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Abstract

Background: Tobacco smoking is associated with a unique mutational signature in the human cancer genome. It
is unclear whether tobacco smoking-altered DNA methylations and gene expressions affect smoking-related
mutational signature.

Methods: We systematically analyzed the smoking-related DNA methylation sites reported from five previous
casecontrol studies in peripheral blood cells to identify possible target genes. Using the mediation analysis
approach, we evaluated whether the association of tobacco smoking with mutational signature is mediated
through altered DNA methylation and expression of these target genes in lung adenocarcinoma tumor tissues.

Results: Based on data obtained from 21,108 blood samples, we identified 374 smoking-related DNA methylation
sites, annotated to 248 target genes. Using data from DNA methylations, gene expressions and smoking-related
mutational signature generated from ~ 7700 tumor tissue samples across 26 cancer types from The Cancer Genome
Atlas (TCGA), we found 11 of the 248 target genes whose expressions were associated with smoking-related
mutational signature at a Bonferroni-correction P < 0.001. This included four for head and neck cancer, and seven
for lung adenocarcinoma. In lung adenocarcinoma, our results showed that smoking increased the expression of
three genes, AHRR, GPR15, and HDGF, and decreased the expression of two genes, CAPN8, and RPS6KA1, which were
consequently associated with increased smoking-related mutational signature. Additional evidence showed that the
elevated expression of AHRR and GPR15 were associated with smoking-altered hypomethylations at cg14817490
and cg19859270, respectively, in lung adenocarcinoma tumor tissues. Lastly, we showed that decreased expression
of RPS6KA1, were associated with poor survival of lung cancer patients.

Conclusions: Our findings provide novel insight into the contributions of tobacco smoking to carcinogenesis through
the underlying mechanisms of the elevated mutational signature by altered DNA methylations and gene expressions.
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Background
Tobacco smoking is a well-known risk factor for
multiple cancer types, especially lung cancer [1–3]. DNA
methylation, one of the major forms of epigenetic
modification, essentially plays a regulatory role in gene
expression. It has been a focus of multiple studies as a
potential underlying molecular mechanism for tobacco
smoking-related cancers. Previous epigenome-wide
association studies (EWAS) have reported thousands of
DNA methylations at CpG sites associated with tobacco
smoking in blood, buccal cells and tumor-adjacent nor-
mal lung tissue samples [4–11]. These epidemiological
studies have shown that tobacco smoking is consistently
associated with DNA hypomethylated CpG sites in spe-
cific genes such as AHRR (encoding aryl-hydrocarbon re-
ceptor repressor) and GPR15 (encoding G protein-coupled
receptor 15) [12]. In particular, Stueve and colleagues iden-
tified seven smoking-associated hypomethylated CpG sites
in adjacent normal tissues from 237 lung cancer patients.
Of note, five of the seven sites, including a hypomethylated
CpG site in AHRR, had been reported by previous blood-
based EWAS, which suggests that methylation biomarkers
identified from blood samples might reflect methylation
changes in the target tissues [8].
Somatic mutations are one of the most common

causes of carcinogenesis in humans [13, 14]. Recent
studies using data from The Cancer Genome Atlas
(TCGA) have created a landscape of somatic mutations
in each cancer genome, ranging from hundreds to thou-
sands of somatic mutations across multiple cancer types
[14, 15]. To explore the biological processes of somatic
mutations, Alexandrov and colleagues developed a
mathematical framework to deconvolute them into
mutational signatures. The approach characterized 96
mutation classifications that included six substitution
types, together with a flanking base pair to the mutated
base [15]. More than 30 mutational signatures have been
identified across cancer types in TCGA [15, 16]. Previ-
ous studies have shown that a certain mutational signa-
ture was associated with tobacco smoking [15, 17, 18].
The smoking-related mutational signatures featured by
predominantly C > A mutations with a transcriptional
strand bias was observed in multiple human cancer
types, including lung adenocarcinoma, lung small cell
carcinomas, head and neck squamous, liver, larynx, oral
cavity, and esophagus cancers [15, 17, 18]. Accumulating
evidence has shown that dysregulated genes involved in
DNA damage and repair could be responsible for muta-
tional signature in the tumor genome [15, 17, 19, 20].
Examples of this are deficient mismatch repair (MMR),
mutations in POLE, increased activity of the APOBEC
family of cytidine deaminases, and DNA polymerase
POLH [15, 16, 21]. Most recently, our own work has
also shown that putative susceptibility genes may play a

