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Abstract

Background: Despite recent advances in cancer immunotherapy, the efficacy of these therapies for the treatment
of human prostate cancer patients is low due to the complex immune evasion mechanisms (IEMs) of prostate
cancer and the lack of predictive biomarkers for patient responses.

Methods: To understand the [EMs in prostate cancer and apply such understanding to the design of personalized
immunotherapies, we analyzed the RNA-seq data for prostate adenocarcinoma from The Cancer Genome Atlas
(TCGA) using a combination of biclustering, differential expression analysis, immune cell typing, and machine
learning methods.

Results: The integrative analysis identified eight clusters with different [EM combinations and predictive biomarkers
for each immune evasion cluster. Prostate tumors employ different combinations of IEMs. The majority of prostate
cancer patients were identified with immunological ignorance (89.8%), upregulated cytotoxic T lymphocyte-
associated protein 4 (CTLA4) (58.8%), and upregulated decoy receptor 3 (DcR3) (51.6%). Among patients with
immunologic ignorance, 41.4% displayed upregulated DcR3 expression, 43.26% had upregulated CTLA4, and 11.4%
had a combination of all three mechanisms. Since upregulated programmed cell death 1 (PD-1) and/or CTLA4
often co-occur with other IEMs, these results provide a plausible explanation for the failure of immune checkpoint
inhibitor monotherapy for prostate cancer.

Conclusion: These findings indicate that human prostate cancer specimens are mostly immunologically cold
tumors that do not respond well to mono-immunotherapy. With such identified biomarkers, more precise
treatment strategies can be developed to improve therapeutic efficacy through a greater understanding of a
patient’s immune evasion mechanisms.
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Background
According to the American Cancer Society, prostate cancer
is the most common cancer among US men and the sec-
ond leading cause of death. The 2018 GLOBOCAN project
revealed prostate cancer to be the second most common
cancer affecting males worldwide after lung cancer, and the
most frequently diagnosed cancer in the US [1]. Local tu-
mors are treated with surgery or radiation therapy and
metastatic castrate-sensitive prostate cancer is treated by
chemical or physical castration [2, 3]. Cancer relapse and
treatment failure are common and result in the progression
to castrate-resistant prostate cancer. Therefore, there is a
need to develop more effective therapies [4].

Immunotherapy that stimulates a patient’s immune
system to target cancer is emerging as a next-generation
cancer treatment [5]. Immunotherapy in prostate cancer
is currently under investigation to boost the anti-tumor
immune response by targeting immunosuppressive mol-
ecules [4]. The immunotherapies currently approved by
the US Food and Drug Administration (FDA) for pros-
tate cancer is Sipuleucel-T (Provenge) for metastatic
castrate-resistant prostate cancer (mCRPC) and Key-
truda for solid tumors with mismatch repair genes
(MMR) and/or exhibit microsatellite instability (MSI).
Despite the improved overall survival achieved by
Sipuleucel-T, there was no difference in the progression-
free survival in the treatment group compared to pla-
cebo [6]. Keytruda on the other hand is given to meta-
static prostate cancer patients with MMR/MSI tumors,
which represent 5-10% of metastatic patients, only if
they have progressed on other treatments and have no
satisfactory alternative treatment option. The unsatisfac-
tory results of the immune checkpoint inhibitors, anti-
CTLA4 and anti-PD-1 monotherapies [7-9], have led
pharmaceutical companies to shift their focus to com-
bined and sequential therapy. Recently, targeting both
CTLA4 and PD-1 has resulted in a prostate-specific anti-
gen (PSA) response and objective responses in some pa-
tients [6, 10—12]. Several immunotherapies are currently
in clinical trial including a few immunotherapy combin-
ation treatments such as viral vaccines targeting different
cancer antigens (PSA, CEA, and MUCI1), viral vaccines
with anti-CTLA4 and anti-PD-1, Sipuleucel-T with anti-
CTLA4, anti-PD-L1 with interleukin-15 (IL-15) supera-
gonist, IDO inhibitor, and viral vaccines, and other com-
binations with GM-CSF (Additional file 1). However, the
lack of patient inclusion criteria based on predictive bio-
markers that could help determine who is likely to re-
spond to treatment hinders the sustained progress
towards more effective immunotherapies for prostate
cancer.

