and construct the prognostic gene signature. Time-dependent receiver operating
characteristic (ROC) curve, Kaplan-Meier curve and nomogram were used to assess the performance of the gene
signature.

Results: We identified four molecular subtypes, among which the C2 subtype showed the highest SRGs expression
levels and proportions of immune cells, whereas the worst OS; the C1 subtype showed the lowest SRGs expression
levels and was associated with most favorable OS. Next, we identified 11 prognostic genes (CDX2, PON1, ADH4,
RBP2, LCAT, GAL, LPA, CYP19A1, GAST, SST and UGT1A8) and then constructed a prognostic 11-gene module and
validated its robustness in all three datasets. Moreover, by univariate and multivariate Cox regression, we confirmed
the independent prognostic ability of the 11-gene module for patients with HCC. In addition, calibration analysis
plots indicated the excellent predictive performance of the prognostic nomogram constructed based on the 11-
gene signature.

Conclusions: Findings in the present study shed new light on the role of stemness related genes within HCC, and
the established 11-SRG signature can be utilized as a novel prognostic marker for survival prognostication in
patients with HCC.

Keywords: Stemness, Hepatocellular carcinoma, Gene signature, Molecular subtype, Prognosis

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: 13857793035@163.com; szj258@126.com
2Department of Interventional, The Third Affiliated Hospital of Wenzhou
Medical University, Ruian, Zhejiang 325200, People’s Republic of China
Full list of author information is available at the end of the article

Hong et al. BMC Cancer          (2021) 21:716 
https://doi.org/10.1186/s12885-021-08351-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-08351-0&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:13857793035@163.com
mailto:szj258@126.com


Background
Globally, liver cancer is the fourth most lethal cancer
worldwide [1]. Hepatocellular carcinoma (HCC) is rank
as the major histological subtype (approx. 70–85% cases)
of total liver cancer cases. The prognosis of advanced
HCC is still not satisfactory and treatment options are
limited [2]. Integrative studies combining transcriptome
and genomic analysis have confirmed that HCC has
much heterogeneous at the histo-molecular level and
clinical outcomes, and the molecular diversity of HCC is
tightly associated with different aetiologies and distinct
mechanisms of hepato-carcinogenesis [2]. Give that only
individually tailored molecular profiles and biomarkers
could escape the patients from undergoing a potentially
more harmful, aggressive chemical therapy or even leave
them untreated, we should illustrate the natural history
of HCC in individual patients by clearly understood their
personal molecular characteristics. Therefore, there is an
increasing interest in the molecular characterization of
HCC allowing prognosticate overall patient survival.
The biological similarity of cancer cells and stem cells

has been well documented, and abnormal stem cells is
supposed to play an important role in HCC progression
[3]. Although several highly conserved pathways includ-
ing Notch, Hedgehog, Hypoxia and Wnt signaling path-
ways are pivotal for maintaining self-renewal in cancer
stem cells (CSCs) and thus involved in tumorigenesis
and cancer development [4], almost nothing is known
about the precise role and underlying mechanism of
stemness related genes (SRGs) and their gene expression
profiles in primary HCC, not yet anything known related
to the prognostic distinctions of HCC.
Here we aimed at explore new prognostic signature in

patients with HCC using Cox and the least absolute
shrinkage and selection operator (LASSO) regression
models to analyze the expression profile of stemness-
related genes (SRGs) using multiple online HCC dataset.
Based on SRG expression data from public databases in
The Cancer Genome Atlas (TCGA), we constructed mo-
lecular subtypes with distinct different immune charac-
teristics and clinical outcomes. Then, we developed a
11-gene signature for assessing the prognosis of patients
with HCC, and further validated it in TCGA, Gene Ex-
pression Omnibus (GEO) and International Cancer Gen-
ome Consortium (ICGC) HCC datasets. This module
was closely related to patients’ prognosis and could
apply as an independent pathological predictor.