significant role in somatic mutations in human cancers
[19]. Thus, we hypothesize that dysregulated genes,
affected by tobacco smoking, may be also responsible for
smoking-related mutational signatures in tumor tissues.
In our study, we evaluated the previously reported

smoking-related DNA methylations from a total of 21,108
blood samples to identify candidate target genes [4–6, 10,
11]. Using data from DNA methylations, gene expressions
and smoking-related mutational signature generated from
approximately 7700 tumor tissue samples across 26 cancer
types, we evaluated the associations of expression of these
target genes with the smoking-related mutational signature
in tumor tissues for each cancer type. Using a mediation
approach, we further evaluated whether the association of
tobacco smoking with the mutational signature may be
mediated through an altered expression of these target
genes in lung adenocarcinoma tumor tissues. Similar
analyses were performed to evaluate the association of
tobacco smoking with the gene expression mediated
through smoking-altered DNA methylation.

Methods
Data resources
We collected the previously reported smoking-related
methylations in blood samples from five previous
EWAS, including Joehanes et al., 2016 (N = 15,907) [6],
Zeilinger et al., 2013 (N = 2272) [11], Besingi and
Johansson, 2014 (N = 432) [5], Tsaprouni et al., 2014
(N = 920) [10], and Ambatipudi et al., 2016 (N = 940)
[4]. All five of these studies included three categories of
smoking status: current smoker, former smoker and
never-smoker. We included the smoking-related methyl-
ations based on the comparison between current smoker
and never-smoker. In the discovery stage, we only used
the 2622 methylations at CpG sites reported from the
study with the largest sample size (N = 15,907). In the
replication stage, we only used methylations at CpG sites
where we observed consistent associations in at least
one other study at an adjusted P < 0.05 (Fig. 1). For the
two EWAS studies from Zeilinger et al., 2012 and
Tsaprouni et al., 2014 that were designed with both
discovery and replication stages, only the CpG sites
reported by both stages were used to replicate the find-
ings from Joehanes et al., 2016 [6] in our analysis. We
annotated methylation sites to their target genes based
on the annotation from the Bioconductor package
FDb.InfiniumMethylation.hg19 (version 2.2.0).
This study utilized multiple dimension datasets, in-

cluding matched gene expression, DNA methylation,
and clinical data that included age, gender and tobacco
smoking. This was generated from 7757 samples in 26
cancer types from TCGA. The sample size for each
cancer type is summarized in Supplementary Table 1.
All the data were downloaded from TCGA using the
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Fig. 1 (See legend on next page.)
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Broad Institute Genome Data Analysis Center (GDAC)
Firehose portal (stamp data/analyses__2016_01_28)
through Firebrowse. Detailed information about datasets,
analyses, and data sources are described at Firebrowse
(http://gdac.broadinstitute.org/).
For gene expressions, the normalized expression levels

for genes in tumor tissue samples were measured by
RNA-Seq by Expectation Maximization (RSEM). To
create a better distribution for downstream analysis, a
log2 transfer of the RSEM values was applied. We used
the Robust Multichip Average (RMA) approach to
normalize the gene expression data across samples and
to generate the same distribution for each sample.
Furthermore, we transformed expression values for each
gene across samples by an rank-based inverse normal
transformation method for the downstream association
analysis.
For DNA methylation, the data (Level 3) from the

Illumina Infinium HumanMethylation450 BeadChip
array for each sample in TCGA was measured. The Beta
value of the methylation levels of each of the methyla-
tion sites were transformed to M value based on the
equation M ¼ log2ð Beta

1 − BetaÞ , using the function beta2m
from the bioconductor package lumi (version 2.32.0) for
the downstream analysis.
A total of 30 somatic mutational signatures for each sam-

ple in TCGA have been characterized from mSignatureDB
(http://tardis.cgu.edu.tw/msignaturedb). We downloaded
the data and only analyzed the known tobacco-associated
“mutational signature 4” reported in the mSignatureDB,
corresponding to tobacco-associated mutational signature
in this study. We measured the enrichment score of this
mutational signature for each sample (details described in
our previous work [19]).
For gene expression microarray data of 541 lung adeno-

carcinoma patients, we downloaded the raw CEL files of
four datasets (GSE30219, GSE31210, GSE37745 and
GSE50081) from the Gene Expression Omnibus (GEO).
These datasets with clinical survival information were
screened out in a previous study [22]. The microarray data
were processed using the RMA method from R package

affy. The probes were mapped to genes using the annota-
tion file of platform GPL570. The normalized expressions
of probe set were aggregated into an expression level of
the corresponding gene. The array batch effects were
removed with the combat function from R package sva.

