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Abstract

Background: Early radiation-induced temporal lobe injury (RTLI) diagnosis in nasopharyngeal carcinoma (NPC) is
clinically challenging, and prediction models of RTLI are lacking. Hence, we aimed to develop radiomic models for
early detection of RTLI.

Methods: We retrospectively included a total of 242 NPC patients who underwent regular follow-up magnetic
resonance imaging (MRI) examinations, including contrast-enhanced T1-weighted and T2-weighted imaging. For
each MRI sequence, four non-texture and 10,320 texture features were extracted from medial temporal lobe, gray
matter, and white matter, respectively. The relief and 0.632 + bootstrap algorithms were applied for initial and
subsequent feature selection, respectively. Random forest method was used to construct the prediction model.
Three models, 1, 2 and 3, were developed for predicting the results of the last three follow-up MRI scans at
different times before RTLI onset, respectively. The area under the curve (AUC) was used to evaluate the
performance of models.

Results: Of the 242 patients, 171 (70.7%) were men, and the mean age of all the patients was 48.5 ± 10.4 years. The
median follow-up and latency from radiotherapy until RTLI were 46 and 41 months, respectively. In the testing
cohort, models 1, 2, and 3, with 20 texture features derived from the medial temporal lobe, yielded mean AUCs of
0.830 (95% CI: 0.823–0.837), 0.773 (95% CI: 0.763–0.782), and 0.716 (95% CI: 0.699–0.733), respectively.

Conclusion: The three developed radiomic models can dynamically predict RTLI in advance, enabling early
detection and allowing clinicians to take preventive measures to stop or slow down the deterioration of RTLI.

Keywords: Radiation-induced temporal lobe injury, Nasopharyngeal carcinoma, Radiomics, Machine learning,
Magnetic resonance imaging
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Background
Radiotherapy remains the primary treatment modality
for nasopharyngeal carcinoma (NPC) because of tumor’s
anatomic location and radiosensitivity [1]. However, the
medial temporal lobes are inevitably included in the
target volume, which often results in brain injuries after
several years [2]. Radiation-induced temporal lobe injury
(RTLI) is thus a major neurological complication after
radiotherapy, especially in patients with stage T3 or T4
disease [3].
According to the time of symptom occurrence post-

radiotherapy, the course of RTLI can be divided into three
stages: acute stage, subacute stage, and late stage [4, 5]. The
acute injury occurs 2 weeks post-radiotherapy, which is
normally reversible and resolved spontaneously. The sub-
acute injury, occurs 1–6months post-radiotherapy, with
short-term symptoms and good prognosis. The late injury
occurs > 6months to several years post-radiotherapy, which
is progressive and irreversible. Acute and subacute RTLI is
silent, which can be latent for years until to the late stage.
Currently, the diagnosis of RTLI largely depends on mag-

netic resonance imaging (MRI) [6, 7]. However, its diagnos-
tic value is limited because white matter edema and
demyelinating performance generally reveal the disease in
the late stage. Recently, functional imaging techniques such
as dynamic contrast enhanced (DCE), diffusion-weighted
imaging (DWI), magnetic resonance spectroscopy (MRS),
diffusion tensor imaging (DTI) have been used to supply
function and metabolism information to conventional MRI
[8–11]. However, guaranteeing that the same voxel position
is selected from the same patient for analysis each time is
challenging, and the spatial resolution of tract-based spatial
statistics limits the analysis of major white matter tracts
and cannot reveal fine changes in the regional white matter
structure. Therefore, new methods providing information
for the RTLI at early stage are needed.
Radiomic approaches could potentially be applied as

an effective solution. In general, this refers to the
conversion of medical images into high-dimensional
mineable data through high-throughput extraction of
quantitative image features and subsequent data analysis,
which goes beyond automating what can be done with
the naked eye or imaging tools [12]. This is an emerging
method for complex systems, especially for solid tumors
[13]. A radiomic approach can help to process micro-
structural changes in the temporal lobe that are invisible
to human eyes, thus enabling the prediction of RTLI,
especially in the early stages. Predictive biomarkers of
RTLI may enable the stratification of patients for cus-
tomized treatment, and thus help to improve the quality
of life and possibly prolong survival. Therefore, we
aimed to develop and validate MRI radiomic biomarkers
to dynamically predict RTLI in NPC patients after radio-
therapy, and thereby enable clinicians to take preventive

strategies to stop or slow down the deterioration of
RTLI.