Methods
Patients and datasets
The clinical information and RNA-seq data of 342 HCC
samples were download from TCGA database (http://
www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/TCGA). A dataset which contains

gene expression profiles of HCC samples in GEO data-
base, GSE15654 (contains 216 HCC samples), was
downloaded from NCBI (http://www.ncbi.nlm.nih.gov/
geo/). The RNA-seq data and clinical information of 212
HCC samples in the ICGC HCC cohort was download
from ICGC Data Portal (https://icgcportal.genomics.cn/).
The clinicopathological characteristics of patients from
these three datasets after preprocessing are summarized in
Table 1. For TCGA HCC dataset, 50% of them was ran-
domly divided into training cohort (n = 171), and the rest
171 cases and the entire dataset were selected as internal
validation cohorts. GSE15654 and ICGC HCC datasets
were used as external validation cohorts. Patient informed
consent was existing in these three public datasets, and
this study was approved by the Institutional Review
Boards of the Third Affiliated Hospital of Wenzhou Med-
ical University.

Identification of molecular subtypes based on SRGs
A total of 456 genes related to stemness from 30
stemness-related gene sets (Supplementary Table S1)
were collected from the Molecular Signature Database
v7.0 (MSigDB). Among them, 48 genes not offered in
TCGA HCC dataset or with FPKM = 0 in more than half
of the samples were excluded. Finally, 408 genes were
enrolled for subsequent analysis. Prognostic genes were
detected by univariate Cox regression survival analysis
using the R package survival coxph function, and log
rank P < 0.05 was selected as the threshold. The molecu-
lar subtypes were identified based on these prognostic
genes using cumulative distribution function (CDF)
method, and the optimal number of subtypes were de-
termined according to the CDF Delta area.

Identification of hub genes by protein-protein interaction
(PPI) analysis
Since protein-protein interaction (PPI) analysis can help
identify hub genes with core functions, PPI among genes
in the identified key modules was further explored. The
Search Tool for the Retrieval of Interacting Genes (STRI
NG) is a well-known database containing comprehensive
PPI information (version 11.0, https://string-db.org/).
The PPI network of these genes was thus mapped to the
STRING assembly and then visualized by the Cytoscape
software. Important nodes in the network was identified
by the Cytoscape plugin cytoHubba [5]. The topological
analysis method Degree and the centrality analysis
methods Closeness and Betweenness were used separ-
ately to identify the hub nodes in the PPI network.
Among the top 10 hub nodes identified by each method,
only genes with consistent high Degree, Closeness, and
Betweenness values (larger than the median value) were
selected as hub genes.
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Construction of stemness-related prognostic gene
signature
Co-expression genes in the training set were detected
by univariate Cox regression survival analysis, and log
rank p < 0.01 was selected as the threshold. To nar-
row the gene range and maximize the accuracy,
LASSO Cox regression analysis [6], a method screen-
ing signatures with generally effective prognostication
performance by performing automatic feature selec-
tion, was performed by using the glmnet package of
R to identify the prognostic gene. Optimal genes were
evaluated by 10-fold cross validation. Risk score for
each patient of the training set was calculated with
the linear combinational of the signature gene expres-
sion weighted by their regression coefficients. Risk
score = (exprgene1 x coefficientgene1) + (exprgene2 x coef-
ficientgene2) +… + (exprgenen x coefficientgenen). Re-
ceiver operating characteristics (ROC) curves, carried
out by using the R package timeROC, was used to
analyze the risk score of each sample, and samples
were set as high-risk group or low-risk group by set
the threshold as 0.

Bioinformatic analysis
The enumeration of six tumor-infiltration immune cells
(B cell, CD4+ T cell, CD8+ T cell, neutrophil, macro-
phage, neutrophils and dendritic cell) was estimated
using the “Tumor Immune Estimation Resource” (TIME
R, https://cistrome.shinyapps.io/timer/) tool [7]. Single-
sample Gene set enrichment analysis (ssGSEA) was
applied for identifying relationship between the risk
scores of different samples and biological functions using
the R package GSVA. The classical gene sets of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
(c2. cp. kegg. v11.0.symbols) were considered to decipher
the phenotype. For each analytical pathway, the enrich-
ment score (ES) and the significance of ES were calcu-
lated, and the normalized enrichment score (NES) and
false discovery rate (FDR) were further calculated to
examine functional enrichment results. A FDR cutoff
value of 0.05 was considered in this test.

