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mutation signature and tumor mutation
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Abstract

Background: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal malignancy of the biliary tract. Analysis of
somatic mutational profiling can reveal new prognostic markers and actionable treatment targets. In this study, we
explored the utility of genomic mutation signature and tumor mutation burden (TMB) in predicting prognosis in
iCCA patients.

Methods: Whole-exome sequencing and corresponding clinical data were collected from the ICGC portal and
cBioPortal database to detect the prognostic mutated genes and determine TMB values. To identify the hub
prognostic mutant signature, we used Cox regression and Lasso feature selection. Mutation-related signature (MRS)
was constructed using multivariate Cox regression. The predictive performances of MRS and TMB were assessed
using Kaplan–Meier (KM) analysis and receiver operating characteristic (ROC). We performed a functional
enrichment pathway analysis using gene set enrichment analysis (GSEA) for mutated genes. Based on the MRS,
TMB, and the TNM stage, a nomogram was constructed to visualize prognosis in iCCA patients.

Results: The mutation landscape illustrated distributions of mutation frequencies and types in iCCA, and generated
a list of most frequently mutated genes (such as Tp53, KRAS, ARID1A, and IDH1). Thirty-two mutated genes
associated with overall survival (OS) were identified in iCCA patients. We obtained a six-gene signature using the
Lasso and Cox method. AUCs for the MRS in the prediction of 1-, 3-, and 5-year OS were 0.759, 0.732, and 0.728,
respectively. Kaplan–Meier analysis showed a significant difference in prognosis for patients with iCCA having a
high and low MRS score (P < 0.001). GSEA was used to show that several signaling pathways, including MAPK, PI3K-
AKT, and proteoglycan, were involved in cancer. Conversely, survival analysis indicated that TMB was significantly
associated with prognosis. GSEA indicated that samples with high MRS or TMB also showed an upregulated
expression of pathways involved in tumor signaling and the immune response. Finally, the predictive nomogram
(that included MRS, TMB, and the TNM stage) demonstrated satisfactory performance in predicting survival in
patients with iCCA.
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Conclusions: Mutation-related signature and TMB were associated with prognosis in patients with iCCA. Our study
provides a valuable prognostic predictor for determining outcomes in patients with iCCA.

Keywords: Genomic mutation signature, Tumor mutation burden, Intrahepatic cholangiocarcinoma, Prognostic
biomarker, Nomogram

Background
Cholangiocarcinoma (CCA) is a highly lethal and aggres-
sive malignancy originating from the biliary epithelium.
Based on the anatomical site of origin, CCA can be clas-
sified into three subtypes including perihilar (pCCA),
distal (dCCA), and intrahepatic (iCCA) [1]. iCCA ac-
counts for 10–20% of primary liver cancers and approxi-
mately 20% of biliary-tract cancers [2]. Postoperative 5-
year overall survival (OS) in iCCA patients is poor (30–
40%) [3, 4]. In the last decade, iCCA has shown an in-
creasing incidence rate and mortality worldwide, which
contrasts with the decreasing trends shown by pCCA
and dCCA [5]. Surgical resection is currently the main-
stay of curative-intent treatment for patients in the early
stage; however, the vast majority of patients miss the op-
portunity for radical surgery [6, 7]. Nevertheless, even
after resection, iCCA patients show a high incidence of
recurrence [8–10]. These findings highlight the import-
ance of discovering novel prognostic biomarkers and
constructing predictive models for patients with iCCA.
Such approaches can be used to make treatment deter-
minations and improve patient prognosis.
Cancer is often accompanied by an accumulation of

