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Abstract

Background: Treating patients with advanced sarcomas is challenging due to great histologic diversity among its
subtypes. Leiomyosarcoma (LMS) and de-differentiated liposarcoma (DDLPS) are two common and aggressive
subtypes of soft tissue sarcoma (STS). They differ significantly in histology and clinical behaviors. However, the
molecular driving force behind the difference is unclear.

Methods: We collected 20 LMS and 12 DDLPS samples and performed whole exome sequencing (WES) to obtain
their somatic mutation profiles. We also performed RNA-Seq to analyze the transcriptomes of 8 each of the LMS
and DDLPS samples and obtained information about differential gene expression, pathway enrichment, immune
cell infiltration in tumor microenvironment, and chromosomal rearrangement including gene fusions. Selected gene
fusion events from the RNA-seq prediction were checked by RT-PCR in tandem with Sanger sequencing.

Results: We detected loss of function mutation and deletion of tumor suppressors mostly in LMS, and oncogene
amplification mostly in DDLPS. A focal amplification affecting chromosome 12q13–15 region which encodes MDM2, CDK4
and HMGA2 is notable in DDLPS. Mutations in TP53, ATRX, PTEN, and RB1 are identified in LMS but not DDLPS, while
mutation of HERC2 is only identified in DDLPS but not LMS. RNA-seq revealed overexpression of MDM2, CDK4 and HMGA2
in DDLPS and down-regulation of TP53 and RB1 in LMS. It also detected more fusion events in DDLPS than LMS (4.5 vs. 1,
p= 0.0195), and the ones involving chromosome 12 in DDLPS stand out. RT-PCR and Sanger sequencing verified the
majority of the fusion events in DDLPS but only one event in LMS selected to be tested. The tumor microenvironmental
signatures are highly correlated with histologic types. DDLPS has more endothelial cells and fibroblasts content than LMS.

Conclusions: Our analysis revealed different recurrent genetic variations in LMS and DDLPS including simultaneous
upregulation of gene expression and gene copy number amplification of MDM2 and CDK4. Up-regulation of tumor related
genes is favored in DDLPS, while loss of suppressor function is favored in LMS. DDLPS harbors more frequent fusion events
which can generate neoepitopes and potentially targeted by personalized immune treatment.
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Background
Soft tissue sarcoma (STS) is a rare malignant tumor but
has a great diversity. It occurs about 2.91 times per 100,
000 people and accounts for 1.05% of overall cancer inci-
dents in China [1]. However, there are more that 50 rec-
ognized STS subtypes and that makes the accurate
diagnosis and treatment a challenge [2]. LPS and LMS are
among the most frequent STS subtypes, accounting for
5.75 and 5.97% of all cases respectively [1]. At the same
time, LMS and a subtype of LPS, DDLPS, are the two
most aggressive types, both having a complex karyotype
and high recurrence rate [3]. Nevertheless, they differ sig-
nificantly in histology, biology, and clinical behaviors [4].
For example, DDLPS tends to recur locally, while LMS
has a higher chance of distant recurrence. It is unclear
what genetic and molecular differences may have contrib-
uted to the distinction between LMS and DDLPS. In order
to gain insight about their origins and molecular differ-
ence, and enlighten differential treatment, we performed
integral WES and RNA-seq analysis and compared the
two subtypes. We identified potential key mutational
events that may have differentially driven tumorigenesis
and discovered different tumor microenvironments in
LMS and DDLPS. We also detected few neoantigens,
mostly in DDLPS, which may be targeted by personalized
immune therapy.

Methods
Patients and specimens
Twenty LMS and twelve DDLPS tissue samples and
matched peripheral blood from the same patient were col-
lected at Zhongshan Hospital of Fudan University with pa-
tient consent. The study protocol was reviewed and
approved by the Ethics Committee of Zhongshan Hos-
pital. H&E stained histological sections were reviewed by
an expert pathologist to confirm subtype diagnosis and
tumor content to be above 20%. The cytogenetic, immu-
nohistochemistry (IHC), and pathologic lab data, as well
as clinical treatment and outcome records were manually
curated from the electronic medical records of the
hospital.