Statistical analysis
DESeq2 was used to calculate differentially expressed
genes (DEGs) among each cluster (FDR < 0.05 and

Table 1 Clinical and pathologic characteristics of patients in the pre-processed TCGA and GEO HCC datasets

Characteristic Training Set
(n = 171)

Validation Set
(n = 171)

P value* ICGC HCC dataset
(n = 212)

GSE15654 dataset
(n = 216)

Age (years) ≤60 81 84 0.828 43 –

> 60 90 87 169 –

Survival Status Living 109 110 1 176 150

Dead 62 61 36 66

Sex Female 55 54 1 50 –

Male 116 117 162 –

Grade G1 24 29 0.513 – –

G2 82 79 – –

G3 59 52 – –

G4 4 8 – –

Pathologic T stage T1 79 89 0.028 – –

T2 54 30 – –

T3 43 41 – –

T4 4 9 – –

Pathologic N stage N0 120 119 0.934 – –

N1/Nx 50 52 – –

Pathologic M stage M0 128 116 0.188 – –

M1/Mx 43 55 – –

Tumor Stage Stage I 78 83 0.011 33 –

Stage II 50 27 102 –

Stage III 34 46 61 –

Stage IV 1 2 16 –

*Chi-Squared test. ICGC, International Cancer Genome Consortium
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|log2FC| > 1). Kaplan-Meier curves were applied to as-
sess the difference on OS between different groups.
Multivariate Cox regression analyses were performed to
assess the independent prognostic factors. Decision
curve analysis (DCA), which can evaluate predictive
models from the perspective of clinical consequences
[8], was performed in the entire cohort to test the clin-
ical usefulness of the nomogram in comparison with the
gene signature and clinicopathological parameters. All
statistical analyses were using R 3.6.0 (https://mirrors.
tuna.tsinghua.edu.cn/CRAN/) with default software pa-
rameters. P value < 0.05 was considered significant
statistically.

Result
Identification of molecular subtypes in HCC
By univariate Cox regression survival analysis, 207 stem-
ness related genes (SRGs) were identified correlated with
the overall survival (OS) of patients with HCC in the
TCGA dataset (Supplementary Table S2). Consensus un-
supervised clustering of 342 samples from HCC patients,
we found that 4 clusters had lower values of ambigu-
ously clustered pairs (PAC), which reflected the near-
perfect stability of the samples under the correct K value
distribution (Fig. 1a-b). The relative change of the area
under the CDF curve reveals a nearly perfect stable dis-
tribution of the samples starting from 4 clusters (Fig.
1c). Principal component analysis (PCA) and consensus
heatmaps also showed a relatively stable distribution
samples in the 4 clusters (Fig. 1d-e). After evaluating the
relative changes in the area under the CDF curve, PAC
value, PCA and consensus heatmaps, we chose a four-
cluster solution. Thus, four molecular subtypes (Cluster
1 [n = 82], Cluster 2 [n = 54], Cluster 3 [n = 105]) and
Cluster 4 [n = 101]) were constructed based on these 207
prognostic genes (Fig. 1a-e).
Gene expression profile and the distribution of clinico-

pathological parameters in each subtype was showed in
Fig. 1e. However, the molecular subtype had no correl-
ation with any clinicopathological features of patients
with HCC (Supplementary Figure 1). Kaplan–Meier
method with log-rank tests were applied to explore the
difference of prognosis among the four molecular sub-
types in HCC. Compared with Cluster 1 and Cluster 3,
patients in Cluster 2 and Cluster 4 showed worse overall
survival (OS) time (Fig. 1f). In addition, the differences
on immune characteristics among the three subtypes
were analyzed. Cluster 2 showed the highest proportions
of immune cell infiltration than the other three subtypes
(Fig. 1g).