Methods
Longitudinal patient data
This retrospective, longitudinal cohort study was ap-
proved by the Ethics Committee of our institution,
which waived the requirement for informed patient con-
sent. Patients’ data were acquired from the institutional
Picture Archiving and Communication System (PACS)
between January 2006 and August 2016. A total of 242
NPC patients underwent radiotherapy were included.
The inclusion criteria were as follows [14]: 1) patients
with a pathologically proven NPC; 2) patients who were
treated with three dimensional conformal radiotherapy
(3D-CRT); 3) patients had regular follow-up by MRI ac-
cording to the guidelines (every 3months during the
first year, every 6 months during the second year, and
every 1 year during the following years); 4) patients with
RTLI, for whom the diagnosis of RTLI was based on
MRI; and 5) patients without RTLI, whose follow-up
time was > 112 months. Patients with central nervous or
other system diseases affecting the medial temporal lobe
were excluded. Finally, 200 patients with RTLI and 42
patients without RTLI were included for analysis.
Demographic and pretreatment clinical characteristics

were collected from PACS, including age, sex, overall
stage, WHO type, radiation dose, and chemotherapy reg-
imens. The accumulated radiation doses applied to the
primary tumor were 66–76 Gy, delivered in 33–38 frac-
tions. All the patients were treated with one fraction
daily, 2 Gy per fraction, 5 days per week. During the
study period, the institutional guidelines recommended
no additional chemotherapy for patients with stage I–
IIA disease, concurrent chemoradiotherapy for stage IIB
disease, and concurrent chemoradiotherapy +/− intro-
duced/ adjuvant chemotherapy for stages III–IVa.

Diagnostic criteria for RTLI
The diagnostic criteria for RTLI were as follows: (i)
white matter lesions (finger-like lesions of increased sig-
nal intensity in T2-weighted (T2-w) images); (ii)
contrast-enhanced lesions (lesions with or without ne-
crosis in contrast-enhanced T1-weighted (CET1-w) im-
ages with heterogeneous signal abnormalities in T2-w
images); and (iii) cysts (round or oval-shaped well-
defined lesions of very high signal intensity in T2-w im-
ages with thin or imperceptible walls). Differential diag-
nosis was performed to ensure that the changes were
not due to other factors, such as tumor recurrence. The
latency of RTLI was measured from the day of radio-
therapy completion to the date of MRI diagnosis. After
completing radiotherapy, all the patients underwent
regular follow-up during the latent period, as described
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in the inclusion criteria. Nasopharyngeal mirror, endo-
scopic, physical examinations, as well as MRI, were per-
formed during the follow-up period. All MRI images
were retrospectively reviewed by two independent radi-
ologists (with 10 and 20 years of experience in NPC, re-
spectively), and disagreements were resolved by
consensus.

MRI acquisition
All the patients underwent 1.5 T MRI examination
(GE Signa Excite HD twinSpeed). The MRI sequences
included T1-w spin-echo images (TR/TE: 500/8 ms,
FOV = 22 × 22 cm, NEX = 2.0, slice thickness = 4 mm,
interslice gap = 0.8 mm), axial T2-w spin-echo images
(TR/TE: 5000/8 ms, FOV = 22 × 22 cm, NEX = 2.0, slice
thickness = 4 mm, spacing = 1.0 mm, interslice gap =
0.8 mm), and axial CET1-w spin-echo images (TR/TE:
500/8 ms, FOV = 22 × 22 cm, NEX = 2.0, slice thick-
ness = 4 mm, interslice gap = 0.8 mm). Bolus injection
of contract agent (0.1 mmol/kg body weight; Magne-
vist, Schering, Berlin, Germany) was conducted before
CET1-w imaging.

