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Abstract

Background: CanAssist-Breast is an immunohistochemistry based test that predicts risk of distant recurrence in
early-stage hormone receptor positive breast cancer patients within first five years of diagnosis.
Immunohistochemistry gradings for 5 biomarkers (CD44, ABCC4, ABCC11, N-Cadherin and pan-Cadherins) and 3
clinical parameters (tumor size, tumor grade and node status) of 298 patient cohort were used to develop a
machine learning based statistical algorithm. The algorithm generates a risk score based on which patients are
stratified into two groups, low- or high-risk for recurrence. The aim of the current study is to demonstrate the
analytical performance with respect to repeatability and reproducibility of CanAssist-Breast.

Methods: All potential sources of variation in CanAssist-Breast testing involving operator, run and observer that
could affect the immunohistochemistry performance were tested using appropriate statistical analysis methods for
each of the CanAssist-Breast biomarkers using a total 309 samples. The cumulative effect of these variations in the
immunohistochemistry gradings on the generation of CanAssist-Breast risk score and risk category were also
evaluated. Intra-class Correlation Coefficient, Bland Altman plots and pair-wise agreement were performed to
establish concordance on IHC gradings, risk score and risk categorization respectively.

Results: CanAssist-Breast test exhibited high levels of concordance on immunohistochemistry gradings for all
biomarkers with Intra-class Correlation Coefficient of ≥0.75 across all reproducibility and repeatability experiments.
Bland-Altman plots demonstrated that agreement on risk scores between the comparators was within acceptable
limits. We also observed > 90% agreement on risk categorization (low- or high-risk) across all variables tested.

Conclusions: The extensive analytical validation data for the CanAssist-Breast test, evaluating
immunohistochemistry performance, risk score generation and risk categorization showed excellent agreement
across variables, demonstrating that the test is robust.
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Fig. 1 CanAssist-Breast (CAB) test work flow: The flow chart depicts
various steps involved in the whole process of testing a tumor
sample for CanAssist-Beast. The FFPE tumor block undergoes a
quality check by H&E staining. IHC is performed for all 5 CAB
biomarkers. Trained observer (pathologist) grades the slides. The
statistical algorithm generates risk-score using gradings of
biomarkers and clinical parameters. Based on risk score, risk category
is assigned and finally report is generated
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Background
Only 15% of patients with early-stage breast cancer
benefit from adjuvant chemotherapy [1–4]. Identification
of these patients who are at high risk for distant recur-
rence and hence would benefit from adjuvant chemo-
therapy is intricate and depends upon the tumor
biology, clinical and pathological parameters.
Most tests that are currently available to predict risk

of distant recurrence for breast cancer utilize quantita-
tive gene expression-based platforms [5–8]. These tests
are expensive and require specialized equipment in the
laboratory. We have developed and validated
CanAssist-Breast (CAB) test that uses a cost-effective,
gold standard methodology of immunohistochemistry
(IHC) along with key clinicopathological factors to de-
termine risk of distant recurrence in early stage HR+
breast cancer [9].
CAB uses IHC based evaluation of expression levels

of 5 key biomarkers (CD44, N-cadherin, pan-cadherin,
ABCC4 and ABCC11) and three clinicopathological
prognostic parameters tumor size, tumor grade and
node status (as obtained from the medical records
from hospitals where these patients were treated) to
arrive at a “CAB-Risk Score”. “CAB Risk Score” clas-
sifies patients into two categories, either low- or
high-risk for distant recurrence. The detailed rationale
for choosing these biomarkers is explained in the
prior publication describing the development of CAB
test [9]. Briefly, these five biomarkers play a pivotal
role in cancer progression, drug-resistance leading to
cancer recurrence. CD44 is a stem cell marker, cad-
herins contribute to epithelial-mesenchymal transition
(EMT), while ABCC4 and ABCC11 are ATP binding
cassette transporter proteins involved in drug efflux
leading to drug resistance. “CAB Risk Score” classifies
patients into two categories, either low- or high-risk
for distant recurrence.
The steps involved in the CAB test are described in

