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Abstract

Background: The incidence of Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy,
has risen rapidly worldwide. PTC usually has an excellent prognosis. However, the rising incidence of PTC, due at
least partially to widespread use of neck imaging studies with increased detection of small cancers, has created a
clinical issue of overdiagnosis, and consequential overtreatment. We investigated how molecular data can be used
to develop a prognostics signature for PTC.

Methods: The Cancer Genome Atlas (TCGA) recently reported on the genomic landscape of a large cohort of PTC
cases. In order to decrease unnecessary morbidity associated with over diagnosing PTC patient with good
prognosis, we used TCGA data to develop a gene expression signature to distinguish between patients with good
and poor prognosis. We selected a set of clinical phenotypes to define an ‘extreme poor’ prognosis group and an
‘extreme good’ prognosis group and developed a gene signature that characterized these.

Results: We discovered a gene expression signature that distinguished the extreme good from extreme poor
prognosis patients. Next, we applied this signature to the remaining intermediate risk patients, and show that
they can be classified in clinically meaningful risk groups, characterized by established prognostic disease
phenotypes. Analysis of the genes in the signature shows many known and novel genes involved in PTC
prognosis.

Conclusions: This work demonstrates that using a selection of clinical phenotypes and treatment variables, it
is possible to develop a statistically useful and biologically meaningful gene signature of PTC prognosis,
which may be developed as a biomarker to help prevent overdiagnosis.
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Background
Papillary thyroid carcinoma (PTC) is not only the most
common form of thyroid cancer; its incidence has been
increasing faster than any other cancer type in the US
[1–3]. The long-term prognosis of PTC is generally ex-
cellent. This rising incidence of PTC has been attributed,
at least in part, to increased detection due to the rise
and popularity of neck imaging studies [1, 2] The thy-
roid cancer prevalence rate in autopsy series around the

world ranges from 6 to 36 % [4]. Most PTC patients are
treated with surgery, radioactive iodine therapy, and thy-
roid hormone suppression; for most patients, this repre-
sents extreme overtreatment, as PTC has very low
mortality with less than 1 % of cases succumbing from
the disease [3]. A diagnosis and associated treatment of
PTC carries significant financial and psychological bur-
dens [5–10]. Treatment with radioactive iodine has been
shown to clinically benefit only the patients with higher
stages of disease, whereas its usefulness in lower stage
patients, who constitute the vast majority of patients,
has been debated. Given the serious potential side effects
associated with radioactive iodine, as well as the* Correspondence: olivier.gevaert@stanford.edu
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excellent prognosis of patients with small tumors and no
distant metastases at the time of presentation, the
American Thyroid Association has recommended to
consider radioiodine therapy only in patients with inter-
mediate or high risk features on pathology. However,
distinguishing these patients from the lowest risk pa-
tients can often be challenging. Biomarkers that distin-
guish good and poor prognosis patients would be very
beneficial in guiding aggressiveness of treatment [11].
Molecularly, PTCs have few somatic alterations. They

are mainly driven by mutations in the MAPK-pathway
including NRAS, HRAS, KRAS and BRAF, and muta-
tions in the PI3K-AKT signaling pathway [12]. Some of
these mutations have been associated with either ioniz-
ing radiation or chemical mutagenesis. Recently, The
Cancer Genome Atlas (TCGA) reported on the genomic
landscape of PTC in 496 cases [13]. TCGA confirmed
known drivers and also identified novel driver alter-
ations, significantly reducing the fraction of PTC with
unknown oncogenic events. The TCGA study identified
two meta-clusters based on a BRAF-RAS signature di-
chotomizing PTC in BRAF-like and RAS-like subtypes.
The existing prognostic factors such as age at the time

of diagnosis, the size of the tumor, extension into sur-
rounding tissues, lymph node involvement, or distant
metastasis help differentiate PTC patients into low and
high risk [14]. However, the challenge for PTC is that
these prognostic factors do not always allow the clinician
to predict which “middle-risk” patients will have good
vs. bad prognosis. Currently, there are no clear bio-
markers to assist with prognostication. More specifically,
there are no clear biomarkers that separate aggressive
PTC from lesions that stay indolent for years. This has
created an increasing challenge to study PTC prognosis
due to the challenge of collecting long tumor follow-up
data for biomarker discovery.
In this report, we take advantage of the large collection

of genomic data collected in the TCGA cohort in com-
bination with clinical data on treatment. We report that
a gene expression signature exists with the potential to
characterize low-risk disease. These results may lead to
biomarkers that can change the management of low-risk
disease leading to improvements in patient quality of life
and reduced financial burdens [15].