The analysis of predicted neoantigen load
We downloaded the number of neoantigen loads for
each sample from TCIA and applied log2 transfer to fit
it into a better distribution. Mutational neoantigens were
predicted by the use of HLA typing and MHC class I/II
binding capabilities. The established neoantigen prediction
algorithm NetMHCcons [23] was applied to missense
somatic mutations to estimate their binding affinity to the
HLA alleles. A more detailed analysis of the processing
has been described in previous literature [24, 25].

Statistical analysis
The distribution for relative contribution of smoking-
related mutational signature to overall mutation burden
is severely right-skewed. To better fit regression models,
we used the ordinal semi-parametric regression models
[26] to evaluate the associations of smoking-related mu-
tational signature with tobacco smoking, gene expression
and DNA methylation. Tobacco smoking variable was
measured by smoking packs per year. The analyses were
implemented in the ‘orm’ function from the ‘rms’ library
of the R package [26]. To explore the mediation effects
of DNA methylation on the association of tobacco
smoking with smoking-related gene expression and the
mediation effects of the smoking-related gene expression
on the association of tobacco smoking with the
smoking-related mutational signature, we conducted
mediation analyses using the R package ‘mediation’ [27]
to estimate the average direct effect (ADE) and the aver-
age causal mediation effect (ACME) of the mediators,
which represent the population averages of these causal
mediation and direct effects. A quasi-Bayesian approxi-
mation was used to construct their 95% confidence
intervals. All the analyses were adjusted for age and gen-
der. To estimate the association between the smoking-

(See figure on previous page.)
Fig. 1 Identification of genes and their associations with smoking-related mutational signature. a A flow chart to illustrate the identification of
candidate smoking-related DNA methylations from the previously reported blood-based methylations in five EWAS. “N” represents the sample
size for each study. b Smoking-related mutational signature displayed according to the 96 substitution classifications characterized by six
substitution types, together with a flanking base pair to the mutated base (Alexandrov et al. 2013). c A scatter plot indicating tobacco smoking
correlated with known smoking-related mutational signature in lung adenocarcinoma. The dotted line refers to association coefficient. Each point
represents one sample. The x axis represents the number of packs per year for each sample, the y axis represents the contribution of smoking-
related mutational signature to overall mutation burden for each sample. The color from red to green refers to a higher to lower density of
samples (this note applies to all other figure legends). d Box plots of the enrichment score of smoking-related mutational signature across 26
cancer types. e Bar plots indicating the P value of associations between the candidate genes and smoking-related mutational signature in six
cancer types. Only genes with a P value of less than 1 × 10− 4 were presented. The dashed dot box highlights the genes with significant
associations at a Bonferroni-correction P < 0.001. f Scatter plots for each gene with significant associations at a Bonferroni-correction P < 0.001.
From the left to the right panel, four genes in head and neck and seven genes in lung adenocarcinoma are presented
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related gene expression and overall survival of lung
cancer patients, we conducted survival analysis using the
Cox proportional hazards model with the adjustment of
age, gender and clinical stage.

Results
Identifying DNA methylations associated with tobacco
smoking in blood samples
To identify smoking-related DNA methylations at CpG
sites, we evaluated previously reported methylations in
blood samples from five EWAS, including Joehanes
et al., 2016 (N = 15,907), Zeilinger et al., 2013 (N =
2272), Besingi and Johansson, 2014 (N = 432),
Tsaprouni, 2014 (N = 920), and Ambatipudi et al., 2016
(N = 940) (Fig. 1a) [4–6, 10, 11]. For our discovery data,
we used a total of 2622 methylations at CpG sites re-
ported by Joehanes et al’s study, which had the largest
sample size. In the replication stage, we kept only those
methylations at CpG sites which showed consistent asso-
ciations in at least one of the remaining four studies (at
the significance level of either Bonferroni or FDR adjusted
P < 0.05 or genome-wide threshold of significance of P <
5 × 10− 8 in each EWAS) (Supplementary Table 2; see
Methods). In the end, we identified a total of 374
smoking-related DNA methylations at CpG sites, anno-
tated to 248 target genes (Fig. 1a; Supplementary Table 3).
Of the 374 DNA methylations, the majority were hypo-
methylated CpG sites (n = 252, 67.4%), compared to
hypermethylated CpG sites (n = 122, 32.6%).