various genetic mutations. Accumulated somatic muta-
tions contribute to tumorigenesis and progression of
malignancy. Genetic mutations are consistently present
and critical factors that determine gene function and
biological behavior in malignant tumors [11, 12]. Certain
genetic mutations may be used as prognostic indicators
to predict patient survival and response to adjunctive
therapy [13–16]. Several frequently occurring genetic al-
terations, including TP53, KRAS, ARID1A, IDH1/2,
BAP1, and PBRM1, have been identified in iCCA [17,
18]. However, the prognostic implications of these som-
atic alterations in iCCA are poorly understood. Improv-
ing our understanding of these genetic mutations is vital
for selecting prognostic genetic biomarkers, identifying
high-risk CCA patients harboring pertinent genetic mu-
tations, and tailoring treatment strategies in clinical
practice.
Tumor mutation burden (TMB) is defined as the num-

ber of somatic (such as missense, deletion, or insertion)
mutations per megabase of genome examined [19]. Re-
cent studies have indicated that TMB may be used as a
biomarker to predict patient response to immune check-
point inhibitor (ICI) therapy [20, 21]. Furthermore,

numerous studies have shown that TMB can be used to
predict the effectiveness of immunotherapy against vari-
ous cancers such as non-small cell lung carcinoma
(NSCLC) [22, 23], melanoma [24], esophagogastric [25],
and colorectal [26]. Although the utility of TMB in pre-
dicting the effectiveness of ICIs has been established,
few studies have investigated the prognostic potential of
TMB in predicting the survival of patients with iCCA.
Whole exome sequencing (WES) is regarded as the

gold standard for assessing TMB values. In recent years,
bioinformatic WES resources have become available
from public databases, such as the International Cancer
Genome Consortium (ICGC, https://dcc.icgc.org/) and
cBioPortal (https://www.cbioportal.org/), enabling large-
scale genomic integration and comprehensive bioinfor-
matics analysis of various cancers. These public data-
bases can be used to determine factors that influence
anti-cancer immunotherapy.
In this study, we used WES data from ICGC and cBio-

Portal database to investigate the mutational landscape
of iCCA; explore the potential impact of mutation-
related signature on patient survival; and establish a reli-
able nomogram model based on mutant gene signature,
TMB, and other clinical characteristics to predict the OS
of patients with iCCA. The findings obtained in our
present study, as well as our nomogram model, can be
used to explore new potentially prognostic biomarkers
and provide therapeutic targets for the treatment of pa-
tients with iCCA.

Methods
Collection of mutation data
Data on somatic mutations and the corresponding clini-
copathological characteristics of iCCA patients were ac-
quired from cBioPortal (http://www.cbioportal.org) and
the ICGC portal (http://dcc.icgc.org/releases/current/
Projects). We selected the WES dataset for iCCA pa-
tients only. The repositories used were BTCA-JP (Japan,
Nat Genet 2015) [27], BTCA-SG (Singapore, Cancer
Discov 2017) [2], TCGA-CHOL (TCGA, PanCancer
Atlas) [12] and Intrahepatic Cholangiocarcinoma
(Shanghai, Nat Commun 2014) [28]. Only patients from
these datasets with complete clinicopathological infor-
mation were included. Clinical characteristics included
age, gender, TNM stage, survival status, and survival
time. Perl scripts were then used to extract the somatic
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mutation data on iCCA. The “GenVisR” and “karyoplo-
teR” functions in the R software package were used to
visualize the genetic landscape. Comparison of these
mutations with those listed in the Cancer Hotspot Muta-
tion database (https://www.cancerhotspots.org/#/home)
provided information on whether these mutations are
predicted to be putative driver mutations. We also
screened the top mutations by comparing them with the
data available in OnkoKB (https://www.oncokb.org/) to
determine whether any of these mutations are known to
be clinically associated. We then used the “corrplot”
package to explore correlations between mutations that
co-occurred or were exclusive of each other. In order to
show differences in mutation across different ethnic
groups, we also used the “yyplot,” “ggplot2,” and “ggord”
package to perform the principal component analysis
(PCA). Finally, a carton workflow was plotted to describe
our data/pipeline (Fig. 1a).