Radiomic pipeline
The radiomic process mainly comprises: a) MRI image
acquisition; b) image pre-processing, including intensity
normalization, skull stripping, and gray/white matter
separation from medial temporal lobe; c) medial

temporal lobe segmentation; d) feature extraction; e) fea-
ture selection; and f) radiomic analysis (Fig. 1).

MRI data pre-processing
Considering the heterogeneity of the intra- and inter-
patient MRI images, pre-processing is essential. All
MRI images were processed by applying the typical
procedures, including bias correction, intensity
normalization, skull stripping, and segmentation of
different tissue types. Firstly, the N4 Integration Tool
Kit (ITK) MRI bias correction algorithm was used to
remove the bias field artifacts. Secondly, intensity
normalization was performed to reduce the variance
across the MR images acquired by different manufac-
turers from different patients, and during different
follow-up examinations. It was separately conducted
for each of the different follow-up time points. The
process consisted of two steps. In the first step, the
parameters of a histogram transformation were
learned from the input images and a few additional
input parameters were determined. In the second
step (transformation), the images were transformed
using the parameters learned in the first step. This
transformation is image dependent and needs to be
done for each given image. Thirdly, MR brain images
were segmented automatically into brain and non-
brain regions using the Brain Extraction Tool (BET)
in FSL package [15–17] by employing the BET

Fig. 1 The radiomic process mainly involves a) MR images acquired; b) MR image pre-processing, including (i) intensity normalization, (ii) skull
stripping, and (iii) gray /− white matter separation from the medial temporal lobe; c) medial temporal lobe segmentation; d) radiomic feature
extraction; e) radiomic feature selection; and f) radiomic analysis
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command to generate a brain mask and applying a
set of locally adaptive model forces. Then, non-brain
tissue was removed from the anatomical MR images.
The Automated Segmentation Tool developed by FMRIB
was then employed, which can segment 3D brain images
into different tissue types, and correct spatial intensity var-
iations (also known as bias fields or radio-frequency inho-
mogeneities). The medial temporal lobe, gray matter, and
white matter were segmented automatically. The under-
lying method was based on a hidden Markov random field
model and an associated expectation-maximization algo-
rithm. The whole process is fully automated, which is
robust and reliable, and can produce bias-field-corrected
input images and probabilistic and/or partial volume tis-
sue segmentation.

Medial temporal lobe segmentation
We used the ITK-SNAP (open source software; www.
itk-snap.org) software for 3D manual segmentation. The
region of interest (ROI) covered the middle and lower
portions of the medial temporal lobe, from the slice of
the cerebral peduncle to the last slice of the medial tem-
poral lobe in the axial CET1-w and T2-w images. The
ROI was delineated in the unilateral and left medial tem-
poral lobes if the RTLI involved the unilateral and bilateral
medial temporal lobes, respectively. All manual segmenta-
tions were performed by a radiologist with 10 years of
experience and validated by a senior radiologist with 20
years of experience (largely with NPC).

Radiomic feature extraction and selection
Feature extraction was performed using MATLAB 2014a
(MathWorks, Natick, MA, USA) and based on CET1-w
and T2-w images. Four non-texture and 43 types of tex-
ture features were provided. In the extraction of texture
features, we used three types of texture parameter includ-
ing five ratios of wavelet band-pass filtering, six scale
values of Isotropic voxel size and two quantization algo-
rithms, and 4 gray levels. Thus, for each MRI sequence,
four non-texture and 10,320 (43*5*6*2*4) texture features
can be extracted from medial temporal lobe, gray matter
and white matter, respectively. The radiomic feature ex-
traction methods were reported in the Appendix A1.
The extracted abundant information from the medial

temporal lobe, gray matter, white matter of CET1-w and
T2-w images was not suitable for direct modeling be-
cause not all features were effective for the detection of
RTLI. Therefore, the feature selection for the prediction
model was performed using the relief algorithm pro-
posed by Kononenko et al. [18], in which attributes are
estimated according to how well their values are distin-
guished among instances that are close to each other.
The features were selected by arranging the weights in
descending order. For each set of texture parameters, we