Identifying genes associated with smoking-related
mutational signature in tumor tissues from a pan-cancer
study
The smoking-related mutational signature was charac-
terized in TCGA samples in previous studies [15, 28]
(Fig. 1b). Utilizing this study, we used the relative contri-
bution of the mutational signature to overall mutation
burden, with values ranging from 0 to 1, for each sample
across 26 cancer types in TCGA (see Methods). Using
regression analyses, adjusting for gender and age, we ob-
served that tobacco smoking was significantly associated
with increased smoking-related mutational signature in
lung adenocarcinoma (P = 1.75 × 10− 9; Fig. 1c). In line
with previous studies, we observed that the contribu-
tions of smoking-related mutational signature to the
overall mutation burdens varied in different cancers,
with the most enrichments being observed in lung
adenocarcinoma (median of contribution: 42%) and lung
carcinoma (median of contribution: 35%) (Fig. 1d). Using
regression analyses, adjusting for gender and age (see
Methods), we evaluated the associations between the ex-
pressions of the identified 248 smoking-related target
genes and smoking-related mutational signature for each
cancer type. Of these target genes, we found that 234

genes were associated with smoking-related mutational
signature in 19 cancer types (at a nominal P < 0.05) (Sup-
plementary Table 4). At a more strict threshold of a
P < 1 × 10− 4, a total of 59 genes were identified in six can-
cer types: breast (n = 2), colon (n = 1), head and neck (n =
24), lung adenocarcinoma (n = 28), lung carcinoma (n =
2), and melanoma (n = 2) (Fig. 1e; Supplementary
Table 4).
In the end, we identified four genes for head and neck

cancer and seven genes for lung adenocarcinoma, using
a Bonferroni correction of P < 0.001 (alpha = 0.001 given
20,000 tests; P < 5 × 10− 8). Specifically, for head and
neck cancer, the expression levels of three genes,
NFE2L2, RMND5A and SLC44A1, were associated with
increased smoking-related mutational signature, while
an inverse association was observed for one gene,
ARRB1 (Fig. 1, Table 1). For lung adenocarcinoma, we
found that the expression levels of three genes, GPR15,
HDGF, and AHHR, were associated with increased
smoking-related mutational signature, while an inverse
association was observed for the other four genes, NWD1,
KCNQ1, CAPN8 and RPS6KA1 (Fig. 1, Table 1). GPR15
showed the most significant association with a P < 2.22 ×
10− 16 (Table 1).

Mediation effects of the identified seven genes on the
association of smoking with mutational signature in lung
adenocarcinoma tumor tissues
For the identified seven genes for lung adenocarcinoma,
we evaluated the associations between their expression
and tobacco smoking (see Methods). We found that

Table 1 Associations between smoking-associated mutational
signature and expression of candidate genes (Bonferroni-correction
P < 0.01)

Cancer type Gene Beta P

head and neck
(N = 495)

NFE2L2 0.54 4.1 × 10−11

RMND5A 0.56 2.0 × 10−10

SLC44A1 0.56 2.9 × 10−10

ARRB1 −0.46 5.1 × 10− 8

FAM60A 0.44 5.8 × 10− 8

RHOG −0.43 5.9 × 10− 8

lung adenocarcinoma
(N = 507)

GPR15 0.44 2.2 × 10− 16

NWD1 −0.40 2.0 × 10− 13

HDGF 0.42 1.9 × 10− 12

AHRR 0.34 6.6 × 10−10

KCNQ1 −0.29 3.9 × 10− 8

CAPN8 −0.27 4.4 × 10− 8

RPS6KA1 − 0.30 5.0 × 10− 8

“N” refers to sample size for each cancer type. A regression analysis was
constructed to include tobacco smoking-associated mutational signature as a
dependent variable and gene expression levels as the independent variable
for each gene of each cancer type
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tobacco smoking was significantly associated with an in-
creased expression of AHRR, GPR15 and HDGF with a
P = 6.9 × 10− 5, P = 2.7 × 10− 7 and P = 3.3 × 10− 4, re-
spectively, and a decreased expression of CAPN8 and
RPS6KA1 with a P = 9.6 × 10− 4 and P = 0.01, respectively
(Fig. 2a; Supplementary Table 5). Notably, the associa-
tions of AHRR, GPR15, HDGF and CAPN8 still reached
a Bonferroni correction at P < 0.05 (given seven tests;
P < 7.1 × 10− 3). Using a mediation analysis approach, we
further estimated the ACME of the expression of these
five genes that would be altered by smoking on the mu-
tational signature. We found that they showed signifi-
cant mediation effects on the association of smoking
with the signature (Fig. 2c). Specifically, we observed a
significant percentage of ACME for the smoking-
related gene expressions: 13.4% (95% CI: 0.046 and
0.256) with a P = 2.0 × 10− 4 for AHRR, 9.8% (95% CI:
2.4 and 21.7%) with a P = 2.2 × 10− 3 for CAPN8, 22.8%
(95% CI: 11.3 and 39.4%) with a P < 1 × 10− 4 for
GPR15, 12.3% (95% CI: 4.7 and 24.6%) with a P = 8.0 ×
10− 4 for HDGF, and 8.6% (95% CI: 0.5 and 20.6%) with
a P = 0.032 for RPS6KA1 (Fig. 2c; Table 2). Notably, the
associations of AHRR, CAPN8, GPR15 and HDGF still
reached a Bonferroni correction at P < 0.05 (given five
tests; P < 0.01).