Construction of protein-protein interaction (PPI) network
We selected the top 200 most frequently mutated genes
to investigate the possible interactive relationships be-
tween these genes. These genes were inputted into the
STRING database (https://stringdb.org/) to generate the
PPI network; a confidence score > 0.7 was designated as
the cut-off criterion. We also modified the PPI network
using Cytoscape. Then, mutated gene nodes with an
edge of > 5 were extracted as the most important
targets.

Functional enrichment pathway analysis
The top 300 most frequently mutated genes were se-
lected to perform an enrichment pathway analysis. The
“org. Hs.eg.db,” “ggplot2,” “clusterProfiler,” and “enrich-
plot” packages were utilized for Gene Ontology (GO)

analysis and analysis of the Kyoto Gene and Genome
Encyclopedia (KEGG) pathways; FDR < 0.05 was consid-
ered to be statistically significant.

Hub prognostic mutant genes and construction of the
prognostic model
Next, we used the univariate Cox regression analysis to
screen the hub mutated genes for use in iCCA progno-
sis. We performed a dimensionality reduction analysis of
survival-associated mutant genes using the least absolute
shrinkage and selection operator (Lasso) regression, and
“survival” and “glmnet” packages in R. Lasso sub-selects
prognostic mutant genes by imposing a penalty propor-
tional to the contraction of the regression coefficient.
We then performed a multivariate Cox regression ana-
lysis to establish the mutation related signature (MRS),
which was calculated using the following formula:

MRS ¼
Xn

i¼1
βi�Muti
� �

;

where βi is the coefficient and Muti represents the
mutation status of genes (if the status is Mutation,
Muti = 1; if the statue is Wild, Muti = 0). Subse-
quently, the 318 iCCA patients were classified into
low and high groups according to the median MRS.
OS was estimated to compare survival between the
two groups, with P value < 0.05 indicating a signifi-
cant difference. Receiver operating characteristic
(ROC) curves were generated to evaluate the perform-
ance of MRS in predicting the 1-, 3-, and 5-year sur-
vival. Forest plots were also used to show the hazard
ratio (HR) of selected prognostic mutated genes using
the “survminer” package.

Fig. 1 Mutational landscape of iCCA. a Schematic view of patient cohorts and experimental pipeline used to analyze study data; b Top 35
frequently mutated genes are shown in the waterfall plot
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TMB values of patients with iCCA: estimation and
prognostic analysis
TMB was defined as total number of mutations per cod-
ing area. All of the non-synonymous variants in the cod-
ing region were counted, and silent mutations were not
considered. Genomic mutations for the 318 iCCA pa-
tients were specifically extracted. Because 38Mb is rou-
tinely used as total exon length in humans, we
calculated TMB as total mutation frequency divided by
38 [29]. The TMB of each patient was calculated using
this method, and corresponding survival data were
merged. Then, we divided the patients into high- and
low-TMB groups according to the cut-off TMB values,
which were determined using the maximum Youden
index of the ROC curve.

Gene set enrichment analysis (GSEA)
To examine the activity of potentially involved biologic
pathways in the high- and low-group of patients based
on MRS and TMB, we performed GSEA (MSigDB; ver-
sion 7.1) using the “KEGG,” “GO,” and “immunologic
signatures” gene sets from the Molecular Signature
Database. The mutation gene list for the assessment of
MRS and TMB status was used as input phenotype data.
The analysis was performed 1000 times for gene-set per-
mutations, and pathways with P < 0.05 were considered
statistically significant.

Statistical analysis
All statistical analyses were conducted using SPSS 24.0,
R software (version 4.0.2), and GraphPad Prism 8.0. Stu-
dent’s t-test was used to compare continuous variables,
and the χ2 test or Fisher’s exact test was used to com-
pare categorical data. The effects of AJCC TMN stage,
MRS, and TMB on survival were assessed using the log-
rank test and Kaplan–Meier method. Multivariable Cox
regression analysis was used to determine independent
risk factors. Fisher’s exact test was used to analyze the
correlations between gene mutations that co-occurred or
were exclusive of each other. A nomogram model was
then constructed, and predictive performance of the
nomogram was estimated using C-index and calibration
plot.