Selection of hub genes by intersection and PPI analyses
Genes differentially expressed among each molecular
subtype were calculated (Table 2). There are 286

differentially expressed genes (DEGs, 272 up-regulated
and 14 down-regulated, Supplementary Figure 2A) in
Cluster 1 compared with the other three subtypes, 727
DEGs (294 up-regulated and 433 down-regulated, Sup-
plementary Figure 2B) between Cluster 2 and other
three subtypes, 276 DEGs (264 up-regulated and 12
down-regulated, Supplementary Figure 2C) between
Cluster 3 and other three subtypes, and 56 DEGs (31
up-regulated and 25 down-regulated, Supplementary
Figure 2D) between Cluster 4 and other three subtypes.
The up-regulated and down-regulated DEGs were
depicted on Venn diagram (Supplementary Figure 2E-F).
Considering that gene interaction networks helps to

uncover key genes participate in liver cancer progres-
sion, we mapped the expression of the 1345 DEGs to
STRING database to construct PPI network. A total of
1216 PPI pairs with a score higher than 0.7 were
matched (Fig. 2a, Supplementary Table S3). Among
which, the top 490 hub genes identified by the Degree
(Fig. 2b), Closeness (Fig. 2c), and Betweenness (Fig. 2d)
methods were largely consistent (Supplementary Table
S4). The topological properties of the PPI network were
also evaluated and the distributions of degree, closeness,
and betweenness were shown in Fig. 2e-g. A total of 130
genes that satisfied high degree, closeness, and between-
ness scores were selected out as hub genes for further
analysis (Supplementary Table S5). These hub DEGs
were assumed to be strongly correlated with the devel-
opment of HCC, and were enrolled for subsequently
identification of prognostic gene.

Construction of prognosis risk model based on
differential co-expression genes
The clinical information of HCC patients in the TCGA
training (n = 171), TCGA testing (n = 171), and two exter-
nal validation sets used for model construction and evalu-
ation was listed in Table 1. To identify novel prognostic
marker for patients with HCC, we applied univariate Cox
proportional hazard regression and dimensional-reduction
analysis by performing LASSO regression analysis to these
130 hub DEGs in the training set. And then 11 genes (in-
cluding CDX2, PON1, ADH4, RBP2, LCAT, GAL, LPA,
CYP19A1, GAST, SST and UGT1A8) significantly corre-
lated to OS (P < 0.01, Table 3) were confirmed with 10-
fold cross-validation and the minimized error rate λ =
0.034 (Fig. 3a-b). Among them, CDX2, RBP2, GAL,
CYP19A1, GAST, SST and UGT1A8 showed significant
negative correlation with OS, while the other four gens,
PON1, ADH4, LCAT and LPA, were positive correlated
to OS. The final 11-gene signature was calculated using
Multivariate Cox survival analysis (Table 3), and a gene-
based prognostic model was established to evaluate the
survival risk of each patient, the formula of the gene signa-
ture is as follows: RiskScore = 0.079 * expCDX2–0.203 *
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Fig. 1 (See legend on next page.)
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expPON1–0.021 * expADH4 + 0.094 * expRBP2 + 0.297 *
expLCAT + 0.177 * expGAL + 0.037 * expLPA + 0.102 *
expCYP19A1 + 0.048 * expGAST + 0.102 * expSST + 0.087 *
expUGT1A8.
Based on the risk score formula and the cut-off

value of normalized risk score (Z-score = 0), patients
were divided into high-risk or low-risk group (Fig.
3c). And a heatmap shown the expression profile of
the eight genes illustrated that as the risk score of pa-
tients increased, the expression of prognosis-risky
genes (CDX2, RBP2, GAL, CYP19A1, GAST, SST and
UGT1A8) were distinctly upregulated; in contrast, the
expression of prognosis-protective gene (PON1,
ADH4, LCAT and LPA) were downregulated. ROC
curve showed that the accuracy of the 11-gene signa-
ture for one-year, three-year and five-year survival
were greater than 0.70 (Fig. 3c). Finally, we divided
the samples into the high-risk group (n = 79) when
their Zscore-based Riskscore greater than zero, and
the others as the low-risk group (n = 92). Kaplan-
Meier curve analysis revealed that high-Riskscore con-
fers significantly shorter OS time (HR = 2.27, 95%CI
1.78–2.89; P < 0.001; Fig. 3d). To analyze the clinico-
pathological correlation of the RiskScore, we obtained
vascular invasion and tumor differentiation information
from the TCGA dataset, and compare the difference be-
tween high- and low-risk groups. For vascular invasion
status, although there was no significant difference, sam-
ple with vascular invasion has a higher proportion of high-
risk patients (Supplementary Figure 3A). In addition, there
are significant differences between high- and low-risk pa-
tients on tumor differentiation (Supplementary Figure
3B). G1 group has the highest proportion of low-risk pa-
tients, and G4 group has the highest proportion of high-
risk patients, which suggests that the RiskScore is signifi-
cantly correlated with tumor differentiation.