Mediation effects of smoking-related DNA methylation on
the association of smoking with gene expression in lung
adenocarcinoma tumor tissues
In the above mediation analysis, we found that five
genes, AHRR, CAPN8, GPR15, HDGF, and RPS6KA1,
mediated the association between smoking and muta-
tional signature in lung adenocarcinoma. For these,
six smoking-related DNA methylations, cg11554391,
cg14817490, cg21446172, cg19859270, cg00867472
and cg13092108, have been reported in blood cells
[4–6, 10, 11]. We further evaluated the associations
between these methylations and tobacco smoking in
lung adenocarcinoma tumor tissues. In line with pre-
vious findings from case-control studies of blood
samples, we found that consumed tobacco smoke was
significantly associated with hypomethylations at the
CpG sites cg11554391 (AHRR), cg14817490 (AHRR),
and cg19859270 (GPR15) in lung cancer tumor tissues
(P < 0.05 for all; Fig. 3a; Supplementary Table 5). The
associations of cg11554391 (AHRR), and cg19859270
(GPR15) still reached a Bonferroni correction at P <
0.05 (given six tests; P < 0.008). Next, we evaluated
the association between the methylation at each CpG
site and gene expression. Interestingly, our results
showed that the smoking-altered hypomethylations at

Fig. 2 Mediation analysis illustrating the effect of the expression of five genes that would be altered by smoking on smoking-related mutational
signature in lung adenocarcinoma. a Scatter plots indicating the statistical significance between five candidate genes and tobacco smoking in
lung adenocarcinoma. b A diagram to illustrate a mediation analysis framework, where gene expression can be a mediator to affect smoking-
related mutational signature. c Five candidate genes are presented with significant mediation effect (via gene expression on smoking-related
mutational signature), at P < 0.05
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cg11554391 and cg14817490 were associated with an
elevated expression of AHRR; the smoking-altered hy-
pomethylation at cg19859270 was associated with an
elevated expression of GPR15 (P < 0.05 for all), indi-
cating that these smoking-altered hypomethylations
likely play an up-regulation role in their gene expres-
sion (Fig. 3b; Supplementary Table 6). Notably, the
associations for cg14817490 (AHRR) and cg19859270
(GPR15) still reached a Bonferroni correction at P <
0.05 (given six tests; P < 0.008). In particular, these
hypomethylated CpG sites are located in regions with
evidence of enhancer activities associated with their target
genes (Supplementary Figure 1). In addition, we also ana-
lyzed the associations between a total of seven isoforms of
AHRR and DNA methylations at CpG sites in lung adeno-
carcinoma tumor tissues (Supplementary Table 7). In line
with the above observation, we observed that three majorly
expressed isoforms of AHRR, uc003jaw, uc003jay and
uc003jaz, were negatively associated with DNA methyla-
tion at cg11554391 (Supplementary Table 6). These
isoforms are also negatively associated with methylation
cg14817490, while only the isoform uc003jaw showed
statistical significance (Supplementary Table 6). No signifi-
cant associations were observed for the remaining isoforms

due to their low expression, indicating our analysis in the
gene level may only reflect the major expressed isoforms
(Supplementary Figure 2). Similarly, we observed that the
isoforms of GPR15, uc001apq and uc010oad, were nega-
tively associated with the DNA methylation at cg19859270
(Supplementary Table 6).
Using a mediation analysis approach, we further

estimated the ACME of the methylations that would be
altered by smoking on gene expressions. We found that
the methylations at two CpG sites, AHRR (cg14817490,
P = 0.03) and GPR15 (cg19859270, P < 1 × 10− 4),
showed significant mediation effects on the association
of smoking with gene expression (Fig. 3c, d; Table 3).
Specifically, we observed a significant percentage of
ACME for both smoking-related DNA methylations:
8.5% (95% CI: 8 and 24.5%) with a P = 0.03 for AHRR,
and 15.9% (95% CI: 5.2 and 32.9%) with a P < 1.0 × 10− 4

for GRP15 (Fig. 3d; Table 3).