Results
Landscape of genetic mutation profiles in iCCA
The demographic and clinicopathological characteris-
tics of 318 patients with iCCA, examined using WES,
are listed in Table 1. Our cohort included 192 men
and 126 women. Median age at the time of diagnosis
was 62 years (range, 26–89 years). Our results revealed
that 15 genes (TP53, TTN, KRAS, MUC2, ARID1A,
MUC16, BAP1, OBSCN, CSMD3, EPHA2, IDH1,
PCLO, LRP1B, PBRM1, and SYNE1) were mutated in

more than 20 samples. The genetic mutation fre-
quency is shown in the Supplementary Table 1. We
visualized the landscape of mutation profiles using
the “GenVisR” package, which shows only the top 35
most frequently mutated genes across the 318 sam-
ples (Fig. 1b). Moreover, we mapped the mutated
genes whose mutation frequency was more than 5 on
the chromosomes; in this map, the color red indicates
the high-frequency mutation sites (Supplementary Fig.
1A). In addition, we provided a lollipop plot for the
top five mutated genes (TP53, KRAS, MUC2, ARID1A,
and MUC16) as Supplementary Fig. 1B. We also ex-
plored the correlation between mutations that co-
occurred or were exclusive of each other (Supplemen-
tary Fig. 2A). Our results indicate that IDH1 was re-
current with BAP1/PBRM1/ARID1A/PIK3CA, but
exclusive of KRAS/TP53/MUC2. We also conducted a
PCA to examine our cohort of iCCA patients with re-
spect to their different ethnic backgrounds. Our re-
sults indicate no difference in mutational pattern
between different ethnic populations (Supplementary
Fig. 2B). We compared the mutations occurring in

Table 1 Clinical characteristics of patients from ICGC and
cBioPortal database

Variables All patients (n = 318)

Number (n) Percent (%)

Age, years

Median 62

Range 26–89

< 65 178 56.0

≥ 65 140 44.0

Gender

Female 126 39.6

Male 192 60.4

TNM Stage

Stage I 80 25.2

Stage II 94 29.6

Stage III 37 11.6

Stage IV 107 33.6

Project

TCGA-CHOL 32 10.0

BTCA-JP 136 42.8

BTCA-SG 48 15.1

SMMU 102 32.1

TMB, mut/Mb

Median 1.25

Range 0.03–54.74

< 10 306 96.2

≥ 10 12 3.8
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our patient cohort with those listed in the Cancer
Hotspot Mutation database, and found that 8 (TP53,
KRAS, ARID1A, BAP1, IDH1, PBRM1, PIK3CA, and
KMT2D) of the top 35 mutations were predicted to
be putative driver mutations. We also screened the
top mutations to find actionable genes on the
OnkoKB website. Our findings indicate that three
genetic mutations (IDH1, KRAS, and PIK3CA) were
potentially viable molecular alterations.

PPI network of mutant genes
The top 200 most frequently mutated genes were se-
lected to construct a protein-protein interaction net-
work (PPI). We performed a PPI network-based
analysis using STRING database to determine
whether the mutated genes functionally interacted
with each other and were involved in tumorigenesis.
The networks were also visualized using Cytoscape,
which contained 108 nodes and 182 interacting pairs
(Fig. 2a). The top hub genes with the highest clus-
tering included TP53, PIK3CA, KRAS, NRAS, PTEN,
ANK2, SPTA1, ANK3, and ARID1A (Fig. 2b).