Fig. 1. It includes an initial sample quality check of the
tumor sample by Haemotoxylin and Eosin (H&E) stain-
ing, followed by IHC staining for CAB biomarkers. A
machine learning based statistical algorithm uses the
IHC gradings of CAB biomarkers along with the pa-
tient’s clinical parameters to generate a risk score ran-
ging between 0 and 100 with a cut-off at 15.5. Patients
with a risk score below the cut-off are considered to
`low-riskʼ of recurrence and patients with risk score
above the cut-off are considered to have `high-riskʼ of
recurrence.
The Evaluation of Genomic Applications in Practice and

Prevention Working Group (EGAPP) has postulated rec-
ommendations for validation of gene expression-based
prognostic and predictive tests in breast cancer that in-
cludes both clinical and analytical components [10].
Several factors influence the IHC testing process that may
have a bearing on the ultimate result and its interpretation
[11]. The College of American Pathologists (CAP) and
Clinical Laboratory Standards Institute (CLSI) have laid
down guidelines for analytical validation of IHC based tests
[12, 13]. Analytical validation is essential to demonstrate
the repeatability and reproducibility of a test across vari-
ables that affect its’ performance. Repeatability demon-
strates precision among repeated measurements taken
under the same conditions, such as in the same run or per-
formed by the same operator. Reproducibility demonstrates
precision for measurements taken under different condi-
tions like multiple -operators, laboratories and observers.
As per CLSI guidelines, precision for a centralized labora-
tory developed test like CanAssist-Breast should encompass
variations due to runs, operators and pathologists/ob-
servers. This study has been carried out based on all these
recommendations to assess the repeatability and reproduci-
bility of the CAB test using a total of 309 samples as shown
in Fig. 2.



Fig. 2 Overview of Precision study for analytical validation of CAB
test: All potential sources of variation in the CAB test have been
shown along with the methodology used to analyze. Sample size for
each of the variable tested is given in brackets
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Since the CAB risk score generation depends on the
cumulative gradings of five different biomarkers, it is im-
portant that we evaluate the effect of variability in the
gradings of individual biomarkers on risk scores and risk
category assignments. To address this, precision analysis
was further extended to the CAB risk score generation
and risk categorization.
Thus, analytical validation study described here aims

to establish repeatability and reproducibility of the CAB
test and is performed in conjunction with CAP recom-
mendations and CLSI guidelines:

1. To analyze the effect of factors influencing IHC
performance and gradings

2. To assess the effect of the factors on CAB risk
score generation and risk categorization

Methods
Tumor sample selection
Tumor samples were obtained from patients diagnosed
with invasive breast carcinoma. The sample selection
criteria for the current analytical performance study
were similar to that used for the development of
CanAssist-Breast [9]. Furthermore, only those blocks
that had more than 30% tumor content as per H & E
staining were selected for this study to ensure the avail-
ability of sufficient tumor tissue for testing multiple
markers and for performing repeatability and reproduci-
bility experiments. The patients included in the study
were HR+ and HER2-. These patients had tumors which
were either N0 (node negative) or N1 (up to 3 positive
lymph nodes) and with tumor size of < 2 cm (T1) or 2-5
cm (T2). We relied on the hospital for information on
tumor size, node status and grade. Out of a total of
309 breast cancer samples used for the study, more
than 90% of samples were of disease Stage 1 and 2
and were moderately (Nottingham grade 2) or poorly dif-
ferentiated (Nottingham grade 3). We followed a nested
approach in which the same tumor samples were used
across various experiments.