WES
DNA in formalin-fixed, paraffin-embedded (FFPE) tissue
samples was extracted using MagMAX FFPE DNA/RNA
Ultra kit (cat# A31881, ThermoFisher). DNA in snap-frozen
tissue and peripheral whole blood was extracted using Max-
well RSC blood DNA kit (cat# AS1400, Promega). Purified
DNA was sheared with a Covaris L220 sonicator and hybrid-
ized to the probes in Agilent SureSelect XT Human All Exon
V7 kit (cat# 5991–9039, Agilent) for exome enrichment.
Captured exome DNA was PCR amplified, end-repaired, and
attached to the adapters and barcode using SureSelect XT
HS and Low Input Library Preparation Kit for ILM (Pre

PCR) kit (cat# G9704, Agilent, Santa Clara, CA, USA) ac-
cording to the manufacturer’s specification. The prepared li-
braries were sequenced on an Illumina NovaSeq-6000
Sequencing System to generate 150 × 150-bp paired-end
reads. The image analysis and base calling were done using
the Illumina onboard RTA3 program with default parame-
ters. After removing adapters and low-quality reads, the
reads were aligned to NCBI human genome reference as-
sembly hg19 using the Burrows-Wheeler Aligner (BWA)
alignment algorithm and further processed using the Gen-
ome Analysis Toolkit (GATK, version 3.5), including the
GATK Realigner Target Creator to identify regions that
needed to be realigned. Single-nucleotide variants (SNV),
Indel, and copy number variation (CNV) were determined
using the MuTect/ANNOVAR/dbNSFP31, VarscanIndel,
and CNVnator softwares respectively as reported in [5]. Dur-
ing the mutation calling, the reads from the tumor sample
were compared with the paired blood from the same patient
to generate a list of somatic mutations. The called somatic
mutations were then filtered and annotated using Variant Ef-
fect Predictor (VEP) package (hg19 version) [6].
Mutation analysis and visualization were performed

using the R (v3.3.3) (http://www.r-project.org), Biocon-
ductor (v3.4) (http://www.Bioconductor.org), and MAF-
tools softwares [7, 8]. Mutation data in maf format was
generated using VCF2MAF v1.6.16 [9]. CNA of individ-
ual samples was determined using WES data by
Control-FREEC software [10], with the window size set
to 500 bp and step size set to 250 bp as recommended
by the software authors. Recurrent focal and broad CNA
in patient group were identified by GISTIC2.0 and
GSEA [11, 12].

Tumor mutational burden and microsatellite status
Absolute counts of the tumor mutational burden (TMB)
were calculated from the total number of nonsynon-
ymous somatic mutations detected in WES using a pub-
lished algorithm [13]. Autosomal microsatellite trains
containing 1–5 bp repeating subunits in length and com-
prising five or more repeats referenced to GRCh37/hg19
were identified using MISA (http://pgrc.ipk-gatersleben.
de/misa/misa.html) [14]. Microsatellite Instability (MSI)
score was defined as “number of unstable microsatellite
sites / total valid sites” and a score ≥ 3.5% is regarded as
high (MSI-High) and < 3.5% as low (MSI-Low) [15].

RNA-Seq
RNA was purified from FFPE tissue using the MagMAX
FFPE DNA/RNA Ultra kit, reverse-transcribed using the
NEBNext RNA First Strand Synthesis Module (cat#
E7525S, NEB) and NEBNext Ultra II non-directional
RNA Second Strand Synthesis Module (cat# E6111S,
NEB) for cDNA Synthesis. RNA-seq libraries were pre-
pared from the cDNA using SureSelect XT HS and
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Low Input Library Preparation Kit for ILM (Pre PCR)
(cat# G9704, Agilent, Santa Clara, CA, USA) follow-
ing the manufacturer’s instruction. The libraries were
sequenced on an Illumina NovaSeq-6000 Sequencing
System to generate 150 × 150 paired-end reads. Using
FFPE sample for RNA-Seq is a more difficult task
than using fresh or snap-frozen tissue. However, FFPE
is still the most accessible tumor samples so studies
have been lunched to test the use of RNA from FFPE
sample for RNA-seq analysis and established reliable
protocols [16, 17]. The protocols have since been
adopted to routine use in oncogenomics studies and
commercial kits have been developed by several sup-
pliers, including the two New England Biolabs kits
(NEBNext RNA first strand synthesis module and
NEBNext Ultra II non-directional RNA second strand
synthesis module) we used above.

Differential gene expression analysis
Reads from RNA-Seq were quality checked, filtered, and
aligned to reference genome (hg19) using STAR (version
020201) and assembled using StringTie2 (version 1.3.5)
[18, 19]. A count matrix of raw reads was generated and
the reads were further normalized by the upper quartile
counts. A list of genes expressed differentially between
LMS and DDLPS was compiled using DESeq2 [20]. The
significance threshold was set at adjusted P-value < 0.05
and Log2 fold change (LogFC) > 1.

Pathway analysis
Biological pathway analysis was done with the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
analysis and Gene Set Enrichment Analysis (GSEA) soft-
wares using the above gene expression data and visualized
by the NetworkAnalyst (http://www.networkanalyst.ca)
software [12, 21, 22].