obtained two top features; hence, 480 (2*5*6*2*4) fea-
tures with high expression low redundancy were selected
from the four non-texture and 10,320 texture features
for CET1-w, T2-w, and the combined CET1-w and T2-
w images. The whole dataset was randomly divided into
the training cohort (n = 80%) and the testing cohort
(n = 20%). 80% patients were resampled 1000 times
using the 0.632 bootstrapping method to generate 1000
different training and validation subsets. Then, the 480
features was used to build the model by random forest
method with 1000 different training subset and valid-
ation subset results. The feature selection method is
demonstrated as follows:
The reverse time series of the latency imaging data for

our patient cohort can be defined as the matrix X = {xij :
i = 1, 2,…, M; j = t1, t2,…, tN}, where M is the number of
patients, j represents different time series, and N is the last
follow-up scan for the RTLI-positive group and the last
recorded scan for the RTLI-negative group. We used the
last three follow up MRI scans (N-3, N-2, and N-1) for
RTLI prediction. The bootstrap samples were X� ¼ fx�ij : i
¼ 1; 2;…;M; j ¼ t1; t2;…; tNg. The bootstrap sample of xi
randomly drawn input variables, which replaced the avail-
able sample X for each time series. The set of original data
vectors not appearing in X* is denoted as X*(0). The fea-
ture selection was then conducted by imbalance-adjusted
bootstrap resampling (1000 times). The prediction per-
formance was evaluated by the 0.632 + bootstrap AUC:
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Finally, we selected 20 top ranking features from the
480 features for further modeling.

Three prediction models
We established three radiomic models—models 1, 2, and
3—to predict RTLI at N-1, N-2, and N-3 follow up MRI
scans in different times before RTLI confirmation on
MRI scan, respectively (Fig. 2). The prediction models
were developed by random forest method and then vali-
dated in the remaining 20% patients. The description of
random forest is shown in the Appendix A2. To reduce
the imbalance between RTLI-positive and RTLI-negative
samples, the last three follow up MR scans of the RTLI-
negative (n = 42) patients were used in the three models.
Appendix A3 presents the number of MRI scans of
RTLI-positive and RTLI-negative patients in the models
1, 2, and 3. For each model, we tried different sets of
top-ranking features (n = 1, 5, 10, 15, and 20). We then

Zhang et al. BMC Cancer          (2020) 20:502 Page 4 of 9

http://www.itk-snap.org
http://www.itk-snap.org


compared the predictive performance of the models
based on different combinations of segmented tissues
(medial temporal lobe, gray matter, and white matter),
MRI sequences (CET1-w, T2-w and combined CET1-w
and T2-w), and number of top ranking features (1/5/10/
15/20).

Statistical analysis
SPSS 23.0 (IBM, Armonk, NY), and MATLAB 2014a
(Mathwork-Natick, MA) software were used for the stat-
istical analyses. Continuous variables were expressed as
mean plus or minus standard deviation (SD), while cat-
egorial variables were expressed as counts and percent-
ages. The codes for this radiomic study was available at
https://github.com/mvallieres/radiomics. The predictive
performance of the models was assessed by measuring
the AUC. The average AUC of radiomic models was ob-
tained by bootstrapping for 1000 times. A P < 0.05 was
considered as statistically significant.

Results
This retrospective study included 242 patients (171 men
and 71 women; mean age 48.5 ± 10.4 years). The median
follow-up time and latency from 3D-CRT until RTLI
were 46months (interquartile range, 33–69 months) and
41months (interquartile range 30–52months), respect-
ively. The longest latency was 112 months. In total, 105
and 95 patients had unilateral and bilateral RTLI, re-
spectively. Of the RTLI cases, 12 (6%) and 188 (94%)
were at stage T1–2 and T3–4, respectively. The patient
characteristics are summarized in Table 1.

Radiomic feature extraction and selection
For separate CET1-w and T2-w images, four non-
texture and 10,320 texture features were extracted from
medial temporal lobe, gray matter, and white matter, re-
spectively. A total of 480 features were retained after ini-
tially selected by relief method for CET1-w, T2-w, and
the combined CET1-w and T2-w images, respectively.
Twenty top features were selected by 0.632 + bootstrap
AUC from the 480 features. The results showed all 20
top features were texture features.