Functional pathway analysis of hub mutant signature
We used the R software package to perform a func-
tional pathway analysis of the top 300 mutant genes.
Figure 2c shows the top 30 enriched GO terms asso-
ciated with regulation of signaling in multicellular or-
ganisms, ion transmembrane transport, and
transmembrane transporter complex and ion-gated
channel activity. In addition, KEGG pathway analysis
demonstrated enrichment of mutant genes in several
signaling pathways involved in malignancy, such as
the PI3K-AKT, MAPK, proteoglycan, and calcium-
signaling pathways. We also expanded the pathway to
include major genes from the enriched pathways
(PI3K-AKT, MAPK, Cellular senescence and apoptosis
pathway) (Fig. 2d).

Prognostic signature of mutant genes
To explore the prognostic roles of gene mutations in
iCCA, we used univariate Cox regression to analyze
patient survival. Patients were categorized into wild-
type and mutant-type according to their gene-
mutation status. Thirty-two mutated genes,

Fig. 2 Protein to protein interaction (PPI) network and functional enrichment pathway of mutated genes. a PPI network of mutated genes; b
nodes with an edge of > 20 were considered hub genes; c Gene Ontology analysis. Top 30 enriched terms in GO. Cellular component (CC);
biological process (BP); molecular function (MF). d KEGG analysis of mutated genes. The 30 significantly enriched KEGG pathways. Circle size
indicates gene numbers, and color represents adj. P-value. Frequencies of major genetic mutations in the enriched pathways are shown
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significantly associated with OS, were obtained, and
the Kaplan-Meier analysis was used to assess their
prognostic value (Fig. 3a, Supplementary Fig. 3 and
4). Furthermore, we obtained a gene signature for 12
prognostic mutated genes using the Lasso Cox
method (Fig. 3b and c). We further utilized multivari-
ate Cox regression analysis to establish a model that
included six mutated genes to predict the survival of
patients with iCCA (Fig. 3d). Using multivariate Cox
regression analysis, regression coefficients were
weighted for the six mutant genes to establish a risk-

prediction model. MRS was calculated as follows:
MRS = (0.9772 × CDC27) + (3.3262 × AAK1) + (1.0356 ×
TP53) + (0.8040 × RBM10) + (0.5645 × KRAS) + (1.4581 ×
IPO5) (Table 2). Based on the MRS value, patients were
divided into the high- and low-risk groups. Patients in the
low-risk group showed improved survival compared with
that of patients in the high-risk group (P < 0.001; Fig. 3e).
Our results indicate that using MRS to predict 1-, 3-, and
5-year survival yielded an AUC value of 0.759, 0.732, and
0.728, respectively (Fig. 3f), indicating high prediction
efficiency.

Fig. 3 Lasso regression was used to screen the MRS for the predictive model; a a bar plot shows 32 mutant genes significantly associated with
OS; b Lasso coefficient profiles of mutated genes in our iCCA cohort. c A coefficient profile plot was generated to find the optimal parameter
(lambda). d Hazard ratios (HR) for the selected prognostic mutated genes were generated using multivariate Cox analysis and are shown in Forest
plots; e KM plotter shows differences between the high- and low-MRS groups, indicating that high MRS was associated with poor survival
outcomes. f Time-dependent ROC curve analysis shows that the AUCs for MRS were 0.759, 0.732, and 0.728 for 1, 3, and 5-year OS, respectively;
this analysis demonstrates the satisfactory predictive accuracy of the MRS model
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Prognostic impact of TMB and TNM stage in patients with
iCCA
Next, we analyzed the utility of TMB in prognosis. Me-
dian TMB was 1.29 mutations/Mb (range, 0.03–54.74
mutations/Mb). We then analyzed the predictive per-
formance of TMB with respect to OS. AUC of the ROC
curve for TMB with respect to 1-, 3-, and 5-year survival
was 0.776, 0.685, and 0.621, respectively (Fig. 4b). TMB
threshold values were calculated using the 3-year ROC
curve analysis with maximum Youden index. We found