Methods
Defining prognosis groups
Limited follow-up data was collected for the TCGA cohort
and we used a collection of clinical phenotypes to define an
‘extreme poor’ prognosis group and an ‘extreme good’
prognosis group, based on features described in the Revised
American Thyroid Association Management Guidelines for
Patients with Thyroid Nodules and Differentiated Thyroid
Cancer [16]. The remaining patients (74 %) are classified as

‘intermediate’ prognosis and are the cases where there is
the highest clinical need to subdivide patients into finer cat-
egories of prognosis. For the extreme poor prognosis group,
we included patients that had either one of the following
seven characteristics: the patient died of thyroid cancer, the
presence of distant metastases based on AJCC staging, per-
sistent loco-regional or distant disease determined based on
a person’s condition within 3 months of initial treatment,
treatment with adjuvant drugs, treatment with IMRT and
patients with a new tumor event after initial treatment. The
extreme good prognosis group was defined as stage 1 pa-
tients without nodal involvement and absence of all of the
poor prognosis characteristics used to define the extreme
poor group. To compare our classification system with the
MACIS score, MACIS scores for each patient were re-
trieved from the Additional files 1 and 2 section of the
TCGA report [13].

Molecular data processing
Preprocessed TCGA gene expression data (generated by
RNA sequencing), DNA copy number data (generated
by microarray technology), mutation data (generated by
exome sequencing) and PARADIGM pathway activity
data, were downloaded using the Firehose pipeline (ver-
sion 2014071500 for gene expression and version
2014041600 for all other data sets) [5]. Preprocessing for
these data sets was done according to the Firehose
TCGA pipelines described elsewhere [5]. Additional pre-
processing of this data set was done as follows: For the
gene expression data, genes and patients with more than
10 % missing values were removed. All remaining miss-
ing values were estimated using KNN impute [17].
TCGA data were generated in batches, creating a batch
effect for most data sets. Batch correction was done
using Combat [18]. Significantly mutated genes were ex-
tracted from the mutation data using MutSig CV [19].

Identifying gene expression signatures
We used the gene expression data to develop a prognos-
tic classifier for thyroid cancer. We first selected the top
30 % most varying genes using the mean absolute devi-
ation statistic, and subsequently used the z-score trans-
formation for all genes so they have zero mean and unit
variance. We used Significance Analysis of Microarrays
(SAM) as previous described [20], to identify a gene ex-
pression signature that reflects prognosis based on genes
that are differentially expressed between extreme prog-
nostic groups. We selected the delta threshold such that
the FDR was <0.05, and used 100 permutations.

Comparison with adjacent normal tissue
The non-parametric Wilcoxon rank sum tests were used
to test for significance of differences in expression
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between tumor and normal tissue, of genes identified as
significantly associated with prognosis by SAM analysis.

Evaluating the robustness of gene expression signatures
We tested the robustness of the gene expression signa-
ture by removing all patients defined by one of the seven
poor prognosis characteristics from the previously de-
fined group of extreme poor prognosis patients one at a
time, and rebuilding the SAM signature using all
remaining extreme poor and extreme good prognosis
patients, and repeated this for each of the seven vari-
ables. We investigated the stability of the genes in the
signature by counting the overlap of the genes in each of
the seven analyses.

Functional gene set enrichment analysis
Functional gene set enrichment (GSE) analysis was car-
ried out using the GSE tools MSigDB [21] and Enrichr
[22], selecting all gene-set libraries for comparison with
the input prognostic gene-set. These included thousands
of gene-sets from multiple databases, annotated to di-
verse disease and biological states and functions, as well
as common regulatory mechanisms and motifs, identi-
fied by microarray experiments, data mining and cur-
ation of published data and knowledge. The prognostic
gene-list was also compared with relevant gene-sets
from additional sources, including a list of 861 known
tumor suppressor genes from the TSgene database [23],
a list of genes displaying bivalent epigenetic marks in
embryonic stem cells [24], and a list of genes that are
consistently deregulated in thyroid cancer, identified by
meta-analysis [25]. Significance of overlap with these
gene-sets was carried out using the hypergeometric test.

Developing a supervised predictor of prognosis
Next, we used Prediction Analysis of Microarrays (PAM)
to develop a parsimonious supervised prognostic gene
signature [26]. PAM analysis uses a nearest shrunken
centroids machine learning method that predicts the
class (good/poor prognosis) based on the squared
Euclidean distance of the gene expression profile for that
sample to the centroids of known extreme good and
poor prognosis patient groups. Shrinkage is used to se-
lect the optimum number of genes for class prediction.
This means that the model will select only a subset of
genes to develop the centroids.
We first used PAM in combination with 10-fold cross

validation to determine the ability of the gene expression
data to predict prognosis within extreme prognosis pa-
tients. For each fold of cross validation, the PAM model
was trained on 90 % of patients and assigned class prob-
ability for good prognosis to the each of the remaining
10 % of patients based on the distance of the patient to
its closest centroid. We used the Area under the ROC

curve (AUC) to evaluate the performance of the model
in accurately predicting the prognostic class of patients.