Assessment and processing of FFPE blocks
The FFPE blocks were physically examined for proper
labelling. Integrity of block was assessed by a senior
technician for any kind of processing artifacts. The
blocks were sectioned into 3-μm sections for H & E
staining and IHC experiments. The H & E stained slides
were assessed for tumor content and tissue artifacts like
necrosis and hemorrhages. The blocks with tissues of
necrosis/hemorrhage greater than 10% were rejected.
IHCs were performed on tissue slides within a week of
sectioning.

Immunohistochemical study
According to CAP and CLSI guidelines, optimal anti-
body concentration and antigen retrieval conditions
were established as integral components of standardizing
IHC based assays. Immunohistochemistry was per-
formed on five serial sections of the FFPE tumor blocks
for the 5 CAB biomarkers. Positive and negative controls
were included in every IHC experiment. The detailed
IHC staining protocol for the 5 CAB biomarkers has
been performed as described previously [9]. The details
of antibody specifications and IHC performance is men-
tioned in ‘Additional file 1’ while staining location and
controls used are mentioned below.

Positive and negative controls
Positive control used is a previously tested breast cancer
tissue sample that expressed high levels (> 60% staining)
of the biomarkers. Either an isotype matched
non-specific IgG, instead of the specific antibody or
negative reagent control were used as negative controls.
All IHC slides were graded by qualified Pathologists who
have been trained to grade these slides in our central la-
boratory where all tests are performed.

IHC grading
We did not assign a specific cut-off value for asses-
sing positivity of IHC staining for any of the five bio-
markers. Each biomarker was graded as absolute
value of percentage of the tumor cells stained at a
specific location (membrane or cytoplasmic) on a
continuous scale of 0–100 and based on the intensity
of the staining on a scale of 0–3 [9]. CD44, ABCC4,
ABCC11 were graded on the cell membrane and
N-cadherin and pan-cadherin were graded on the
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cytoplasm. These absolute values of percentage of
staining and intensity of staining along with clinical pa-
rameters (tumor size, grade and node status) were used by
the statistical algorithm to generate a risk score.

Precision experiments
To establish precision of CAB test (repeatability and re-
producibility), variations due to operator, run and obser-
ver (pathologist) (Fig. 2) were evaluated using an
appropriately powered sample number. This was estab-
lished by statistical calculations to estimate probability
of success (PoS) of agreement for each parameter. The
acceptability criteria for the lower limit of the 95% CI
was set at 80% and the sample size number correspond-
ing to PoS of 70% was chosen.
The experimental design for investigating the various

sources of variabilities is shown in Fig. 3. Three operators
performed IHC experiments for all CAB biomarkers and
grading was performed by a single observer to assess
inter-operator variation (Fig. 3a). Intra-operator/intra-run
variability was evaluated by a single operator performing
IHC on the same sample in triplicates on the same day
and all the three replicates being graded by a single obser-
ver (Fig. 3b). Inter-observer variation was assessed with a
single operator performing the IHC experiments for all
CAB biomarkers and graded independently by three quali-
fied observers (Fig. 3c). Intra-observer variation was
assessed with a single operator performing the IHC ex-
periment followed by gradings by the same observer three
times, with a two week washout period between repeat
gradings (Fig. 3d). Inter-run variation was evaluated by the
Fig. 3 Design of Precision experiments Potential sources of variations are t
from 41 to 257 for various experiments performed
same operator performing repeat IHC experiments on
three non-consecutive days and grading for all these re-
peats being done by a single observer (Fig. 3e).