Validation of the 11-gene signature in the internal
dataset and two external HCC datasets
The TCGA testing dataset (n = 171) and the entire
TCGA HCC dataset (n = 342) were used for internal val-
idation, patients in both two sets were calculated using
the same coefficients. Patients were sub-grouped using
the same cut-off value as the training set. The corre-
sponding ROC curve and Kaplan-Meier survival curves
for the TCGA testing set and the entire TCGA dataset
showed that the AUCs of the signature remained high
and the high-risk groups had consistently shorter OS pe-
riods than the low-risk groups (Fig. 4).
Subsequently, the prognostication efficiency of our 11-

gene signature was also calculated in the GSE15654 and
ICGC HCC cohort. The results showed that the associ-
ation between the gene expression and risk score was
consistent with that in the training and internal valid-
ation sets (Fig. 5). In the GSE15654 dataset, The ROC
curve revealed that the AUCs of the prognostic 11-gene
signature for 1-year, 3-year and 5-year survival were
0.71, 0.58 and 0.62, respectively (Fig. 5a). As expected,
patients in the GSE15654 dataset with high risk-scores
had shorter OS than those with low risk scores (HR =
1.44, 95%CI 1.13–1.84; P = 0.024; Fig. 5b). In the ICGC
HCC cohort, the ROC curve showed that the AUCs of
the 11-gene signature for one-year, three-year and five-
year survival were consistently greater than 0.70 (Fig.
5c). As expected, patients in the ICGC HCC cohort with
high risk-scores had shorter OS than those with low risk
scores (HR = 1.71, 95%CI 1.31–2.24; P = 0.011; Fig. 5d).
Therefore, the 11-gene signature displayed solid effective
prognostic classification performance in the two external
validation sets.

Univariate and multivariate cox regression analyses of the
11-gene signature
To identify whether the 11-gene signature is an inde-
pendent prognostic predictor in clinical application, we
applied univariate and multivariate Cox regression ana-
lysis to systematically evaluate the prognosis of patients
in the entire TCGA and ICGC HCC dataset. In the en-
tire TCGA HCC dataset, univariate analysis of survival
revealed that the 11-gene signature (P < 0.001), pT stage
(P < 0.001), pN stage (P < 0.001), pM stage (P < 0.001)
and pTNM stage (P < 0.001) were prognostic indicators
of OS (Fig. 6a). However, multivariate Cox regression
analysis showed that only 11-gene signature (P < 0.001)

Table 2 DEGs in each Cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Upregulated DEGs 272 294 264 31

Downregulated DEGs 14 433 12 25

All DEGs 286 727 276 56

DEGs differentially expressed genes

(See figure on previous page.)
Fig. 1 Identification of molecular subtypes in HCC. a cumulative distribution function (CDF) curve of K = 2–10; b The relative change in area
under the CDF curve of K = 2–10; c A relative stable partition of the samples is found at K = 4. d PC analysis for K = 4 are shown; e Heat map of
the expression profile of 408 SRGs and the distribution of clinicopathological parameters in all four subtypes; f Kaplan-Meier curves with log rank
analysis showed the overall survival (OS) curve of the four subtypes; g The proportions of B cell, CD4+T cell, CD8+T cell, Neutrophil, Macrophage,
and Dendritic cell (DC) in the three subtypes
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Fig. 2 Screening of hub genes involved in the development of STAD. a The network showed co-expression gene in PPI pairs with a score higher
than 0.7; b-d Top hub genes identified by the Degree (b), Closeness (c), and Betweenness (d); e-g The topological properties of the PPI network
and the distributions of degree (e), closeness (f), and betweenness (g)
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in addition to pT stage (P < 0.001) and pN stage (P =
0.005) were independent prognostic indicators of OS
(Fig. 6b). In the ICGC HCC dataset, univariate and
multivariate analysis of survival revealed that both the
11-gene signature and pTNM stage were independent
prognostic indicators of OS (Fig. 6c-d). Overall, these re-
sults suggest that the 11-gene signature is a potential in-
dependent prognostic factor for HCC.