Fig. 4 Prognostic ability of TMB in predicting the OS of iCCA patients. a Kaplan–Meier plot, used to analyze the difference in survival of the high-
and low-TMB group, shows that the high-TMB group had poor survival outcomes. b Time-dependent ROC curve analysis shows that the AUCs for
TMB were 0.776, 0.685, and 0.621 for 1, 3, and 5-year OS, respectively; this analysis demonstrates the satisfactory predictive accuracy of the TMB
model. c Kaplan–Meier plot shows significant differences between patients grouped with respect to their TNM stage. d Time-dependent ROC
curve analysis of the TNM stage

Table 2 6- mutation gene risk signature from multivariable Cox
regression analysis

Gene Coefficient HR 95% CI P-value

CDC27 0.9772 2.657 1.463–4.826 0.001333

AAK1 3.3263 27.835 6.606–117.292 5.83e-06

TP53 1.0356 2.817 2.050–3.871 1.70e-10

RBM10 0.8040 2.235 1.001–4.987 0.049659

KRAS 0.5645 1.759 1.227–2.520 0.002095

IPO5 1.4581 4.298 1.743–10.600 0.001547

Abbreviations: CI confidence interval; HR hazard ratio

Zhang et al. BMC Cancer          (2021) 21:112 Page 7 of 13



that maximal AUC value was achieved when the cut-off
value of TMB was 1.29. Therefore, we defined 1.29 mu-
tations/Mb as the cut-off value, classifying TMB > 1.29
mutations/Mb as the high group (N = 157) and TMB ≤
1.29 mutations/Mb as the low group (N = 161). KM

plotter of survival analysis showed that OS was signifi-
cantly decreased in patients with high TMB compared
with those having low TMB (P < 0.001; Fig. 4a). We also
explored the relationship between TMB and prognostic
mutant genes. Our results indicate that TMB was

Fig. 5 Functional analysis of different MRS and TMB groups conducted using gene set enrichment analysis (GSEA). a and b Representative KEGG
pathways and GO pathways analyzed in the low-MRS versus high-MRS group. c Representative KEGG pathways and GO pathways analyzed in the
low-TMB versus high-TMB group
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moderately correlated with PIKFYVE (r = 0.31) and
RGS3 (r = 0.34) (Supplementary Fig. 5). In addition, we
explored the prognostic role of TNM stage in iCCA.
Our results demonstrate that TNM stage was signifi-
cantly correlated with OS; however, AUC of the TNM
stage in predicting 1-, 3-, and 5-year survival was 0.582,
0.641, and 0.628, respectively, indicating a poor prognos-
tic performance compared with those of MRS and TMB
(Fig. 4c and d).

Gene set enrichment analysis
We used GSEA to visualize the enriched biological pro-
cesses in the different MRS and TMB groups. Our re-
sults indicate that patients in the high MRS group were
prone to show associations with the innate immune re-
sponse, negative regulation of cell death, positive regula-
tion of immune system processes, T-cell activation,
MAPK signaling pathway, and cancer pathways (Fig. 5a
and b). The high TMB group was enriched in positive
regulation of immune-system processes and cancer path-
ways. These results demonstrate that crosstalk involved
in tumor-signaling pathways and immune-system pro-
cesses was upregulated in patients with high MRS or
TMB (Fig. 5c).

Construction and evaluation of the nomogram
To find the independent prognostic biomarkers, we used
univariate Cox regression analysis to analyze the associa-
tions between OS and factors such as MRS, age, sex,
TNM stage, and TMB (Table 3). The results of multi-
variate Cox regression analysis demonstrated that TNM
stage, MRS, and TMB were independent-risk predictors
for iCCA (Table 3). We constructed a predictive nomo-
gram based on these risk factors, which included MRS,
TMB, and TNM stage (Fig. 6a). The C-index value for
the nomogram was 0.721 (95% CI, 0.613–0.829). Cali-
bration curve indicated that the observed and predicted
values were consistent in predicting OS (Fig. 6b).