Statistical analyses
Precision analysis on IHC gradings
This was assessed using Intra-class Correlation
Co-efficient (ICC) using the MedCalc software. Correl-
ation co-efficients were measured for IHC gradings for
each of the 5 biomarkers. Comparisons were made on
the grading by each observer with the average grading of
3 observers (inter-observer); each grading by an observer
with average of triplicate gradings by the same observer
(intra-observer); grading by a single observer for each
IHC experiment with the average of gradings from tripli-
cate IHC experiments done by the same operator
(intra-operator/intra-run); grading by a single observer
for each IHC experiment performed by an operator
compared to the average gradings of the independent
IHC experiments performed by 3 operators (inter-opera-
tor); each grading by the same observer from IHC exper-
iments done by the an operator with the average
gradings of IHC experiments done on three consecutive
days by the same operator (inter-run). Thus, three ICC
values were obtained for every category. The final ICC
values were expressed as an average of these three ICC
values. ICC values below 0.4 indicate poor agreement;
between 0.4 and 0.59 indicate fair to moderate agree-
ment; between 0.6 and 0.74 indicated good agreement
and greater than 0.75 indicated almost excellent agree-
ment [14].
ested as detailed above (a-e) with sample size of 309, samples ranged



Fig. 4 Spread of Biomarker staining Dot plot shows the spread of
the staining percentage for the five biomarkers
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Precision on risk-scores
Bland Altman plots were used to assess the agreement
on risk scores across various variables tested. For all
comparisons done in this analytical study, individual
reading/score is correlated to average readings/scores.
Risk scores computed from the gradings of the 5 CAB
biomarkers done by one observer was compared to aver-
age risk score obtained by gradings from three observers
(inter-observer) or three gradings by same observer
(intra-observer) or gradings obtained by a single obser-
ver on IHC performed by three different operators
(inter-operator) or gradings obtained by triplicate IHC
experiments done by the same operator and graded by a
single observer (intra-operator/intra-run) or gradings
done by the same observer on IHC performed by a sin-
gle operator on three non-consecutive days (inter-run).
In these plots, presence of samples between the two dot-
ted lines (mean + 2SD) was considered to have good
agreement between two measurements that were ana-
lyzed [15].
Precision on risk-categorization
Pairwise agreement was calculated using the majority call/
consensus method as described at http://onlinelibrary.wiley.
com/doi/10.1111/ajt.12193/full. Agreement was calculated
as per the CLSI guidelines. In this method, the consensus
prediction between 2 out of 3 observers was considered
paramount (for eg: Obs1- Low-risk, Obs2- High-risk,
Obs3- Low-risk, Majority call- Low-risk), and each individ-
ual observers’ prediction was compared to the consensus
prediction and pairwise agreement was assessed. Statistical
analysis for inter-observer variation was performed by cal-
culating Overall Percent Agreement (OPA, agreement be-
tween both low- and high-risk predictions) Negative
Percent Agreement (NPA, agreement between low-risk pre-
dictions) and Positive Percent Agreement (PPA, agreement
between high-risk predictions) as described in the CLSI
guidelines [13]. 95% confidence intervals were calculated
using Boot-Strap method.
Results
Expression levels of CAB biomarkers
All the five biomarkers showed a range of expression
across tumor samples in our patient cohort (Fig. 4). The
typical IHC staining pattern for the individual biomarkers
is shown in Additional file 2: Figure S1. The dot plot in
Fig. 4 shows that the expression levels of membrane
stained biomarkers CD44, ABCC4 and ABCC11 span a
wider range from 0 to 100%, while the cytoplasmic bio-
markers, N-Cadherin and pan-Cadherins primarily have
higher expression levels (Fig. 4). Very few patient samples
had N-Cadherin and pan-Cadherin expression levels of
less than 20% (Fig. 4).
Analysis of parameters contributing to CanAssist-Breast
variability
Inter-observer (pathologist) variability
The quantification of IHC results is dependent on the
subjective evaluation of percentage and intensity of stain-
ing even by trained observers [16, 17]. Variation between
gradings for the same biomarker by any two observers (in-
ter-observer) is considered the most important variable in
IHC [18, 19]. For all biomarkers, ICC among three ob-
servers on a sample size of 257 cases was ≥0.75 (Table 1,
row 1), and demonstrated a strong agreement between ob-
servers with respect to IHC gradings of each biomarker.