Construction of a comprehensive nomogram for survival
prediction of HCC patients
In order to maximize the utility of the signature, we fur-
ther integrated risk score and other prognostic clinical
factors identified by univariate Cox regression analysis
(Fig. 6b) to construct a novel nomogram for the survival
prediction of HCC patients (Fig. 7a). The one-year,
three-year and five-year calibration curves of the nomo-
gram verified the consistency between predicted and ac-
tual survival probability of HCC patients (Fig. 7b). And
also, in the ICGC HCC dataset, the one-year, three-year
and five-year calibration curves of the nomogram the
nomogram showed a similar result (Fig. 7c-d).

GSEA analysis of enriched pathway based on risk score
ssGSEA was performed to determine the potential re-
lated pathways according to patients’ prognostic risk in
TCGA, ICGC and GSE15654 cohorts, and pathways with
False Discovery Rates (FDR) < 0.05 were derived. By di-
vided samples into high-risk group and low-risk group
based on whether the Riskscore is greater than 0, and
analyzed the enriched pathway in both groups by using
GSEA, we found that a total of 20 pathways were identi-
fied in the TCGA HCC cohort (Supplementary Table
S6), 15 pathways were identified in the ICGC HCC co-
hort (Supplementary Table S7), and 46 pathways were
identified in the GSE15654 cohort (Supplementary Table
S8). As top pathways showed in Supplementary Figure 4,
all of them were significantly enriched in the low-risk

group. Thus, the 11-gene signature may involve in the
development and progression of HCC by participating
these pathways.

Discussion
Since the theory of cancer stem cells (CSCs) was pro-
posed, CSCs have been well recognized and character-
ized in many human malignancies including hepatic
cancer [3]. Cumulative evidences have been yielded in
the contribution of CSCs on the development of cancer
recurrence, metastasis, and chemo- and radio-resistance
in hepatocellular carcinoma [9]. However, several phys-
iopathology and mechanistic questions of hepatic CSC
still need to be illuminated. In this study, we identified
the molecular subtypes of HCC based on the expression
of stemness-related genes (SRGs), which provided a new
molecular subtype classification of HCC, and further
studied the genomic background of the molecular char-
acteristics of HCC. In addition, we constructed a PPI
network based on the 987 differential expression genes
obtained from DEseq analysis of the differential genes in
each subtype; then constructed a 11-gene signature
prognostic model based on the hub genes in the PPI net-
work; after a three-phase training, test and validation
process, we confirmed that the 11-gene signature is able
to exert stable prediction performance in datasets from
different platforms, which means that it has strong
robustness on classification of the prognostic risk of pa-
tients with HCC.
The associations between SRG expression and

immune-infiltration or clinical outcomes have been de-
tected before but has not been explored in HCC [10–
12]. In our analysis, based on the expression profile of
prognostic SRGs, we demonstrated that the Cluster 2
subtype is associated with the highest infiltration of im-
mune cells, and we identified that tumors with more ac-
tive SRG expression have higher immune-infiltration in
tumor microenvironment (TME) and significantly worse

Table 3 Univariate Cox regression analysis result of 11 genes in the training set