Gene fusion analysis
NGS sequencing and bioinformatic prediction
STAR FUSION 1.8.0 was used to identify gene fusion
events from the above mapped RNA-seq reads [23]. The
standard setting, except a custom filter of at least 3 posi-
tive reads per event, was applied to increase calling
stringency.

Reverse transcription PCR (RT-PCR) and sanger sequencing
confirmation
Extracted RNA from tumor tissue was reverse tran-
scribed using SuperScript Double Stranded cDNA syn-
thesis kit (cat#11917010, Invitrogen) and random
hexamer oligos as the primer. The produced cDNA was
amplified by PCR using a left primer complementary to
the upper stream sequence and a right primer comple-
mentary to the downstream sequence across the fusion

junction as predicted by the above NGS-STAR FU-
SION pipeline. The primer sequences, fusion junction
sequences and reads number are listed in Supplemen-
tary Table S1. The PCR product was isolated by elec-
trophoresis on agarose gel, extracted, and cloned in
pCR4-TOPO vector (cat#450030, ThermoFisher), then
subjected to Sanger sequencing to verify the fusion
event.

Immune classification of STS
The Microenvironment Cell Populations-counter (MCP-
counter) method was used to profile tumor microenvir-
onment infiltrating immune cells with RNA-seq derived
Transcripts Per Million (TPM) matrix generated by the
stringtie2 pipeline [24, 25]. Abundance scores for eight
immune populations (T cells, CD8+ T cells, cytotoxic
lymphocytes, natural killer cells, B cell lineage, mono-
cytic lineage, myeloid dendritic cells and neutrophils),
and two stromal populations (endothelial cells and fibro-
blasts) are calculated using the signature composition
defined previously [24]. Unsupervised clustering of sam-
ples was performed based on the metagene Z-score of
MCP-counter.

Statistical analysis
Statistical analysis was performed with R (version 3.6.3)
or SPSS (version 25). Unless stated otherwise, unpaired
t-test was used in all group comparisons. A result of p <
0.05 was considered significant.

Results
Genomic analysis has greatly expanded people’s know-
ledge in the genetic composition of cancer mutations
and in many cases helped design of new treatments. In
the hope of using genomic information to guide the
diagnosis and treatment of STS, we recruited thirty-two
patients, twenty with LMS and twelve with DDLPS, at
Zhongshan Hospital of Fudan University, Shanghai,
China. The patient characteristics are indicated in
Table 1.

Somatic mutation profile
Whole exome sequencing was run on both the tumor
and paired peripheral blood (normal) samples from
the same patient and compared to give somatic muta-
tions in the tumor for each patient. Overall, the
tumor mutational burden (TMB) of STS with a me-
dian of 2.27 counts/Mb is relatively low in compari-
son with other cancers [4]. There is no significant
difference of TMB between LMS and DDLPS (median
2.61 and 1.97 counts/Mb respectively, p = 0.105)
(Table 1). A large number of somatic mutations led
by MUC16 (66%) and PABPC3 (56%) were detected
(Supplementary Table S2). In order to focus on the
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genes with a known function in cancer or reported to
related to cancer, we filtered the mutations against a
list of 1190 member cancer related genes compiled
from literature and OncoKB (http:\crwww.oncokb.org)
[26]. There is a distinct distribution of somatic muta-
tions between LMS and DDLPS among the top 30
most mutated cancer-related genes (Fig. 1). Eleven
out of the 20 (55%) LMS patients had mutation in
TP53. In contrary, none of the DDLPS patient
showed TP53 mutation. Similarly, FLG is mutated in
9 (45%) LMS patients but only in 1 (8.3%) DDLPS
patient. ANHAK, ATRX, CSPG4 and PCMTD1 each
was mutated in 5 (25%) LMS patients and none
DDLPS patients. HERC2 was mutated in 5/8 (41.7%)
DDLPS patients, C12orf55, DNAJC16, PTPRQ, and
TIAM1 each was mutated in 3 (25%) DDLPS patients.
None of the above five genes had mutation in LMS
patients (Fig. 1). As a comparison, the mutation fre-
quency of HERC2 in TCGA-SARC dataset was 11/58
(19.0%) for DDLPS and 18/102 (17.6%) for LMS

cases. The mutation frequency of TP53 in TCGA-
SARC dataset was 10/58 (17.2%) for DDLPS and 80/
102 (78.4%) for LMS cases. Therefore HERC2 muta-
tion is imbalanced and TP53 mutation is generally
lower in both DDLPS and LMS groups in our pa-
tients as comparing to that of TCGA-SARC dataset
[4]. This may arise from the difference of patient
composition. All 32 cases in our group are ethnic
Chinese but only 2/160 (1.25%) are Asian and 140/
160 (87.5%) are white in the LMS and DDLPS cases
of TCGA-SARC dataset. The number of cases is small
in both groups though and that prevented us to draw
a definitive answer about the distribution difference.
The absence of HERC2 mutation and biased presence
of TP53 mutation in the LMS group is an interesting
observation. HERC2 belongs to E3 ubiquitin protein
ligases, and can modulate p53 activity through regu-
lating p53 oligomerization independent of MDM2
[27]. Probably because the mutations that affect p53
tetramerization disrupt the HERC2-p53 interaction,
therefore HERC2 mutations are redundant in LMS
with mutant TP53.