Intra-observer (pathologist) variability
Intra-observer variation was assessed on a sample size of
162 for each of the 5 biomarkers. Triplicate gradings for
the same slide by a single observer with a washout
period of two weeks between 2 gradings showed strong
agreement across all the 5 biomarkers, with ICC of ≥0.8
(Table 1, row 2).

Inter-operator variability
Inter-operator variation is an important confounding
factor in the performance of an IHC based test. To study
inter-operator variation, 3 operators performed the CAB
test on the same FFPE blocks of different patients (n = 42),
and the resulting slides were graded by a single observer.
Strong agreement was indicated across all the 5
biomarkers for three operators with an ICC of ≥0.85
(Table 1, row 3).

Inter/Intra-run variability
CAP guidelines postulate that demonstration of
inter-run in at least 10 samples is essential to determine
repeatability of IHC staining [13]. We performed

http://onlinelibrary.wiley.com/doi/10.1111/ajt.12193/full
http://onlinelibrary.wiley.com/doi/10.1111/ajt.12193/full


Table 1 Correlation between IHC gradings of 5 biomarkers across variables: Intra-class correlation coefficient (ICC) for IHC gradings
of all 5 CAB biomarkers tested for inter-observer, intra-observer, inter-operator, inter-run and intra-run variability

Variables Percentage of cells stained Intensity of staining

CD44 ABCC4 ABCC11 N-Cadherin Pan-Cadherin Pan-Cadherin

Inter-observer 0.98 0.84 0.83 0.79 0.75 0.84

Intra-observer 0.96 0.91 0.91 0.92 0.92 0.81

Inter-operator 0.98 0.97 0.97 0.86 0.90 0.94

Inter-run 0.97 0.93 0.97 0.97 0.95 0.93

Intra-run/Intra-operator 0.99 0.99 0.99 0.99 0.98 0.97

Place holder for Table 1 Can be placed in Inter-observer (pathologist) variability section in “Results” at line no. 221
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inter-run variation analysis using 43 samples as de-
scribed in methods. The ICC for each CAB marker
across runs was ≥0.93 (Table 1, row 4) signifying a
strong agreement.
Intra-run/intra-operator variation was assessed as a

measure of repeatability by running triplicates within a
single run (n = 41). There was a strong agreement for
each of the CAB biomarkers within runs with an ICC of
≥0.97 (Table 1, row 5).

Precision on generation of risk-scores
The tumor samples (n = 309) used in this study had risk
scores distributed across the whole range of CAB test
from 0 to 100 (Fig. 5). Around 20–30% of samples had
risk scores around clinical decision point (15.5 ± 2.5 or
CAB score:13–18) for all the variables tested.
Pair-wise agreement on risk scores was assessed using

Bland-Altman plots to check for the effect of IHC grad-
ing on prediction of risk-scores [15]. We established the
agreement between each of the variable’s risk score to
that of the average risk score as described in methods.
The schematic representation of the testing method for
this analysis is included in Additional file 3: Figure S2.
Bland-Altman plot demonstrated that variability in the
Fig. 5 Distribution of CAB risk scores across all the tumor samples
used for precision experiments: Dot plot shows the distribution of
risk scores for all the tumor samples (n = 309) used for the
precision experiments.
risk scores for inter-observer (Fig. 6, a-c), intra-observer
(Fig. 6, d-f), inter-operator (Fig. 6, g-i), inter-run (Fig. 6, j-l)
and intra-run/intra-operator (Fig. 6, m-o), were within ac-
ceptable limits.
As the clinical decision point determines the risk cat-

egory and could determine treatment decisions for the
patient, it is important that the test exhibits tantamount
reproducibility around the threshold point. We analyzed
inter- (n = 50) and intra- (n = 33) observer variability
using Bland Altman plots for samples with risk scores
around the clinical decision point (CAB scores of 15.5 ±
2.5). The data showed strong agreement between inter-
(Fig. 7, a-c) as well as intra- (Fig. 7, d-f ) observer vari-
ability around the clinical decision point.