Discussion
In this study, we explored the role of mutational signa-
ture and TMB in predicting the survival of patients with
iCCA. First, whole exome sequencing (WES) data on
iCCA were obtained from two public databases (ICGC
and cBioportal), and frequently mutated genes were
identified. Next, univariate, Lasso, and multivariate Cox
regression analyses were used to screen for hub prognos-
tic mutant signature and establish a mutation-risk model
for predicting prognosis. After the prognostic role of
MRS was confirmed, we used PPI, GO, KEGG, and
GSEA analyses to reveal the potential cancer-related
crosstalk involved. We also found that increased TMB
was associated with poor prognosis. Furthermore, MRS,
TMB, and TNM stages were confirmed as independent

predictors for overall survival (OS) of patients with
iCCA. Next, based on the risk factors affecting OS, we
constructed a reliable nomogram model that demon-
strated a satisfactory performance in predicting OS in
patients with iCCA.
Gene mutations are ubiquitous in tumorigenesis and

development of iCCA. Previous studies have reported
comprehensive molecular alterations in biliary tract can-
cers [18, 28]. In our study, the most relevant mutation
was TP53 (26.7%), followed by TTN (20.7%), KRAS
(19.1%), MUC2 (14.5%), and ARID1A (12.9%), which was
consistent with the findings of Cao et al. [30]. A study,
based on approximately 500 patients with iCCA, used
the three most recurrently mutated genes (IDH1, KRAS
and TP53) to stratify patients into four subgroups, re-
vealing distinct genomic and molecular features [31]. In
our present study, we also found that several mutated
genes, such as IDH1 (7.5%), BAP1 (9.1%), PBRM1 (7.2%),
and EPHA2 (7.9%), were particular to iCCA. Jiao et al.
performed exome sequencing on iCCA tissue samples,
and found that frequently mutated genes (such as BAP1,
ARID1A, and PBRM1) are involved in the chromatin-
remodeling pathway. Our results on the mutational fre-
quency of chromatin-remodeling family genes in iCCA
are consistent with those reported in previous studies
[32]. We investigated the possible link between genetic
alternations and patient prognosis, and found that the
outcomes of patients with certain genetic mutations
were worse than those of wild-type patients; statistically,

Table 3 Univariable and multivariable analysis of overall survival

Univariable Multivariable

HR 95% CI P-value HR 95% CI P-value

Age, years

< 65

≥ 65 0.869 0.643–1.175 0.362

Gender

Female

Male 0.686 0.787–1.439 0.686

TNM Stage

I 0.000 0.000

II 1.470 0.938–2.305 0.093 1.717 1.092–2.698 0.019

III 1.743 0.987–3.079 0.055 2.078 1.172–3.685 0.012

IV 2.716 1.799–4.101 0.000 2.963 1.957–4.485 0.000

TMB, mut/Mb

Low

High 1.967 1.454–2.660 0.000 1.500 1.085–2.073 0.014

MRS

Low

High 2.771 2.035–3.773 0.000 2.448 1.758–3.409 0.000

Abbreviations: CI confidence interval; HR hazard ratio
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this finding showed borderline significance. Based on
these prognostic factors, we developed a mutation risk
score to predict survival. The MRS of our model was
calculated based on 6 hub prognostic mutant genes
(CDC27, AAK1, TP53, RBM10, KRAS, and IPO5). This
MRS model showed high predictive accuracy for OS,
was a reliable tool in predicting prognosis, and can be
used in clinical practice. We next performed a functional
pathway and GSEA analyses to uncover the molecular
mechanisms underlying iCCA. Our functional enrich-
ment pathway analysis indicated that the prognostic mu-
tated genes were closely correlated with cancer-
associated signaling pathways, such as cancer develop-
ment and immune related pathway. GSEA also showed
that the high MRS group was enriched in signaling in-
volved in immune-related pathways.
In recent years, various types of immune checkpoint

inhibitor (ICI) therapy have been developed for the
treatment of patients with advanced-stage cancers.