SCNA in LMS and DDLPS
In addition to SNV and indel, gene amplification and de-
letion are also important contributors to carcinogenesis.
To further reveal the somatic copy number alterations
(SCNA) in Chinese sarcoma patients, we used GIST
IC2.0 to detect SCNA (Supplementary Tables S3–5). We
found significant chromosomal loss in LMS peaked at
cytobands 10q22.1, 13q34, and 17p13.1, where PTEN,
RB1 and TP53 are located respectively (Fig. 2a). All these
genes are important tumor suppressors. This suggested
that chromosomal loss affecting tumor suppressor genes
is a hallmark of LMS. On the other hand, we found a
focal amplification peaked at 12q14.1, included in its
wide peak are MDM2 (12q15), CDK4 (12q14.1) and
HMGA2 (12q14.3) (Fig. 2b). We further verified the pre-
diction of GISTIC by GSEA analysis under the positional
mode. We used chromosomal neighbors as the input
gene set instead of signaling pathway members in GSEA
and found 12q14-12q15 regions are indeed enriched in
DDLPS (EnrichmentScore ES = 0.662 for 12q14 and ES =
0.784 for 12q15) (Fig. 2c and data not shown). MDM2
and CDK4 are both important cell cycle regulating
genes. HMGA2 is a chromosomal structure organization
protein and may also play a role as a transcription factor.
It has been reported that alteration of HMGA2 is associ-
ated with myxoid liposarcoma and takes part in adipo-
genesis and mesenchymal differentiation [28, 29].
Amplification of 12q14 and 12q15 regions likely upregu-
lated the above genes important in regulation of cell
cycle and transformation of adipocytic tissue, therefore
drove DDLPS. At the gene level, we detected co-

Table 1 Summary of Clinical information and WES and RNA-seq
analysis

All LMS DDLPS

Sample size

WES 32 20 12

RNA-seq 16 8 8

Age (years)

Median 51 49.5 54

Range 16–70 16–65 37–70

Gender (%)

Male 12 (37.5%) 3 (15%) 9 (75%)

Female 20 (62.5%) 17 (85%) 3 (25%)

WES

TMB (counts/Mb)

Median 2.27 2.61 1.97

Range 1.20–16.1 1.57–16.1 1.20–4.51

MSI score (%)

High 1 (3.1%) 1 (5%) 0 (0%)

Low 31 (96.9%) 19 (95%) 12 (100%)

SNP + Indel 2887 2110 1088

CNA gain 113 1089

RNA-seq

Up-regulated 2404 2364

Gene fusion 40 4 36

RT-PCR verified 8/12 (66.7%) 1/4 (25%) 7/8 (87.5%)

* TMB is reported as counts/Mb. It is calculated by all nonsynonymous
mutations detected in WES divided by 35 Mb. 35 Mb is the sum of exome
probes in WES
WES whole exome sequencing, TMB tumor mutation burden, MSI microsatellite
instability
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amplification of MDM2 and CDK4 in more than 90%
DDLPS cases. Such co-amplification combined with
TP53 inactivation would result in cell proliferation, and
is very likely the initiating events to drive fat tumorigen-
esis in DDLPS [30].
Additional genes detected by GISTIC 2.0 with amp-

lification and deletion are listed in supplement Table
S2-S5. In LMS, 96 genes are significantly amplified,
while as many as 4532 genes are significantly deleted
(confidence level 0.95), indicating that deletion is
much more frequent than amplification. In DDLPS
1089 genes are amplified and no genes are signifi-
cantly deleted. These observations are consistent with
previous publications as reviewed in [3]. In DDLPS
amplification of oncogenes such as MDM2, CDK4,
HMGA2 and JUN are common, while in LMS dele-
tion of tumor suppressor such as TP53, RB1, and

PTEN are preferred, indicating different patterns of
CNA in DDLPS and LMS.