Application of the supervised predictor to intermediate
prognosis individuals
We applied this prognostic gene expression signature to
intermediate risk patients to classify them into either
good or poor prognosis groups, using gene expression
data for the top 20 % most varying genes (i.e., with the
highest mean absolute deviation). To classify a new sam-
ple, its distance is calculated to each of the centroids by
using the weights as an inner product, and the sample is
classified to its closest centroid. We only used classifica-
tion results when probabilities were >60 % or <40 %.
Low confidence assignments for the remaining border-
line individuals were excluded from further analyses.

Evaluating the robustness of the classifier
We tested the robustness of the PAM classifier to split the
patients into good or poor prognosis groups by removing
patients featuring one of the seven poor prognosis charac-
teristics from the previously defined group of extreme
poor prognosis patients, and rebuilding the PAM classifier
using all remaining extreme poor and extreme good prog-
nosis patients. We investigated the stability of the genes in
the classifier and investigated the classification assign-
ments of the left-out group. In addition, we classified the
intermediate prognosis thyroid cancer cases into a ‘inter-
mediate-poor’ prognosis and ‘intermediate-good’ progno-
sis groups, and reported the distribution of mutations,
clinical stage, nodal involvement, extra-thyroid extensions
and histological subtypes, between these groups.

Testing for pathological and confounding clinical factors
Significance of differences in distribution of categorical
factors such as gender and nodal involvement was tested
using Pearson’s chi-squared with Yates correction for
small numbers of samples within some categories. Stu-
dent’s T-test was used to test difference in age between
prognostic groups.

Results
Identification of a thyroid prognosis gene expression
signature
We focused on extreme phenotypes to develop a prog-
nostic expression signature for PTC. Using the prognos-
tic clinical characteristics defined in the methods, we
identified 79 extreme poor and 51 extreme good prog-
nosis cases out of 494 cases in the TCGA thyroid cancer
cohort, for which RNA gene expression data were avail-
able (Fig. 1). Prognosis groups did not differ significantly
in distributions of histological subtypes or demographic
factors for which data were available, including age, gen-
der or race (Additional file 1: Table S1). The poor
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prognosis group had a significantly higher MACIS score
(a clinically used prognostic score based on clinical fea-
tures, including presence of distant metastases, patient
age, completeness of resection, local invasion and tumor
Size) (p = 4.28e-07, Additional file 2: Figure S1). We first
used univariate analysis to identify if gene expression is
discriminatory of these extreme prognosis thyroid cancer
cases. Using SAM we identified ten genes upregulated in
extreme poor prognosis patients and 791 genes down-
regulated in extreme poor prognosis patients (Fig. 1,
Additional file 1: Table S2).

Differential expression between normal and tumor tissue
To test if the signature genes are also differentially
expressed compared to adjacent normal tissue, we inves-
tigated whether there was a significant difference in gene
expression between all tumor (n = 501) and adjacent
normal tissue (n = 58) samples within the PTC study. Of
791 genes downregulated in the extreme poor prognosis

group relative to the extreme good prognosis group (ac-
cording to SAM analysis), 674 (85 %) were significantly
differentially regulated between tumor and adjacent nor-
mal tissue. Of these, 611 (91 %) were downregulated in
tumor, whereas 63 (9 %) were upregulated in tumors. All
ten genes upregulated in the extreme poor prognosis
group according to SAM analysis were also significantly
upregulated in tumor versus normal tissue (Additional
file 1: Table S2).
For most genes within this signature there was a an incre-

mental pattern of expression from normal tissue, to ex-
treme good prognosis patient tumor, to extreme poor
prognosis patient tumor, such that there were significant
linear association of expression in this direction (Additional
file 1: Table S3, Fig. 2).