Fig. 2 All NPC patients underwent pre-treatment MR scans and then received radiotherapy. After radiotherapy, they underwent regular MRI
follow-up to monitoring the treatment response. We developed three radiomic models, models 1, 2, and 3, to predict RTLI at the last 1, 2, and 3
MRI scans (N-1, N-2, and N-3) before MRI confirmation (defined as N) respectively

Table 1 Basic characteristics of 242 patients

Characteristics

Sex

Male 171 (70.7%)

Female 71 (29.3%)

Age (years) 48.5 ± 10.4

Overall stage

I 7 (2.9%)

II 7 (2.9%)

III 92 (38.0%)

IV 136 (56.2%)

WHO type

I 0 (0%)

II 23 (9.5%)

III 219 (90.5%)

Latency (median, months) 41

Radiation dose (Gy) 32 ± 5.39

Chemotherapy

Yes 233 (96.3%)

No 9 (3.7%)
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Predictive performance of machine-learning-based
radiomic models
Models 1, 2, 3 with non-texture features achieved AUCs
of 0.680 (95% confidence interval [CI] 0.672–0.688),
0.550 (95% CI: 0.544–0.556), and 0.550 (95% CI: 0.546–
0.554), respectively.
The 20 top texture features for each model were com-

pared by their AUCs (Appendix A4). The features derived
from T2-w images achieved higher performance than
those extracted from CET1-w images.
In the training cohort, models 1, 2, and 3, with all 20 top

features derived from combined CET1-w (n = 2) and T2-w
(n = 18) images, CET1-w images only, and combined
CET1-w (n = 9) and T2-w (n = 11) images of medial tem-
poral lobe, yielded AUCs of 0.851 (95% CI: 0.841–0.861),
0.738 (95% CI: 0.721–0.755), and 0.777 (95% CI: 0.754–
0.801), respectively (Appendix A5). In the testing cohort,
models 1, 2, and 3, yielded AUCs of 0.830 (95% CI: 0.823–
0.837), 0.773 (95% CI: 0.763–0.782), and 0.716 (95% CI:
0.699–0.733), respectively (Fig. 3).

Discussion
This is the first study on the prediction of brain injuries
due to radiation using MRI radiomic technology. On the
basis of the MRI data collected from 242 NPC patients with
or without RTLI, we developed three prediction models
combining the 20 MRI radiomic features most significantly
associated with early RTLI. The radiomic models with lon-
gitudinal MRI yielded AUCs of 0.872 (95% CI: 0.862–
0.881), 0.836 (95% CI: 0.823–0.849), and 0.780 (95% CI:
0.759–0.800) for RTLI prediction in advance.
Conventional MR imaging can only be used to evalu-

ate morphologic changes of late radiation injury to the
temporal lobes. However, structural and functional MR
imaging biomarker that is sensitive to early irradiation
brain injury has been previously detected [19]. Leng X
et al. analyzed the microstructural dynamic alterations in
all brain lobes after radiotherapy in NPC patients at
different times, by using DTI for white matter and
voxel-based morphometry for gray matter volume [20].
Fractional anisotropy values of whiter matter and gray

Fig. 3 Comparison of AUCs among three prediction models using different combinations of radiomic features (n = 1, 5, 10, 15 and 20) in the
testing cohort. a-c model 1 using features derived from medial temporal lobe, gray matter, and white matter respectively. d-f model 2 using
features derived from medial temporal lobe, gray matter, and white matter respectively. g-i model 3 using features derived from medial temporal
lobe, gray matter, and white matter respectively
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matter volume decreased markedly at acute and sub-
acute stages after radiotherapy [21–23]. Lin J et al. ob-
served increased cortical thickness in NPC patients in
the early period after radiotherapy [24]. Diffusion kur-
tosis imaging (DKI) can detect the early presence of rela-
tively subtle radiation-induced changes before temporal
lobe necrosis [25, 26]. Altered brain functional connec-
tions were significantly correlated to the Montreal
Cognitive Assessment scores in NPC patients, which
may serve as a potential biomarker of the brain func-
tional impairments [27, 28]. Thus, structural and func-
tional MRI were more sensitive than conventional MRI
in determining radiation induced brain damage.
A radiomic approach enables the identification of im-