Gene P value Hazard ratio Low 95%CI High 95%CI Coefficient

CDX2 0.006 1.213 1.056 1.394 0.193

PON1 0.000 0.657 0.534 0.807 −0.421

ADH4 0.004 0.709 0.562 0.896 −0.343

RBP2 0.008 1.277 1.066 1.529 0.244

LCAT 0.001 0.634 0.479 0.839 −0.456

GAL 0.006 1.353 1.090 1.679 0.302

LPA 0.008 0.687 0.519 0.908 −0.376

CYP19A1 0.006 1.339 1.089 1.648 0.292

GAST 0.010 1.290 1.063 1.565 0.254

SST 0.002 1.430 1.140 1.792 0.357

UGT1A8 0.010 1.188 1.043 1.353 0.172
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Fig. 3 Evaluation of the performance of the 11-gene signature in the training dataset. a Trajectory change of each independent variable, the X
axis represents the log value of the independent variable lambda, the Y axis represents the coefficient of the independent variable; b Confidence
intervals of each lambda; c Risk score, survival time, survival status and expression of the 11-gene signature in the training set. d ROC curve of the
11-gene signature for OS in the training set. e Kaplan-Meier survival analysis of OS for patients in the training set. AUC, area under the curve; HR,
hazard ratio; CI, confidence interval
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prognosis, which means that increased expression of
stemness-related genes and increased immune infiltra-
tion may contribute to a poor prognosis. CSCs can show
special characteristics to evade the recognition of innate
and adaptive immunity, transform TME into immuno-
suppressive and promote tumorigenic landscape. In
addition, immune cells sculpted by CSCs can affect the
differentiation and phenotype of tumor cells in TME
[13]. Therefore, tumors with more active SRG

expression may have higher immune-infiltration in the
tumor microenvironment and significantly worse prog-
nosis. Thus, CSCs maintain the malignant phenotype of
tumor cells and induce poor clinical outcomes by re-
modeling the immune contexture. Various stemness-
related pathways such as Notch and Hedghog signaling
are also widely involved in tumor immune regulation; in
addition, CSCs can induce immune escape by activating
their own oncogenic pathways, such as Wnt and Hippo

Fig. 4 Internal validation of the 11-gene signature’s robustness in the TCGA validation cohort and the entire TCGA cohort. a ROC curve of the 11-
gene signature for OS in the TCGA validation set; b Kaplan-Meier survival analysis of OS for patients in the TCGA validation set; c ROC curve of the
11-gene signature for OS in the entire TCGA set; d Kaplan-Meier survival analysis of OS for patients in the entire TCGA set
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signaling, etc. [14]. The expression activity of SRGs to
some extent represent the immunomodulatory proper-
ties of CSCs; in addition, this immune-related difference
in SRGs based molecular subtype may reflect the effects
of stemness on TME and the reason why a part of HCC
is so fatal regardless of aggressive therapy. Targeting
SRGs will facilitate the development of current thera-
peutic modalities and the R&D of ground-breaking strat-
egies. Our study suggests a great potential for the use of

SRG profiling as a powerful marker in prognostication
and inform treatment decisions for HCC patients.
We further established a 11-gene signature that could

classify patients’ overall survival. Among the 11 bio-
marker genes (CDX2, PON1, ADH4, RBP2, LCAT,
GAL, LPA, CYP19A1, GAST, SST and UGT1A8) discov-
ered by the present study, caudal-related homeobox 2
(CDX2) is an intestinal-specific homeobox transcription
factor that plays a crucial role in the development,

Fig. 5 External validation of the 11-gene signature’s robustness in the GSE15654 and ICGC HCC cohorts. a ROC curve of the 11-gene signature
for OS in the GSE15654 cohort; b Kaplan-Meier survival curve of OS for patients with HCC based on the 11-gene signature in the GSE15654
cohorts. c ROC curve of the 11-gene signature for OS in the ICGC HCC cohort; d Kaplan-Meier survival curve of OS based on the 11-gene
signature in the ICGC HCC cohorts
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proliferation, and differentiation of intestinal epithelium
[15, 16]. CDX2 have emerged as important modulators
of cancer aggressiveness and can influence the viability

of HCC cells by transcription regulating oncogene
CDH17 [17]. Moreover, CDX2 also implicated in the dif-
ferentiation of human and mouse pluripotent stem cells