Overall survival analysis for AHRR, CAPN8, GPR15, HDGF
and RPS6KA in lung cancer adenocarcinoma
To explore the association between overall survival of lung
cancer patients and the identified five genes that mediated
the association between smoking and mutational signature

Table 2 The direct effects of tobacco smoking, as well as the causal mediation (indirect) effects via gene expression, on the
mutational signature in lung adenocarcinoma (P < 0.05)

Gene Effect a Beta 95% CI P

Lower Upper

AHRR ACME 4.5 × 10− 4 1.6 × 10− 4 8.3 × 10− 4 < 1.0 × 10− 4

ADE 2.9 × 10− 3 1.7 × 10− 3 4.1 × 10− 3 < 1.0 × 10− 4

Total Effect 3.3 × 10− 3 2.1 × 10− 3 4.5 × 10− 3 < 1.0 × 10− 4

Prop 13.4% 4.6% 25.6% 2.0 × 10− 4

CAPN8 ACME 3.4 × 10− 4 8.2 × 10− 5 6.8 × 10− 4 < 1.0 × 10− 4

ADE 3.0 × 10− 3 1.8 × 10− 3 4.2 × 10− 3 < 1.0 × 10− 4

Total Effect 3.3 × 10− 3 2.1 × 10− 3 4.5 × 10− 3 < 1.0 × 10− 4

Prop 9.8% 2.4% 21.7% 2.2 × 10− 3

GPR15 ACME 7.7 × 10− 4 3.9 × 10− 4 1.2 × 10− 3 < 1.0 × 10− 4

ADE 2.6 × 10− 3 1.4 × 10− 3 3.7 × 10− 3 < 1.0 × 10− 4

Total Effect 3.4 × 10− 3 2.2 × 10− 3 4.4 × 10− 3 < 1.0 × 10− 4

Prop 22.8% 11.3% 39.4% < 1.0 × 10− 4

HDGF ACME 4.2 × 10− 4 1.6 × 10− 4 7.6 × 10− 4 < 1.0 × 10− 4

ADE 2.9 × 10− 3 1.8 × 10− 3 4.1 × 10− 3 < 1.0 × 10− 4

Total Effect 3.4 × 10− 3 2.2 × 10− 3 4.5 × 10− 3 < 1.0 × 10− 4

Prop 12.3% 4.7% 24.6% 8.0 × 10− 4

RPS6KA1 ACME 3.0 × 10− 4 1.8 × 10− 5 6.7 × 10− 4 0.040

ADE 3.0 × 10− 3 1.9 × 10− 3 4.2 × 10− 3 < 1.0 × 10− 4

Total Effect 3.3 × 10− 3 2.1 × 10− 3 4.5 × 10− 3 < 1.0 × 10− 4

Prop 8.6% 5% 20.6% 0.032

“a”: “ACME” refers to the average causal mediation effects. “ADE” refers to the average direct effects. “Prop” refers to the proportion of the total effect of tobacco
smoking on the mutational signature mediated by the gene expression
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in lung adenocarcinoma, we conducted the Cox regression
analysis using data from TCGA (see Methods). Our re-
sults revealed that the elevated expression level of
RPS6KA1 was associated with the increased overall sur-
vival of lung cancer patients, when comparing the high

level of gene expression (>median) to low level (<=me-
dian) (Hazard Ratio [HR] = 0.64, P = 5.9 × 10− 3) (Supple-
mentary Table 8). This association was further evaluated
using public data (n = 541 lung cancer patients; see
Methods). We showed that the elevated expression level

Table 3 The direct effects of tobacco smoking, as well as the causal mediation (indirect) effects via DNA methylation, on the gene
expression in lung adenocarcinoma (P < 0.05)

CpG Effect a Beta 95% CI P

Lower Upper

cg14817490 (AHRR) ACME 6.5 × 10−4 5.7 × 10−5 1.5 × 10−3 0.03

ADE 6.5 × 10−3 3.1 × 10− 3 1.0 × 10− 2 < 1.0 × 10− 4

Total Effect 7.2 × 10− 3 3.8 × 10− 3 1.1 × 10− 2 < 1.0 × 10− 4

Prop 8.5% 8% 24.5% 0.03

cg19859270 (GPR15) ACME 1.5 × 10− 3 4.6 × 10− 4 2.9 × 10− 3 < 1.0 × 10− 4

ADE 7.8 × 10− 3 4.4 × 10− 3 1.1 × 10− 2 < 1.0 × 10− 4

Total Effect 9.3 × 10− 3 5.8 × 10− 3 1.3 × 10− 2 < 1.0 × 10− 4

Prop 15.9% 5.2% 32.9% < 1.0 × 10−4

a ACME refers to the average causal mediation effects. ADE refers to the average direct effects (ADE). “Prop” refers to the proportion of the total effect of tobacco
smoking on the gene expression mediated by DNA methylation