Concurrent and exclusive mutations
Given the possibility that synergistic or anti-synergistic
interactions between genes may contribute to the origin
or progression of LMS and DDLPS, we tested interac-
tions among the somatic mutations called in WES ana-
lysis using the somaticInteractions function in
MAFtools. (Fig. 3, and the full list in Supplementary
Table S2. TP53 is mutually exclusive with BRD9 (p < 0.1)
but co-occurs with Filaggrin (FLG) (p < 0.1). BRD9 is a
subunit of the human BAF (SWI/SNF) nucleosome re-
modeling complex and has emerged as an attractive
therapeutic target in cancer [31]. It has a bromodomain
highly homologous to the bromodomain of BRD7, which
is reported to interact with p53 and required for p53

Fig. 1 Top30 frequently mutated genes in LMS and DDLPS. Patients are grouped by disease (Cerulean: LMS; Purple: DDLPS) and the genes are
ranked by their mutation frequencies. The top chart indicates total number of mutations in each patient. The types of mutation and nucleotide
transition are color coded
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Fig. 2 Local gene copy number alteration.a-b GISTIC analysis of recurrent amplification (left, red) and deletion (right, blue) in LMS (a) and DDLPS (b). The y-axes
represent genomic position of altered regions (left axis: chromosome; right axis: cytoband) and the x-axes represent normalized amplification signal (top axis)
and significance by Q value (bottom axis). The vertical green line represents the significance cutoff at Q value = 0.25. The most prominent amplification is seen
around 12q14 in DDLPS. c GSEA by position. Gene sets of chromosomal neighbors are used as the input in GSEA which gives an ES = 0.784 (nominal p-value
0.0177, FDR q-value 0.447) at Chr12q15. MDM2 is located at the junction of Chr12q14 and Chr12q15 and on the side of Chrq15
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function [32]. Whether mutation of BRD9 promotes
LMS through impairment of the p53 pathway is to be
determined. FLG is a highly mutated cancer driver gene.
Its mutation is also found in several other cancer types
such as non-melanoma skin cancer, head and neck can-
cer, lung cancer, colorectal cancer, uterine cancer, and
prostate cancer [33]. There has no reported synergic
interaction between FLG and TP53 mutations in cancer
yet, including STS. The above somatic interaction ana-
lysis may provide hints for exploring genes with unspeci-
fied functions in STS.

RNA-seq revealed genes with differential expression
Eight each of the LMS and DDLPS samples that had
sufficient RNA quality were further subjected to
RNA-Seq analysis. Although fresh or snap-frozen tis-
sue are generally preferred over FFPE samples for
RNA extraction and sequencing analysis, FFPE sam-
ples are by far the most accessible tissue samples.
Dedicated works have been done both by academic
labs and commercial manufacturers to develop special
protocols to perform RNA-seq from FFPE samples.
They have succeeded in using exome capturing for
partially degraded RNA. We used a New England Bio-
labs protocol and companion kits in sample prepar-
ation for RNA-seq (see Methods) which has been

proven functional and are widely used in NGS work
with clinical samples [16, 17].
In total we identified 2396 genes expressed with sig-

nificantly different levels in the LMS and DDLPS
(Fig. 4 and Supplementary Table S6). Unsupervised
clustering was performed to examine the discriminant
effect of these genes. We found that all the LMS nat-
urally clustered together, and so did the DDLPS sam-
ples. Ranked the highest in differential expression is
MDM2, with logFC = 4.12 (DDLPS over LMS) and ad-
justed P-value = 1.73e-52, consistent with previous
studies [4, 34]. MDM2 is a proto-oncogene. It en-
codes a nuclear-localized E3 ubiquitin ligase and plays
an important role in cell cycle regulation. Its copy
number gain has been implicated in cancers including
DDLPS [35, 36]. We also observed the gene copy
number of MDM2 is correlated with its mRNA in
DDLPS (Fig. 5a). Similarly, another key cell cycle
regulator CDK4 is both highly upregulated in expres-
sion (logFC = 3.61, adjusted p-value = 1.09e-20) and
amplified in gene copy number (Fig. 5a). These re-
sults suggest that hyper activation of cell cycle is
highly correlated with and may possibly a driving
force underlying DDLPS. This notion is supported by
a recent study in human mesenchymal stem cell
model in which co-expression of MDM2 and CDK4