However, only a minority of patients benefit from ICI
therapies. TMB, a novel predictive biomarker, can
predict a clinical response to ICI and can be used to
identify patients likely to benefit from these therapies
[19]. Increased TMB indicates increased levels of
tumor antigen, which is beneficial for activating the
body’s immune response. Previous studies on TMB
mostly focused on its capacity to predict the effective-
ness of ICIs, showing a robust correlation between in-
creased TMB and improved response to ICI therapy.
However, few studies have explored the prognostic
value of TMB in predicting the survival of patients
with iCCA. Numerous studies have shown a relation-
ship between TMB and survival in patients with can-
cer. Owada-Ozaki et al. found that increased TMB is
correlated with decreased disease-free survival in
NSCLC patients [33]. A study from China demon-
strated that in HCC patients who had undergone rad-
ical resection, patients with increased TMB tend to

Fig. 6 Construction of prognostic nomogram for patients with iCCA. a The predicted 1-, 3-, and 5-year survival rates in iCCA patients based on
our nomogram that included MRS, TMB, and TNM stage. b Calibration plots show the concordance between predicted and actual observation
and prediction in 1, 3, and 5-year OS
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show increased risk for recurrence; additionally, they
also showed that TMB is an independent risk factor
for RFS [34]. We show that the median TMB value
in our iCCA patients was 1.25 (range 0.03–54.74). A
large-scale examination of TMB in iCCA patients was
performed by Cao et al. [30]. They used comprehen-
sive genomic profiling to analyze the frequency and
type of genetic aberrations, and did not observe gen-
omic heterogeneity between Asian and Caucasian pa-
tients with iCCA; however, the relationship between
TMB and prognosis was not evaluated in that study.
Tian et al. investigated the genomic features of Chin-
ese patients with iCCA, and explored the relationship
between TMB and certain genetic changes [35]. It
should be noted that the TMB of their cohort was
greater than that determined in our study. This oc-
curred because we only counted the non-synonymous
variants.
In agreement with previous findings on other tumor

types, our results show that increased TMB was corre-
lated with poor patient prognosis. Therefore, we con-
cluded that TMB had divergent prognostic impact in
different patients with iCCA. In addition, our results in-
dicate that a prognostic model incorporating TMB will
likely improve prognostication and risk stratification in
patients with iCCA.
In this study, we explored the prognostic role of

MRS and TMB in patients with iCCA. Our findings
indicate that the prognostic performance of the pre-
dictive model incorporating TMB or MRS was better
than that of the TNM stage. Furthermore, results of
our multivariate analysis indicate that TMB, MRS,
and TNM stage were independent prognostic factors
in iCCA. Despite these novel findings on the prognos-
tic value of MRS and TMB, our study had several
limitations. First, mutation data on iCCA were ex-
tracted from public databases that only included sam-
ples that had undergone WES. Targeted sequencing
data were not used in our study. Additional WES
data from patients with iCCA should be incorporated
to reduce selective bias. Second, the mechanisms
underlying the prognostic capability of MRS and
TMB in iCCA should be further investigated. Add-
itional experiments, performed both in vitro and
in vivo, are required to support the results obtained
in our present study. Finally, this study did not show
whether specific mutations led to abnormal gene ex-
pression, and this question requires further
investigation.

Conclusion
In summary, our study demonstrates that mutational
signature and TMB were associated with prognosis in
patients with iCCA. We visualized the mutational

landscape and summarized the most commonly mu-
tated genes. We also developed a risk model based on
the prognostic utility of mutated genes, and found
that MRS and TMB, included in the model, had di-
vergent prognostic impacts in patients with iCCA.
Based on independent risk factors, such as TNM
stage, MRS, and TMB, we then constructed a reliable
nomogram model for predicting OS in iCCA patients.
The nomogram developed in this study can be incor-
porated into the methodology used for prognostica-
tion in patients with iCCA.
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