Fig. 3 Mediation analysis illustrating the effect of tobacco smoking-altered methylation on gene expression in lung adenocarcinoma. a Scatter
plots indicating the statistical significance of associations between methylations at three candidate CpG sites and tobacco smoking in lung
adenocarcinoma. b Scatter plots indicating negative correlations between DNA methylation at three candidate CpG sites and gene expression in
lung adenocarcinoma.c A diagram to illustrate a mediation analysis framework, where DNA methylation can be a mediator to affect the
expression of tobacco smoking-altered genes. d Two candidate CpG sites are presented with significant mediation effects on gene expression, at
P < 0.05. “ACME” refers to the average causal mediation effects via DNA methylation on gene expression
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of RPS6KA1 was consistently associated with the increased
overall survival of lung cancer patients with HR = 0.78,
and a marginal significance of P = 0.09. These findings are
in line our initial results that tobacco smoking decreased
expression level of RPS6KA1. No significant associations
with overall survival of lung cancer patients were observed
for other four genes.

Discussion
In the present study, a total of 374 smoking-related
methylations annotated to 248 target genes were identi-
fied using strict statistical criteria from previous EWASs
in blood samples. Using data from TCGA, we identified
a total of 11 candidate genes of 248 target genes whose
expressions were associated with smoking-related mu-
tational signature, including four in head and neck
cancer and seven in lung adenocarcinoma. Of seven
genes for lung adenocarcinoma, our results further
showed that smoking increased the expression of
three genes, AHRR, GPR15, and HDGF, and decreased
the expression of two genes, CAPN8, and RPS6KA1.
These smoking-altered gene expressions were conse-
quently associated with increased smoking-related
mutational signature. In addition, our results showed
that the elevated expressions of AHRR and GPR15
were associated with smoking-altered hypomethyla-
tions of cg14817490 and cg19859270 in both lung
cancer blood and tumor tissues, respectively.
Our analysis focused on the identified 374 blood-based

methylations associated with tobacco smoking, which
have strong evidence of statistical associations from
previous studies. In particular, the initial discovery of
methylations associated with tobacco smoking is based
on a study with the largest sample size we have found so
far (N = 15,907) (see Methods) [6]. In addition to studies
of blood, two studies have investigated methylations as-
sociated with tobacco smoking in buccal cells (N = 790)
[9] and tumor adjacent normal lung tissue (N = 237) [8].
Notably, both studies had limited sample sizes and were
insufficient in statistical power to identify smoking-
related methylation sites, while they have revealed evi-
dence that blood-based methylation biomarkers could
reflect changes in their target tissues. Recently, Ma and
Li performed pathway enrichment analyses based on 320
smoking-affected genes identified in blood. Their results
showed that 104 of these genes were significantly
enriched in pathways associated with the etiology of dif-
ferent cancers [29]. Consistent with these findings, two
recent epidemiology studies showed that smoking-
related hypomethylations in blood cells were associated
with lung cancer risk [30, 31]. Thus, our study shows a
connection of blood-based methylations with tobacco
smoking-related mutational signature in tumor tissue. It
should be noted that other confounders such as body

mass index (BMI) and alcohol consumption data are not
available for lung adenocarcinomas in TCGA, which
prevents us from including these variables as con-
founders. Nevertheless, we provided statistical evidence
that tobacco smoking leading to carcinogenesis through
the underlying mechanisms of the elevated mutational
signature that was likely mediated by altered DNA meth-
ylations and gene expressions.
Using the median analysis, we evaluated associations