Fig. 3 Heatmap of predicted gene interactions in the 32 STS. The color scale represents -log10 p-value. The cadet blue indicates co-occurrence
and the copper indicates mutual exclusion. Significant p-values are indicated by symbols. *: p < 0.05; +: p < 0.1
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produced DDLPS-like morphology [37]. Additionally,
we found JUN upregulation (logFC = 1.45, adjusted P-
value = 0.0396) in DDLPS (Supplementary Table S6).
JUN is a known player in blocking adipocytic differ-
entiation so may have assisted tumorigenesis in adi-
pose tissue.
Since we detected both CNA in WES and differential

gene expression in RNA-seq, it would be of interest to
see whether CNA is correlated with gene expression. Al-
though the top varied genes such as MDM2 and CDK2
indeed have a good correlation between their DNA and
mRNA level (Fig. 5a), the bulk of genes do not show this
relationship, especially in the case of LMS (Fig. 5b-c). This
may due to several factors. Gene expression is a tightly
regulated cellular process. The copy number of available
template DNA, especially for those which only have a
moderate increase as the bulk of genes are, is only a small
contributor of gene expression activity. The more import-
ant regulation can be attributed to the accessibility of the
chromosomal region, and activities of promoters, specific
transcription factors, and DNA dependent RNA polymer-
ase machinery, and mRNA stability.

Pathway analysis of genes with differential expression
To investigate the pathways affected in LMS and DDLPS,
we performed Gene Set Enrichment Analysis (GSEA)
(Table 2 and Supplementary Table S7) [12, 21]. We found
several pathways are enriched in DDLPS (ES > 0) while de-
pleted in LMS (ES < 0). The pathways enriched in DDLPS
include “Ubiquitin mediated proteolysis” (ES = 0.472, ad-
justed p-value = 0.002) which has MDM2 as a member.
The pathways apparently enriched in LMS such as “Cal-
cium signaling pathway”, “Vascular smooth muscle con-
traction”, and “Linoleic acid metabolism”(ES = − 0.37, −
0.44, and − 0.60 respectively, and adjusted P-values = 0.002
for all) are probably due to the difference of the tissue ori-
gins rather than tumorigenesis [38, 39]. Another notable
pathway is spliceosome (ES =0.53, adjusted p-value =
0.003) because alteration in transcript splicing may result
in different sets of antigens differentially recognizable by
immune cells in different tumor environments.

Distinct gene fusion patterns between DDLPS and LMS
In the RNA-seq analysis, we identified in 3 (out of 8)
DDLPS patients 4 potential gene fusion transcripts and

Fig. 4 Heatmap of top 50 differentially expressed genes between LMS (cerulean) and DDLPS (purple) with unsupervised clustering. One column
represents one sample. The heat scale represents Z-score normalized gene expression. The red indicates up-regulated and the blue indicates
down-regulated genes in DDLPS compared with LMS
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in all 8 LMS patients 36 fusion transcripts in total (Fig. 6
a-c and Supplementary Table S1). The distribution of fu-
sion events is biased towards DDLPS over LMS (p =
0.0195, Fig. 6c). There is no recurrent fusion transcript
identified probably due to the small sample size. Fusion

transcripts involving chromosome 12 are only found in
DDLPS, including both inter- and intra-chromosomal
rearrangements (Fig. 6b). MDM2 and RAB3IP are the
most common fusion partners, and both are located in
chromosome 12. There is also significant correlation

Fig. 5 Correlation of gene amplification detected in WES with transcripts upregulation detected in RNA-seq. a Violin-box plot comparing the
expression of CDK4 (left) and MDM2 (right) in patients with (cerulean) and without (gold) gene amplification. The y-axis represents normalized
reads number in FPKM detected in RNA-seq. The median value is indicated by the line inside the box. The width of the color shade indicates the
distribution frequency. b-c Venn diagrams of detected genes amplified in WES (pink) and upregulated in expression in RNA-seq (blue) in LMS (b)
and DDLPS (c) respectively

Table 2 Pathways enriched in GSEA (LMS in relative to DDLPS)

Name Total Hits EnrichmentScore p-val p-adj

Calcium signaling pathway 68 58 −0.37 0.00017 0.0028

Vascular smooth muscle contraction 30 22 −0.44 0.000017 0.0028

Linoleic acid metabolism 30 26 −0.60 0.00018 0.0028

Ascorbate and aldarate metabolism 34 28 −0.67 0.00018 0.0028

Chronic myeloid leukemia 33 27 0.53 0.000022 0.0028

p53 signaling pathway 31 27 0.50 0.000022 0.0028

Spliceosome 27 22 0.52 0.000022 0.0028

AGE-RAGE signaling pathway in diabetic complications 18 16 0.47 0.000023 0.0028

Ubiquitin mediated proteolysis 27 25 0.47 0.000023 0.0028

Osteoclast differentiation 44 39 0.50 0.000023 0.0028
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between MDM2/CDK4 amplification and chromosome
12 rearrangement (P < 0.001, Fig. 7b). Gene fusions can
occur as a result of chromosomal rearrangements such
as translocation, interstitial deletion, or inversion during
DNA replication, which are more common in DDLPS
than in LMS (Fig. 6 a-b). Therefore, it is not a surprise to
see gene fusions more frequently in DDPLS, especially in
chromosome 12 where ring or giant marker chromosomes
often occur [4, 40]. Peptides generated from the identified
fusion transcripts may be a potential source of tumor