Fig. 6 Cox regression analyses of prognostic variables in TCGA and ICGC HCC datasets. a-b) Forest plot of the univariate (a) and multivariate (b)
Cox regression analyses in TCGA HCC dataset; c-d Forest plot of the univariate (c) and multivariate (d) Cox regression analyses in ICGC
HCC dataset
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[18]. Retinoblastoma-Binding Protein 2 (RBP2) is a his-
tone demethylase over-expressed in HCC [19], and
RBP2 can induce CSC phenotypes through converting
renal cell carcinoma cells into a more mesenchymal
phenotype [20]. The promoter gene polymorphism of
CYP19A1 has been linked with the risk of hepatocellular
carcinoma [21, 22]; in addition, it can promote the meta-
static homing and proliferation of stem-like prostate
cancer cells in the bone marrow [23]. The question that
whether CDX2, RBP2, and CYP19A1 involve in the be-
havior regulation of CSCs subgroup in HCC should be

further recognized. Gastrin (GAST) is a trophic factor
within the normal gastrointestinal tract and its precursor
forms can express in HCC [24]. Interestingly, GAST can
also expresses in a group of primary human tumors, in-
cluding neuronal, renal, and myogenic stem cell tumors
[25], which suggest that GAST may play a previously
unrecognized role in human CSC. Galanin and GMAP
Prepropeptide (GAL) has been demonstrated to activate
in human HCC, and it prefers to accumulate in the stro-
mal tissue around the HCC cells [26]; Somatostatin
(SST) is a kind of hormone that can inhibits the release

Fig. 7 Nomograms for prediction of the outcome of patients with HCC. a A nomogram established by integrating the gene-signature with the
clinicopathologic features in the TCGA HCC dataset. b Calibration curves of the developed nomogram for predicting OS in the TCGA HCC
dataset. c A nomogram established by integrating the gene-signature with the clinicopathologic features in the ICGC HCC dataset. d Calibration
curves of the developed nomogram for predicting OS in the ICGC HCC dataset
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of various secondary hormones; Paraoxonase 1 (PON1)
was found to be a highly related predictor of recurrence
and metastasis in HCC [27]; Production and Homeosta-
sis of Lipoprotein(A) (LPA) can be impaired when liver
cancer occurs [28]; and both the downregulation of
PON1 [27] and alcohol dehydrogenase 4 (Class II), Pi
polypeptide (ADH4) [29] can confers poor survival time
of HCC. However, the relationship among these genes
and CSC or stemness was seldom reported. Besides, sel-
dom has been recognized on the expression or role of
Lecithin-Cholesterol Acyltransferase (LACT) and UDP
Glucuronosyltransferase Family 1 Member A8 (UGT1A8)
in HCC or even CSCs. Nevertheless, although some of
previous studies have identified some these genes as prog-
nostic marker in HCC, whereas they were limited by just
single gene detected, small cohort, and deficiency on inde-
pendent validation. The use of the LASSO Cox regression
model [30] and nomogram [31] allowed us to integrate
multiple genes into one module, which has significantly
higher prognostication performance than that of single
gene alone or even some previous reported gene
signatures.
Some limitations of this study should be taken into

consideration. Firstly, since the TCGA, ICGC and
GSE15654 datasets we enrolled only included Caucasian
population, most of which are hepatitis C-related HCC,
this present study may not include patients with hepa-
titis B-related HCC from other areas loading distinct
genetic phenotypes and clinical characteristics, making it
vulnerable to the intrinsic biases of such a research for-
mat. Obviously, our results should be training in hepa-
titis B-related HCC cohorts, and further validated by
prospective study in some worldwide multicenter clinical
study. Moreover, its area under ROC curve should be
optimized to improve the prognostic accuracy, and also
its prediction value in early HCC must be further evalu-
ated. In addition, despite growing studies began focus on
the interaction of tumor cells and associated stemness in
human malignancies, most SRG are not yet functionally
annotated in HCC, and the biofunction of our 11 genes
have not yet been fully investigated in previous studies.
Although the physiopathological roles of the gene signa-
ture were annotated using computational approaches,
additional studies should be carried out to further dis-
close the mechanisms of these 11 genes involved in the
carcinogenesis of HCC. Further, more evidences are re-
quired to find out the biological foundation of their dys-
regulation in HCC.

Conclusions
In summary, for the first time, we profiled the stemness
related molecular subtype in HCC and our study may
provide an assessment approach for the CSC-based
classification of HCC. Moreover, we identified a

stemness-related gene signature which could classify the
prognostic risk of patients with HCC. This method
might, therefore, help with patient management and in-
dividualized therapy of patients with HCC.
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