Recognition of the “cancer-immunity cycle” in the
anti-tumor immune response has facilitated a more pre-
cise identification of immune evasion mechanisms [13].
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The anti-tumor immune response starts with the recog-
nition of the surface antigens on cancer cells by antigen-
presenting cells (APCs) (i.e., macrophages and dendritic
cells). APCs then prime and activate cytotoxic T lym-
phocytes (CTLs) to kill cancer cells [14]. The dead cancer
cells then release more antigens that activate additional
APCs and amplify the anti-cancer immune response by
recruiting more immune cells. Thus, a successful response
depends on feedback and cycle self-amplification. All of the
above steps must be activated to kill cancer cells and
achieve success in immunotherapy [14].

The low expression of antigen-expressing molecules, as
well as low CTL recruitment and activation, may indicate
an impairment in antigen processing and presentation
[14-16]. In more extreme cases where all the genes of the
cancer immunity cycle are not upregulated compared to
normal tissue level, this indicates immunologic ignorance,
due to the lack of a danger signal. If the genes responsible
for antigen processing and presentation are upregulated
but not the cytotoxic molecules secreted by CTLs upon
activation, then there is a subsequent impairment in im-
mune cell activation that is potentially caused by tolerance
and immunosuppression (e.g, CTLA4, PD-1, PD-L1/2,
and TGF-B). In addition, immune cell killing of tumors
can be weakened by the cancer cell production of decoy
molecules against Fas and TRAIL-induced death pathways
(i.e., decoy receptor 3 [DcR3] and decoy receptor 4 [DcR4,
aka TRAILR4]) [17, 18].

To identify the evasion mechanisms in prostate cancer
and the predictive biomarkers for the specific evasion
mechanism(s) in a patient, we applied a series of compu-
tational methods (sequential biclustering, differential ex-
pression, immune cell typing, and machine learning) to
prostate cancer RNA-seq data obtained from the cancer
genome atlas (TCGA) [19]. The analysis termed an im-
mune evasion mechanism analysis (IEMA), clustered the
majority of prostate cancer patients into eight groups
based on their expression of immune-related genes [13].
Each of the eight clusters has a distinct set of evasion
mechanisms that were simultaneously activated in can-
cer. Ten biomarkers predictive of the cluster member-
ship of a patient were also selected using a decision tree
algorithm.

Methods

TCGA prostate cancer dataset and immune gene list

We collected a list of 2000 immune genes from previous
publications and gene sets from the Molecular Signa-
tures Database (MSigDB) (Additional file 2) [20-22]. We
then checked the RNA-Seq expression in prostate cancer
in the Cancer Genome Atlas (TCGA) database (https://
www.cancer.gov). The datasets included 498 prostate
adenocarcinoma (PRAD) samples and 52 matched non-
malignant adjacent normal tissue samples. We generated
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two data matrices: a cancer matrix (2000 x 498) and
non-malignant adjacent normal matrix (2000 x 52). The
de-identified clinical information for the patients was
also gathered from TCGA.

Sequential biclustering

To separate the patients into different groups based on
their similar gene expression, we used the plaid biclus-
tering package in R, BCPlaid, and clustered them se-
quentially to obtain discrete, non-overlapping subsets of
patients [23]. The sequential algorithm continues until
no more clusters with at least 5% of the total number of
samples can be found [13]. Additional file 3 contains the
level of expression of the 2000 immune genes in the
identified clusters.

Immune cell analysis

CIBERSORT was used to estimate the immune compos-
ition of the prostate samples used (Additional File 4).
Using the CIBERSORT results for prostate samples, we
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calculated the total number of lymphocytes by totaling
the abundance of the lymphocyte population (B cells, T
cells, and NK cells) according to the method described
by Thorsson et al. [24] (Fig. 1A and Additional file 4).
The data was displayed using violin plots that were gen-
erated using the ggplot2 package in R [25].