aging phenotypes and can reflect pathophysiological
changes. The three radiomic models using T2-w images
demonstrated better predictive performance than those
using CET1-w images. This may be because T2-w images
can assist the better detection of white matter lesions, and
a homogeneous increase in T2-w signal intensity of a
white matter lesion is believed to represent demyelination,
gliosis, and edema [6]. Preclinical studies have suggested
that white matter lesions are the earliest form of radiation
injury [29, 30]. White matter is more sensitive to radio-
therapy than gray matter because it has a richer vascular
supply. Although white matter lesions are universal and
the first MRI manifestation, the mechanisms of radiation
damage are complex, and no universally accepted argu-
ment has been established. Cerebrovascular injury and re-
modeling is an underlying hypothesis for the development
of RTLI. Recently, a genome-wide association study impli-
cated the genetic susceptibility gene CEP128 in RTLI
development [31]. Generally, the particular mechanism of
RTLI includes not only demyelination, softening, and ne-
crosis of white matter, but also nerve and glial cell damage
caused by direct radiation, which are related to gray mat-
ter [32]. In some cases, gray matter damage could be the
only abnormal change in the MR images of RTLI patients.
Therefore, radiomic features extracted from medial tem-
poral lobe have higher predictive performance than those
from white or gray matter alone. CET1-w images reflect
heterogeneity and architecture which are related to radi-
ation necrosis in a histology RTLI analysis. The close rela-
tionship between contrast enhancement and radiation
necrosis is well recognized, and focal disruption of the
blood–brain barrier has been reported to correspond with
necrosis [33]. Radiation can lead to hyaline degeneration
in the blood vessel wall, intimal reactive hyperplasia, and
increased vascular permeability [34], which can be better
indicated by CET1-w images. Our results suggested that
the different MRI measures contain complementary infor-
mation. A combination of these measures may therefore
improve the predictive performance of RTLI.

Our RTLI prediction models would improve patient
management as well as clinicians’ decision-making in
clinical practice. A complete head and neck examination
should be performed every 12months for NPC patients
diagnosed more than 5 years previously [35], but for those
patients at high risk for RTLI, this time interval is too long
for detection: 6months or less is recommended. Addition-
ally, the follow-up examinations of these patients should
include brain MRI scans instead of only nasopharyngeal
MRI scans to avoid misdetection of RTLI. For patients
with early RTLI, some mitigators and therapeutics may be
effective in preventing or ameliorating RTLI [36–38]. Note
that neuroprotective treatments have to be given before,
during, and continuously after irradiation.
This study also has some limitations. Firstly, the num-

ber of RTLI-negative patients was small because they
were required to have been followed for at least 112
months, and it was difficult to include such patients.
Secondly, NPC patients received 3D-CRT instead of
intensity modulated radiotherapy (IMRT) because our
institution didn’t use IMRT during the follow-up period.
Finally, this is a single institution study and may not be
transferable to other institutions. Therefore, more pro-
spective studies are warranted to validate the perform-
ance of our prediction models.

Conclusions
We developed three non-invasive models by combining
radiomic features extracted from MR images of the medial
temporal lobe to predict RTLI dynamically in advance.
These prediction tools provide the basis for decisions
regarding the early detection and preventive therapy of
RTLI. Furthermore, the present study provides valuable
insights into the application of radiomics in tumor radio-
therapy related complications for the first time, thereby
enhancing the capacity of radiomics. However, multi-
center retrospective validation studies and prospective
randomized clinical trials should be performed to obtain
high-level evidences for future clinical applications and
investigate the generalization of the prediction models to
other cancers. Moreover, we call for standardization of
future radiomic studies to make sure that they are general-
ized and can be transferred to other institutions.
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20) in the training cohort. (a-c) model 1 using features derived from the
medial temporal lobe, temporal gray matter, and temporal white matter
respectively. (d-f) model 2 using features derived from the medial tem-
poral lobe, temporal gray matter, and temporal white matter respectively.
(g-i) model 3 using features derived from the medial temporal lobe, tem-
poral gray matter, and temporal white matter respectively.
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