Precision on risk category prediction
After determining high concordance in IHC gradings
and risk scores between various variables tested, we
assessed agreement across observers, operators and runs
on risk categorization by majority call or consensus
method as described in methods. Results of all the vari-
abilities analyzed showed ≥90% agreement for low-risk
(NPA), high-risk (PPA) and over-all (OPA) predictions
with tight 95% confidence intervals (Table 2).

Discussion
CanAssist-Breast is a laboratory developed test that uses
a well-accepted technology, IHC along with a complex
algorithm to predict risk of cancer recurrence. Demon-
stration of the analytical performance is a critical re-
quirement for all the diagnostic tests to ensure that
accurate results are reported for every patient. Clinical
utility of a test not only requires that the test is clinically
validated but also is analytically validated for its preci-
sion, repeatability and reproducibility. EGAPP has re-
ported that many of the tests lack either analytical
validation or corresponding available data is insufficient
[10]. Experiments were designed to prove that the CAB
test is reproducible and repeatable across various vari-
ables, both technical and subjective. The data presented
in this study demonstrates robustness of the test factor-
ing in all potential sources of variability.



Fig. 6 Bland Altman Plots showing correlation for risk scores between variables: Bland Altman plot for risk score between average scores of three
observers versus observer 1 (a),observer 2 (b), observer 3 (c); average scores of three gradings of single observer versus grading 1 (d), grading 2
(e), grading 3 (f); average scores of three gradings of 3 operators versus operator 1 (g), operator 2 (h), operator 3 (i); average scores of three runs
performed by an operators versus run 1 (j), run 2 (k), run 3 (l); average scores of three readings performed by an operator in a run versus reading
1 (m), reading 2 (n), reading 3 (o)
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One of the challenges inherent in demonstrating the
analytical validity of any IHC based test is the lack of
comprehensive evaluation criteria and a gold standard of
reference. To overcome this, we adopted the evaluation
criteria set by CAP and CLSI recommendations on thor-
ough analysis of steps involved in validation of new IHC
based tests [12, 13]. CLSI has documented detailed pro-
cedures for designing repeatability and reproducibility
experiments and statistical methodologies for the analyt-
ical validation of a test [13].
As CAB test uses five biomarkers using the IHC tech-

nique, we evaluated the variations brought in by IHC
gradings for each of these five biomarkers using appropri-
ate statistical methodology. There was strong agreement
on gradings for all CAB biomarkers for the operator and
run variables with ICC of > 0.75 (Table 1) suggesting that
performance of IHC was not influenced by change in op-
erator or the day on which the IHC experiment was per-
formed. Strong agreement on risk scores obtained by the
cumulative grading of all biomarkers is demonstrated by
Bland Altman plots. The intra-run, inter-run and
inter-operator plots have data points within the acceptable
limits of agreement [15], indicating that robustness at the
level of gradings is translated to risk scores. Further



Fig. 7 Bland Altman Plots for risk scores between variables around CAB clinical decision point, 13–18: Bland Altman plots for risk scores between
average scores of three observers versus observer 1 (a), observer 2 (b), observer 3 (c); average scores of three gradings of single observer versus
grading 1 (d), grading 2 (e), grading 3 (f)
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pair-wise agreement analysis for risk categories for these
run and operator variables specifically inter-operator
(OPA, NPA and PPA > 93%), and inter-run (OPA, NPA
and PPA > 93%) and intra-run (OPA, NPA and PPA >
98%) parameters demonstrated that these variables do not
affect CAB test based risk category prediction (Table 2).
Subjective interpretation/grading of IHC stained slides