Differential gene expression analysis

A differential gene expression analysis was performed
using the DESeq2 package in R (Additional File 3 and 5)
[26]. Differentially expressed genes were those with an
adjusted p-value less than 0.05 and a log, fold change
greater than 2. Genes with a log, fold change less than 2
were considered to be minimally differentially expressed.

Pathway analysis

To identify significantly enriched processes and path-
ways, we conducted an enrichment analysis on immune-
related pathways from KEGG and GO terms in the R/
Bioconductor packages Pathview and Gage [27, 28]. The
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pathway analysis was done in comparison to adjacent
tissue samples (Additional files 6 and 7) and tumor tis-
sue samples (Additional files 8 and 9).

Fisher’s exact test

To identify whether a cluster is significantly associated
with any clinical data, we performed Fisher’s exact test.
The p-values were calculated by comparing the number
of patients in a cluster belonging to a specific subtype to
the total number of patients in the cluster. A p-value
<0.05 indicates that the distribution of the number of
patients in that cluster is significantly different from the
overall pattern.

Classification tree

To identify the biomarkers specific to each cluster, a clas-
sification tree was used to build a model to predict the im-
mune evasion cluster into which a patient sample belongs.
This was achieved using the rpart package in R [29].

Results

Patient cohort and gene expression data

The RNA-seq data for 498 prostate cancer samples, 51
non-malignant adjacent samples, and the associated de-
identified patient information were obtained from TCGA.
The RNA-seq data obtained from TCGA were reviewed for
the expression of 2000 immune-related genes identified in
previously published gene sets and the Molecular Signa-
tures Database (MSigDB) (Additional File 2) [20-22]. The
patients were then clustered sequentially using our sequen-
tial biclustering method to categorize the patients based on
the expression of various immune genes [13]. The algo-
rithm clustered 86.3% of the prostate cancer population
into eight different immune clusters characterized by differ-
ent combinations of immune evasion mechanisms (IEMs)
(Tables 1 and 2, Additional file 10).

Eight immune clusters based on different combinations
of IEMs

The gene expression data for each of the eight identified
immune clusters were checked against the mean gene

Table 1 The eight identified immune clusters in prostate cancer

Genes Number of Patients 430 (86.34%)

Cluster 1 232 129 (25.9%)

Cluster 2 314 44 (10.2%)

Cluster 3 276 52 (12.1%)

Cluster 4 129 56 (13.0%)

Cluster 5 116 43 (10.0%)

Cluster 6 27 49 (11.4%)

Cluster 7 111 28 (6.5%)

Cluster 8 52 29 (6.7%)
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expression of non-malignant adjacent normal samples
using the DESeq2 package in R [26]. Differentially
expressed genes were then analyzed using pathway ana-
lysis tools at the single gene level to identify any immune
evasion mechanisms within the cancer-immunity cycle
(Fig. 2 and Additional files 5, 6, 7, and 10).

The pathway analysis comparing clusters to the adjacent
normal samples revealed that cluster 3 has a significant
activation of the T helper 1 and T helper 2 differentiation
pathway and T cell receptor (TCR) signaling. Additionally,
cluster 5 showed significant downregulation in the
interleukin-17 (IL-17) signaling pathway compared to the
normal tissues (Additional files 6).

When investigating the immune cell abundance in each of
the different clusters, we found that cluster 3 has the second
highest cytotoxic lymphocyte (CTL) infiltration after cluster 2
(Fig. 1B, Additional files 4 and 11). Despite the higher activation
of T helper cells, TCR signaling, and CTL infiltration in cluster
3 compared to other clusters, cluster 3 was significantly associ-
ated with a high Gleason score (> 8) and late pathologic-T
stages (3 and 4) (Tables 3 and 4). This finding can be attributed
to the highly immunosuppressive tumor microenvironment as
demonstrated by the high infiltration of regulatory T cells
(Treg) and upregulated expression of CTLA4 and PD-1 in this
cluster (Fig. 1C, Table 2, and Additional files 3 and 10).