of smoking-related DNA methylations and gene expres-
sions with the smoking-related mutational signature in
lung adenocarcinoma. Thus, the identified dysregulated
genes that were likely affected by tobacco smoking, may
contribute to generating the smoking-related mutational
signature in lung adenocarcinoma. Notably, the smoking
variable of pack years was used for our association ana-
lysis. In addition, we evaluated the association smoking
status (smoker and non-smoker) with between both gene
expressions and DNA methylations at CpG sites in lung
adenocarcinoma. Overall, we showed that associations
based on smoking status were consistently associated
with the results using smoking represented by smoking
packs per year, while the latter variable as a continuous
variable could slightly increase statistical power (Supple-
mentary Table 5). Previous studies have suggested that
the AHRR gene was associated with tobacco smoking,
based on EWAS from blood, buccal cell and normal
lung tissue [4–11]. In recent studies, the hypomethylated
CpG sites in the AHRR gene in pre-diagnostic peripheral
blood samples were reported to be associated with lung
cancer risk [30, 31]. Based on in vitro experiments from
both humans and mice, the evaluated AHRR expression
has been validated by tobacco smoking-altered methyla-
tions [7]. However, the AHRR is a putative tumor sup-
pressor gene encoding a competitive suppressor of the
aryl hydrocarbon receptor (AHR). The AHRR - AHR
negative feedback loop plays an essential role in detoxi-
fying dioxin, including polycyclic aromatic hydrocarbons
(PAHs), an important class of smoking carcinogens [32,
33]. In addition to AHRR, GPR15 encodes an orphan G-
protein-coupled receptor involved in the regulation of
innate immunity and T-cell trafficking in the intestinal
epithelium [34, 35]. Similarly, the biological mechanisms
of how GPR15 contribute to smoking-related mutational
signatures in lung adenocarcinoma remain unclear.
Nevertheless, we provided candidate genes that signifi-
cantly contributed to smoking-related mutational signa-
ture in lung cancer. Further functional characterization
for these genes needs to be conducted to provide
biological evidence and explore oncogenic pathways for
their effects on smoking-related mutational signature.
Our results showed three additional genes, CAPN8,

HDGF and RPS6KA1, may be involved in smoking-related
mutational signature, mediated by gene expression altered
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by tobacco smoking in lung adenocarcinoma. Tobacco
smoking-related methylations in these genes have been re-
ported in the previous EWAS in blood samples. However,
we did not observe that these methylations were associ-
ated with tobacco smoking in lung adenocarcinoma,
although consistent association directions were observed
for HDG and RPS6KA1 (Data not shown). Notably, unlike
the studies in large sample size from blood studies, the
statistical analysis in detecting association between DNA
methylation and tobacco smoking is still challenge in
tumor tissues due to possible factors, such as tumor het-
erogeneity, potential confounders, and limited sample size.
In fact, our focus on the analysis of the reported blood-
based smoking-related DNA methylation sites could iden-
tify reliably smoking-related target genes and reduce the
possibility of reverse causation. Nevertheless, given the
tissue-specificities of some methylations in blood, further
studies with a large sample size are still needed to replicate
the associations for these candidate tobacco smoking-
related genes in lung adenocarcinoma. In fact, our results
showed that smoking-related methylations of these genes
were associated with decreased expressions of these genes
(P < 0.01 for all), indicating that they may play a down-
regulation role in their gene expression in lung adenocar-
cinoma (Supplementary Figure 3). Further in vitro or
in vivo functional assays are needed to validate the genes
that are affected by tobacco smoking in lung cancer.
It is known that neoantigens (or neoepitopes) result

from missense somatic mutations in cancer cells [36].
However, how smoking-related mutational signature con-
tribute to neoantigen loads remain unclear. We addition-
ally evaluated the associations between smoking-related
mutation signature and predicted neoantigen loads (see
Methods). We observed that smoking-related mutational
signature were significantly associated with increased
neoantigen loads in three cancer types, head and neck,
lung adenocarcinoma, and lung carcinoma (see Methods).
An inverse association was observed in melanoma
(P < 1 × 10− 4 for all; Supplementary Figure 4A, B; Supple-
mentary Table 9). The most significant association was
observed in lung adenocarcinoma with a P < 2.2 × 10− 16.
In addition, we also observed that neoantigen loads were
associated with all five identified genes (P < 1 × 10− 5) and
tobacco smoking (P = 2.16 × 10− 11) in lung adenocarcin-
oma (Supplementary Figure 4C, D). In particular, the ex-
pressions of AHRR and GPR15 had associations with an
increased predicted neoantigen load with P = 7.6 × 10− 10

and P = 7.7 × 10− 7, respectively (Supplementary Figure
4D). Thus, our findings may provide new clues to explore
the biological and immunological mechanisms through
which smoking-related mutational signature may be in-
volved in carcinogenesis, and provide potential genomic
biomarkers for the development of cancer prevention and
immunotherapy.

Conclusions
Our results showed that the smoking-altered DNA
methylations and gene expressions play an important
role in contributing to smoking-related mutational
signature in human cancers. Our results also indicated
that tobacco-smoking plays an important role in clinical
significance, likely affecting genes with the impact on
overall survival of lung cancer patients. Our study not
only provides candidate genes that contribute to tobacco
smoking carcinogenesis, but also can potentially lead to
a new avenue for target intervention.
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