leading to inter-observer variation is the major drawback
of IHC based tests [16, 17]. We have addressed this con-
cern by testing inter-observer variation using a large co-
hort of a sample size of 257. ICC for the IHC gradings
for all the five CAB biomarkers (ranged between 0.75 to
0.98, Table 1) and Bland-Altman plots for CAB risk
score generation (Fig. 6) demonstrated strong agreement
between observers indicating that the CAB test does not
suffer from inter-observer variability with respect to
IHC interpretation and risk score generation (Table 2).
Pairwise agreement analysis for low-, high- and overall
risk predictions had a high concordance of > 90% in
observer variation experiments (Table 2). The perform-
ance of the CAB test is evaluated at clinical decision
point also (Fig. 7). High variation at the clinical decision
Table 2 Correlation between risk categories across variables: Negati
and Overall Percent Agreement (OPA) for all the variables tested and

Parameters OPA (95% CI)

Inter-observer 93.3 (91.2, 94.9)

Intra-observer 91.3 (88.4, 93.7)

Inter-operator 95.2 (89.9, 98.2)

Inter-run 95.3 (90.2, 98.3)

Intra-run/intra-operator 99.2 (95.6, 100.0)

OPA: overall percent agreement, NPA: Negative percent agreement, PPA: Positive p
Place holder for Table 2 can be placed in ‘Precision on risk-category prediction’ in “
point directly affects patients’ care by influencing the
treatment decisions. Bland Altman plots for inter-
observer variation showed high precision thus demon-
strating the optimal performance of the test at the
clinical decision point.
Although CAB risk score generation uses three clinical

parameters along with IHC gradings of five biomarkers,
in this study we have not assessed the variations brought
in by clinical parameters namely node status, Notting-
ham grade and tumor size. All the three clinical parame-
ters are taken from the patient’s histopathology report
routinely used by the clinicians for planning treatment.
Currently available risk-stratifying multi-gene tests use

genomic methods and can be expensive especially in
low-resource countries where expenses for the tests and
treatment are out of pocket. Use of IHC (which is a gold
standard technique) helped us to bring down the cost of
CAB test to a fraction of the cost of currently available
multi-gene tests, thus making it more affordable even in
low-resource settings. Furthermore, the CAB test has
been clinically validated using a large cohort of 900
retrospective patient samples in a global, multi-center
ve Percent Agreement (NPA), Positive Percent Agreement (PPA)
the 95% CI scores are provided

NPA (95% CI) PPA (95% CI)

93.1 (90.3, 95.4) 93.4 (90.2, 95.8)

91.7 (87.9, 94.6) 90.8 (85.8, 94.4)

93.3 (83.8, 98.2) 97.0 (89.5, 99.6)

93.8 (82.8, 98.7) 96.3 (89.6, 99.2)

98.3 (91.1, 100.0) 100.0 (94.3, 100.0)

ercent agreement, CI: confidence Interval
Results” section at line no. 266
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study [20] which establishes the clinical utility of CAB
comparable to other multi-gene tests. Clinical validation
of CAB test in a multi-center randomized trial, similar
to the other multigene tests available in the market
[21–23], would be the next logical approach and such
studies are currently underway.

Conclusion
We have thus conclusively shown that CanAssist-Breast,
multi-marker IHC-based test is robust across several re-
peatability and reproducibility variables tested making it
a reliable, cost-effective and accurate prognostic test to
stratify patients with early stage HR+ breast cancer into
low- or high-risk for distant recurrence.

Additional files

Additional file 1: Additional information on methods. (DOCX 14 kb)

Additional file 2: Figure S1. Representative IHC images of the
CanAssist-Breast biomarkers: IHC images of CanAssist-Breast biomarkers
captured at 40X magnification a. CD44, b. ABCC4, c. ABCC11, d. N-
cadherin, e. Pan-cadherin respectively. (TIF 10398 kb)

Additional file 3: Figure S2. Analysis employed for assessing ‘Precision
on risk scores’. Schematic representation of the analysis employed in
assessing precision on risk scores for all variables tested (a-e). (TIF 347 kb)
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