Although both clusters 5 and 7 and clusters 4 and 8 share
the same immune evasion mechanisms (IEM), they exhib-
ited differential gene expression (Additional files 3 and 10).
Furthermore, cluster 4 was significantly associated with a
Gleason score = 8 whereas cluster 8 showed no significant
association with a Gleason score. Similarly, cluster 7 had a
Gleason score of 7 while cluster 5 did not (Table 4). In
addition, the pathway analysis shows downregulated activa-
tion of IL-17 signaling in cluster 5 compared to the normal
tissues and other prostate cancer patients. In contrast,
cluster 4 showed downregulated activation of IL-17
signaling only when compared to other prostate can-
cer patients (not significantly lower than the normal
tissues) (Additional files 7 and 9). Thus, further inves-
tigations regarding the role of IL-17 may shed light
on its effect on the advancement of prostate cancer.

Immunological ignorance, CTLA4, and DcR3 over-
expression are the major evasion mechanisms in prostate
cancer

Due to the low expression levels of the genes involved in
antigen processing and presentation, immune cell recruit-
ment, and immune activation, the majority of the clustered
prostate cancer patients (89.77%) exhibited immunological
ignorance [13, 17] (Table 2, Additional files 5 and 10). This
finding is in line with the identification of prostate cancer
as a poorly immunogenic disease. Ignorance can result
from either the absence of tumor-specific antigens that
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Table 2 The mechanisms of evasion in the identified prostate cancer clusters and the potential immunotherapies to circumvent

immune evasion

Cluster Mechanism of Evasion Potential Immunotherapies
Cluster 1 Counterattack: DcR3 Anti-DcR3
Ignorance Sipuleucel-T/DC-vaccines
Cluster 2 Impaired antigen presentation/low activation of CTL Sipuleucel-T/DC-vaccines
(Gleason 7) Tolerance: CTLA4, PD-1 Anti-CTLA4, anti-PD-1
Counterattack: DcR3 Anti-DcR3
Cluster 3 Tolerance: CTLA4, PD-1 Anti-CTLA4, anti-PD-1

(Pathologic T3 & T4
Gleason score 2 8)

Cluster 4
(Gleason score = 8)

Cluster 5
Cluster 6

Cluster 7
(Gleason score 7)

Cluster 8

Ignorance

Tolerance: CTLA4
Ignorance

Ignorance

Tolerance: CTLA4
Counterattack: DcR3
Ignorance

Ignorance

CTLA4
Ignorance

Sipuleucel-T/DC-vaccines

Anti-CTLA4
Sipuleucel-T/DC-vaccines

Sipuleucel-T/DC-vaccines

Anti-CTLA4
Anti-DcR3
Sipuleucel-T/DC-vaccines

Sipuleucel-T/DC-vaccines

Anti-CTLA4
Sipuleucel-T/DC-vaccines

DcR3 Decoy receptor 3, DC dendritic cell, PD-1 programed cell death 1, CTLA4 cytotoxic T lymphocyte associated protein 4

activate the immune system or the failure of APCs to

recognize cancer antigens.

CTLA4-mediated immune tolerance and a counterat-
tack with DcR3 were identified in 58.8 and 51.6% of the
clustered patients, respectively. Upregulated PD-1

expression (27.8%) was accompanied by upregulated
CTLA4 expression in prostate cancer patients (Fig. 1C,
Additional file 10). Interestingly, 41.4% of patients with
immunologic ignorance also showed upregulated DcR3

expression,

43.26%

displayed upregulated CTLA4
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Table 3 Cluster association with the pathologic T stage
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Cluster Number of patients T1 T2 T3 T4 Fisher exact p-value
Cluster 1 127 0 (0%) 51 (40.16%) 74 (58.27%) 2 (1.57%) 7.68E-01