neoantigens that can be targeted to produce safer and pa-
tient specific CAR-T cells for immunotherapy [41]. Al-
though RNA-seq by NGS method is good at high
throughput survey of all possible gene fusion events in the
sample, it relies on bioinformatic models to predict the fu-
sion. This may potentially introduce errors. We selected
all 4 predicted gene fusion transcripts in LMS and 8 out
of 36 in DDLPS to verify with RT-PCR in tandem with
Sanger sequencing. We were able to verify only 1 event in
LMS but 7 out of 8 events in DDLPS (Fig. 6 d and

Fig. 6 Distinct fusion patterns between DDLPS and LMS revealed by RNA-Seq. a-b Circos plot indicating genome-wide gene fusion events in
LMS (a) and DDLPS (b). The lines link the partners of fusion. c Box plot of fusion events per sample in LMS and DDLPS. The median value is
indicated by the line inside the box. The dots indicate the fusion counts in individual samples. d-e Electrophoresis traces of two example gene
fusion events verified by RT-PCR in tandem with Sanger sequencing. The cerulean arrows indicate the position of fusion between the left- and
right-side genes. AKR1E1-AKR1E2 is detected in LMS (d) and ATXN2-MYRFL is detected in (e). The identities of all the RNA-seq predicted and
Sanger sequencing verified fusion events are listed in Supplementary Table S1
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Supplementary Table S1). This confirmed that gene fu-
sions are relatively more frequent in DDLPS but scarce in
LMS and further highlighted that neoantigen based im-
mune therapy may have a higher success rate in DDLPS
than in LMS.

LMS and DDLPS have different profiles of tumor
infiltrating immune cells
The status of tumor microenvironment (TME) is an
important factor when immune therapy is considered.
Previous studies revealed that STS immune subtypes are
associated with response rate to PD1 blockade. To
access the TME in LMS and DDLPS and compare the
difference between them, we used MCP-counter to profile
tumor infiltrating immune cells in the two subtypes follow-
ing a recent study in STS (Fig. 7) [24]. Among the eight im-
mune populations (T cells, CD8+ T cells, cytotoxic
lymphocytes, natural killer cells, B cell lineage, monocytic
lineage, myeloid dendritic cells and neutrophils) and two
stromal populations (endothelial cells and fibroblasts) used
by MCP-counter to categorize sarcomas immune classes
(SIC), DDLPS has a higher signature score than LMS in
both the non-immune cell populations (p = 0.002 for

fibroblasts and p = 0.047 for endothelial cells). Increased
endothelial cell signature score has been shown to associate
with a high density of CD34+ endothelial cells and enhan-
cer free endothelial-driven angiogenesis in STS [4]. The
high fibroblasts signature score of DDLPS is consistent with
its mesenchymal origin. The previous TCGA study sug-
gested that CD8+ T cells are higher in DDLPS than in
LMS (P < 0.01), but no such significance was observed in
the current study (P = 0.76) [4].
Unsupervised clustering of the 16 DDLPS/LMS RNA

samples according to their MCP-counter Z-scores re-
vealed a bipartite pattern (Fig. 7a). All the LMS samples
were classified to SIC A as defined by Petitprez et al.,
while most DDLPS samples except one were classified to
SIC B [24]. The SIC B cluster can be further divided to
two subclasses (B1 and B2) with the B2 subclass has a
higher immune cell content in general. We also looked
the expression of individual immune checkpoint mole-
cules in the sample. It showed a higher representation of
PD-L1 in LMS and higher TIM3, PD1 and CTLA4 in
DDLPS in some individual samples. Overall, the immune
checkpoint point molecules are not highly active consist-
ent to the observed ICI treatment efficiency in STS.

Fig. 7 Stromal and immune cell infiltration in tumor microenvironment. a Unsupervised clustering of LMS (cerulean) and DDLPS (purple) samples
by MCP-counter Z-scores. b Expression of genes related to immune checkpoints. Each column represents one patient and is aligned between (a)
and (b)

Liu et al. BMC Cancer         (2020) 20:1035 Page 11 of 14



However, the expression profiles of individual patients are
worth to check when an ICI prescription is considered.