Cluster 2 44 0 (0%) 23 (52.27%) 21 (47.73%) 0 (0%) 1.38E-01

Cluster 3 51 0 (0%) 9 (17.65%) 7 (72.55%) 5 (9.80%) 1.93E-03

Cluster 4 56 0 (0%) 6 (28.57%) 39 (69.64%) 1 (1.79%) 4.00E-01

Cluster 5 43 0 (0%) 9 (44.19%) 3 (53.49%) 1(2.33%) 6.19E-01

Cluster 6 48 0 (0%) 6 (33.33%) 2 (66.67%) 0 (0%) 6.34E-01

Cluster 7 28 0 (0%) 5 (53.57%) 2 (42.86%) 1(3.57%) 142E-01

Cluster 8 28 0 (0%) 8 (28.57%) 9 (67.86%) 1 (3.57%) 4.70E-01

Total 425 0 (0%) 183 (43.06%) 256 (60.24%) 12 (2.82%)

expression, and 11.4% exhibited upregulated expression
of all three molecules. Ignorance and upregulated PD-1
expression were identified in 12.09% of the clustered pa-
tients. Thus, some patients could respond to cellular im-
munotherapy alone, while others may require combined
or sequential therapy with anti-CTLA4, anti-DcR3, or
anti-PD-1. However, these results need to be further val-
idated clinically.

Late-stage disease and high Gleason score in cluster 3

Despite the higher level of cytotoxic T-lymphocyte infil-
tration observed in clusters 2 and 3, the tumors had high
levels of PD-1, CTLA4, and Tregs (Table 2, Fig. 1B and
Fig. 1C), indicating an immunosuppressive status. More-
over, advanced prostate cancer was significantly associ-
ated with clusters 3 and 4, whose mean NK cell counts
were significantly downregulated compared to normal
(Fig. 1D and Additional file 8). Both clusters showed a
significant association with a Gleason score = 8. Cluster
3 was also significantly associated with pathologic-T
stages 3 and 4 and a higher Treg cell abundance than
cluster 4 (Tables 3 and 4). Evasion mechanisms identified
in these clusters consisted of a combination of tolerance
and impaired antigen presentation or ignorance (Table 2).

Table 4 Cluster association with the Gleason score

Identification of 10 predictive biomarkers for patient
stratification

After the identification of eight different immune eva-
sion clusters, we next sought to select biomarkers that
could predict which patient populations would be most
likely to respond to various immunotherapies. A classifi-
cation tree model was built to predict a patient’s mem-
bership to a specific immune evasion cluster. The
classification tree achieved an accuracy of 77%. The se-
lected gene biomarkers and their expression cutoff
values are displayed in Fig. 3. These biomarkers are
CD48, SP140, KIRREL, RHOB, FBXO17, ANAPCI,
EGFR, SOCS3, ALOX15, and UBR2. Cluster 1 is distin-
guished from all other clusters, especially similar clusters
2 and 3 (close nodes in the tree), by its CD48 expression,
which is less than 65 reads. CD48 is a member of the
signaling lymphoid activation molecule family (SLAM)
which is important for adhesion and activation of im-
mune cells and plays a role in tolerance and immunity
[30]. This explains the absence of tolerance IEM in clus-
ter 1 compared to other neighboring node clusters in
the tree, such as clusters 2 and 3, due to its lower CD48
expression. Cluster 3 is identified by its higher CD48 ex-
pression compared to cluster 1 and increased expression
of lymphoid-specific SP100 homolog (SP140), which is a

Cluster Number of patients Gleason score <6 Gleason score =7 Gleason score = 8 Fisher exact p-value
Cluster 1 129 11 (8.53%) 59 (45.74%) 59 (45.74%) 6.91E-01

Cluster 2 44 4 (9.09%)' 4 (77.27%) 6 (13.64%) 3.52E-04

Cluster 3 52 3 (5.77%) 7 (32.69%) 32 (61.54%) 2.75E-02

Cluster 4 56 1 (1.79%) 4 (42.86%) 31 (55.36%) 4.24E-02

Cluster 5 43 7 (16.28%) 9 (44.19%) 17 (39.53%) 3.38E-01

Cluster 6 49 9 (18.37%) 9 (38.78%) 21 (42.86%) 1.26E-01

Cluster 7 28 2 (7.15%) 4 (85.71%) 2 (7.14%) 2.13E-04

Cluster 8 29 4 (13.79%) 5 (51.72%) 10 (34.48%) 6.12E-01

Total 430 41 (9.54%) 211 (49.07%) 178 (41.39%)
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repressor of inflammation, cell-cell adhesion, and nu-
clear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) regulated pathways [31]. Furthermore, to
distinguish cluster 3 from all other clusters, and thus
identify the correct combination immunotherapy for
these patients, 3 biomarkers are required: CD48, SP140,
and KIRREL (Table 2 and Fig. 3). Another important
finding from the identified biomarkers is that even for
the clusters that have upregulated CTLA4 and PD-1 ex-
pressions, these molecules are not the optimal bio-
markers for the choice of anti-CTLA4 or anti-PD-1
treatments. Additional file 12 further addresses the roles
of each of our identified biomarkers.

Discussion

Prostate cancer immunotherapy is an underexplored
area of research due to the misconception that prostate
cancer is non-immunogenic. A paradigm shift began in
the 1990s when preclinical and subsequent clinical and
translational research showed that some prostate cancers
respond to immune modulators [32]. Clinical trials and
other studies starting in the 1990s have found that high
dose IL2, IEN-a, and IFN-Y induced objective PSA re-
sponse in metastatic prostate cancer. Furthermore,
GVAX cancer vaccine combination therapy with anti-
CTLA4, GM-CSF-activated dendritic cell-based antigen
presentation, and other vaccinia-based treatments
showed improved survival and immunogenicity [32—34].
While none of these treatments have made it to FDA ap-
proval due to their unsatisfactory results, they paved the

way for therapeutic approaches that are aimed at both
increasing tumor recognition by immune cells to elicit
an anti-tumor immune response, as well as counter-
acting immunosuppression. Sipuleucel-T and Keytruda
are the immunotherapies approved by the FDA for
metastatic prostate cancer. While Sipuleucel-T adminis-
tration improved overall survival, it did not show a dif-
ference in the progression-free survival in the treatment
group compared to placebo [6], urging the need for
more immunotherapy clinical trials to improve the
current outcomes. Keytruda however was approved for
solid tumors with MMR mutations and/or MSI and was
only given for prostate cancer patients once they have
shown no response to any other available treatment.
While several trials are currently ongoing (Additional file 1)
the gap lies in the lack of available biomarkers that can
help predict which patients would best respond to a par-
ticular immunotherapy or combination of therapies.

To close this gap, we clustered prostate cancer patients
into eight groups based on their patterns of immune
gene expression and identified the associated IEMs and
biomarkers that are predictive of a patient’s IEM cluster
(Figs. 2 and 3). Since the current approach for giving
anti-CTLA4 and anti-PD-1 treatments that are based on
the patient’s level of expression of CTLA4 and PD-1
have failed, the need for better biomarkers is necessary
for improving immunotherapy outcomes. Our identified
biomarkers, which did not include either CTLA4 or PD-
1, may further corroborate that these molecules are not
ideal biomarkers for treatment selection. Thus, our
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approach not only facilitates a more personalized ap-
proach to immunotherapy based on a patient’s IEM but
also provides possible reasons behind the failure of sev-
eral mono-immunotherapeutic approaches in prostate
cancer. Prostate cancer patients with upregulated
CTLA4 or PD-1 expression also exhibited other immune
evasion mechanisms that obstruct the cancer immunity
cycle. The clusters that showed upregulated PD-1 ex-
pression (34.3%) also exhibited upregulated CTLA4
(34.3%). Such expression was associated with either im-
munologic ignorance (cluster 3, 12.1% of clustered pa-
tients) or impaired antigen presentation and upregulated
DcR3 (cluster 2, 10.23% of clustered patients). Similarly,
the clusters with upregulated CTLA4 all possessed im-
munologic ignorance as an additional evasion mechan-
ism. Thus, as clinical trials have shown, targeting
CTLA4 or PD-1 alone will not succeed in treating pros-
tate cancer [6, 8, 9, 35]. A combined immunotherapy ap-
proach based on a patient’s immune evasion cluster may
be more likely to result in a favorable response rate.