Discussion
Our analysis revealed distinct mutation patterns and
tumor microenvironments between LMS and DDLPS.
This further testifies the diversity of STS and highlights the
necessity of differential diagnosis and treatment of STS.
Genetic changes drive phenotypic change and eventu-

ally clinical manifestation and outcomes of disease. Both
LMS and DDLPS belong to complex-karyotype STSs
with an unbalanced karyotype and severe genomic aber-
rations. In this study, we revealed multiple chromosomal
rearrangements in DDLPS, particularly the ones involv-
ing Chr12. These rearrangements were correlated with
abundant gene amplification and fusion events as well.
In contrary, LMS has fewer chromosomal level rear-
rangements, gene amplification and gene fusions (Figs. 3,
5, and 6). Notably high gene copy amplification and ex-
pression of MDM2 and CDK4 are detected. The two
genes have been reported to promote the transformation
of mesenchymal cells to DDLPS and it was suggested
that they work together in the process [30, 35–37]. A
simultaneous detection of highly upregulated gene ex-
pression upregulation and gene copy number of both
genes in this report further strengths their role in DDLP
S tumorigenesis. Therapies targeting to MDM2/CDK4
axis is expected to relief patients from DDLPS.
A higher degree of genetic scrambling as seen in

the DDLPS predicts a better response to immune
therapies, for example, the checkpoint inhibition. This
notion is supported by several Phase II studies of im-
mune checkpoint inhibition (ICI) therapies in sar-
coma, including SARC028, Alliance A091401 and
PEMBROSARC [42–44]. Results from these studies
revealed that although LMS has a higher TMB than
DDLPS, the response rate of ICIs in LMS is lower
than in DDLPS. For both LMS and DDLPS, the re-
sponse rate of ICIs in an unselected population is
low, and TME immunological landscape profiling can
assist in identification of patients who are likely to re-
spond to immunotherapies. Using MCP-counter and
RNA-seq results, we simultaneously quantified mul-
tiple cell populations and focused on the immune
cells. Results from unsupervised clustering of MCP-
counter Z-scores partitioned LMS and DDLPS in two
distinct immune classes. All LMS coalesced to class A
which is low of immune cell infiltration, fibroblasts
and endothelial cells. The majority of DDLPS samples
clustered to class B which has higher fibroblasts,
endothelial cells and immune cell infiltration. Tumors
in class A are generally considered “cold” with a low
response rate to ICIs [45, 46]. For tumors in class B,
two subgroups can be seen based on immune cell

infiltrations. Class B1 has a relatively higher fibroblast
and endothelial cells, and lower immune cell infiltra-
tion than class B2. In colon cancer, researchers have
reported that immune and stromal classification was
associated with molecular subtypes and patient’s prog-
nosis [47]. Although we can correlate the histology,
mutational profile and immune classification of LMS
and DDLPS with the good or poor patient prognosis,
dedicated prospective trials evaluating chemotherapy,
targeted therapy, or immunotherapy would elucidate
better the role of immunological landscape profiling
in STS treatment. The integrated WES and RNA-seq
analysis derived from the current study can poten-
tially contribute to developing new biomarkers for pa-
tient screening and prognosis prediction.
At the molecular level, it is notable that prevailing can-

cer related mutations, including TP53, AHNAK, and
ATRX, are exclusively in LMS and absent in DDLPS.
Conversely, HERC2 mutation only appears in DDLPS.
These observations argue for that the two STS subtypes
are derived from distinct cell origins and progressed
through different mutational pathways. Diagnosis
assisted by molecular profiling would bring additional
value to patients besides pathological and histological
approaches, especially when targeted or immune therap-
ies are considered.
In spite of the above findings, several limitations re-

main in this study. Firstly, a relatively small number of
patients with each histologic subtype were examined.
This has prevented us to draw a clear-cut conclusion ex-
cept for the few high frequency events we discussed
above. STS is a rare disease, and it is even rarer for the
individual subtypes. Therefore, analysis of few cases is
still meaningful and has great reference value before a
large number of cases can be available. Secondly, the
evaluation of tumor microenvironment was based on
RNA-seq of bulk cells. Although newer technologies
such as single cell transcriptome analysis is available,
due to the retrospective nature of this study, we could
not obtain tissue specifically preserved and qualified for
the single cell analysis. It also made it unlikely to verify
the correlation of the molecular properties of the tumor
with treatment in clinics. At last, we could not conduct
survival analysis in the current cohort due to the rela-
tively short follow-up time of the patients. These issues
will be addressed in future studies and the insights we
gained in the current study will help us to make appro-
priate patient stratification.

Conclusion
In conclusion LMS and DDPLS are distinct diseases as
supported by our analysis of mutation pattern, gross
genomic stability, and tumor infiltrating immune cell
profiles. Chromosomal rearrangement may result in
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gene amplification and fusion, which are displayed the
most obviously in Chr12 in DDLPS. These observations
are consistent to the altered gene expression patterns in
the two types of sarcoma. Neoantigens produced by gene
fusion may open up new avenues for personalized im-
munotherapy in STS.
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