Immunotherapy is typically avoided during early-stage
prostate cancer given the relatively successful hormonal
and surgical options; however, castrate-resistance and
hormone-refractory disease may be avoided if hormone
deprivation therapy is administered in combination or se-
quentially with an immune system booster to delay disease
progression. Here, we showed that untreated prostate can-
cer tissue samples have various combinations of evasion
mechanisms, which if targeted early, may result in better
efficacy compared to the conventional treatment options
alone. The neo-adjuvant administration of Sipuleucel-T
before a prostatectomy was shown to elicit a systemic
antigen-specific immune response and increase T cell in-
filtration into the tumor microenvironment [36]. The
Checkmate 650 trial also showed that the cohort treated
with a combination of anti-PD-1 and anti-CTLA4 before
chemotherapy showed greater benefit than the group that
received chemotherapy alone [12].

Sipuleucel-T is more likely to benefit patients with im-
munologic ignorance, which was identified in the majority of
the clustered patients (89.77%). However, immunologic ig-
norance was associated with other evasion mechanisms in all
clusters, except clusters 5 and 7 (16.5%). The administration
of Sipuleucel-T alone to patients in clusters 5 and 7 may
substantially improve the response rate. Patients in other
clusters can be treated with Sipuleucel-T in combination
with immune checkpoint inhibitors. However, the active eva-
sion mechanisms in a cancer patient must be monitored
regularly after treatment to identify any newly developed eva-
sion mechanisms and target them with the relevant
immunotherapies.

Although certain clusters were found to share the same
evasion mechanisms, the extent of these mechanisms varies
based on the differential expression of the associated genes.

Page 8 of 10

This was clearly shown in the classification tree that distin-
guished clusters 4 and 8 and clusters 5 and 7 with different
sets of biomarkers (Fig. 3). Furthermore, the Gleason scores
were different in both clusters 5 and 7 and clusters 4 and 8,
and the clusters exhibited a different activation/deactivation
status of the IL-17 signaling pathway. The role of IL-17 in
carcinogenesis has long been controversial and IL-17 has
been proposed to have pro-tumor and anti-tumor roles by
increasing the tumor vasculature and aiding in metastasis, as
well as increasing the infiltration of immune cells, respect-
ively [37-41]. However, IL-17 was found to promote pros-
tate cancer in mice and human cell lines by inducing the
epithelial to mesenchymal transition via  matrix
metalloproteinase-7 (MMP-7) [42—44]. IL-17 enhancement
of prostate adenocarcinoma in castration-resistant prostate
cancer in a mouse model was attributed to potential creation
of immunotolerant and pro-angiogenic tumor microenviron-
ment [43]. Furthermore, IL-17 was found to recruit myeloid-
derived suppressor cells (MDSCs) and increase the immuno-
suppressive effects of MDSCs on T cells, creating an
immunotolerant tumor microenvironment [43—46]. Thus,
further investigation into the effect of IL-17 on immune eva-
sion can help elucidate whether it could be a potential im-
munotherapeutic target or a prognostic biomarker.

Conclusions

The stratification of prostate cancer patients using the bio-
markers discovered in this study allows for a more precise
grouping of patients for monotherapy or combination ther-
apy testing. Although these proposed therapeutic approaches
need to be further validated clinically, we believe that this
personalized approach may improve the currently disap-
pointing immunotherapy outcomes in prostate cancer.
While combination therapy may result in poor tolerability,
further studies regarding the combination regimen, specific-
ally the administration and dose sequence, may alleviate their
side effects. Thus, improving the success of immunotherapy
in prostate cancer may be possible by both ensuring that the
cancer-immunity cycle remains activated and by targeting
immunosuppressive molecules that prevent its self-
amplification using personalized strategies.
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