Robustness of gene signature
To narrow down the gene signature, we investigated the
robustness of this signature by removing patients defined
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Fig. 1 Association of gene expression with prognosis within the TCGA papillary thyroid cancer study. Heatmap showing expression of the top
100 genes that were most differentailly regulated between papillary thyroid cancer patients of good (n = 51) and poor (n = 79) prognosis, tested
using significance analysis of microarrays (SAM) analysis. Genes and samples are arranged by linkage distace, using unsupervised hierarchical
clustering of average expression across samples and genes, respectively, as illustrated by dendrograms. Good and poor prognosis patients are
represented by red and black squares within the sidebar
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by each of the seven poor prognosis clinical characteris-
tics, one at a time, and calculating the gene overlap. None
of the genes upregulated in extreme poor prognostic pa-
tients remained consistently upregulated when each prog-
nostic characteristic was left out. One of these genes,
NR1D1 was the most consistently upregulated gene, up-
regulated when four of seven groups were removed. For
the downregulated genes, we identified 109 genes that
were robust to leaving out each of the poor prognosis
characteristics (Additional file 1: Table S4), 100 (92 %) of
which were also significantly downregulated in tumor
compared with normal adjacent tissue.

Functional enrichment analysis
The prognostic gene signature of 109 genes most signifi-
cantly overlapped with a list of genes that were downregu-
lated in PTC compared to normal tissue in a previous
study [27], with 27 overlapping genes (q = 1.75 e−34, Add-
itional file 1: Table S5). Also significantly overlapping was
a set of 17 genes downregulated in basal subtype breast
cancer [28]. Among gene ontology (GO) terms within
MSigDB, genes downregulated in poor prognosis were
enriched for the genes with ‘bivalent’ promoters, i.e. genes
with CpG-dense promoters bearing both the activating
H3K4me3 and the repressive H3K27me3 histone marks,
in brain [29]. To confirm this, the prognostic gene signa-
ture was compared with a list of all known bivalent genes
from the BGDB database [24]. Of 109 genes within the
prognostic signature, 53 were bivalent (p = 1.96e-12).
There were no other highly enriched gene ontology (GO)
terms or overlaps with gene-sets representing specific bio-
logical mechanisms such as transcription factor binding
sites or organelle functions; therefore, the prognostic genes
signature is not likely related to a single tumor event or

characteristic, but reflects diverse abnormalities in
multiple cancer pathways. Using the Enrichr enrich-
ment analysis tool, the gene-set with which the 109
poor prognosis genes most significantly overlapped
was an independent list of genes that were deregulated in
PTC, derived from an independent study (q-value =
1.052e-14), with 21 overlapping genes [30]. Next, the 109
poor prognosis genes were compared with known tumor
suppressor genes [23]. Nine listed tumor suppressor genes
(LTF, RASL11A, SYNM, IQGAP2, AXIN2, SLC5A8, LIFR,
IGFBPL1, ZNF366) were among our poor-prognosis
genes, a significant enrichment (p = 0.04). Finally, our gene
list was compared to a gene-set of 39 genes consistently
deregulated in thyroid cancer, identified by meta-analysis
of multiple studies [25]. Of these, TFF3, DIO1 and ITPR1
were overlapping.

A supervised predictor accurately classifies prognosis
Next, we estimated the classification performance of a
supervised classifier to predict prognosis using the ex-
treme poor and good prognosis patients. We used the
PAM classifier in combination with 10-fold cross valid-
ation and limited the classifier to maximum 100 genes.
This resulted in an AUC of 0.75 (95 % CI 0.67–0.84,
Fig. 3), indicating that a gene expression signature exists
that is predictive of prognosis.

Distinguishing thyroid cancer cases with intermediate
prognosis
As a preliminary validation for the expression PAM clas-
sifier, and to test its ability to predict prognosis/disease
outcome in intermediate prognosis individuals (the
group for which prognostic classification is required), we
built a PAM model on the complete data set of extreme

Fig. 2 Differential expression of genes between normal tissue, good prognosis and poor prognosis patient groups within the TCGA thyroid cancer
study. Representative examples of genes that were identified as differentially expressed between good and poor prognosis tumors, and which were
also differentially expressed between tumor and normal tissue. These genes displayed step-wise changes of expression between normal tissue, good
prognosis tumors and poor prognosis tumors, which may be indicitive of incremented deregulation associated with advancing disease
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prognosis cases and classified the remaining intermedi-
ate prognosis PTC cases in two groups: intermediate-
poor prognosis and intermediate-good prognosis. We
then compared the distribution of key mutations and
pathological variables relevant to prognosis between
these groups. Out of 378 intermediate prognosis pa-
tients, PAM analysis assigned 306 patients to either
intermediate-good or intermediate-poor prognosis
groups with ‘high confidence’ probabilities of >60 % or
<40 %, respectively. Of the 306 intermediate prognosis
patients with high-confidence assignments, 111 (36 %)
were classified as intermediate-good prognosis and 195
(64 %) were classified as intermediate-poor prognosis.
The intermediate-poor prognosis group had higher
nodal involvement, a tendency towards extra-thyroid ex-
tension and is highly enriched for BRAF mutations com-
pared to the good prognosis group. The intermediate-

good prognosis group had a mixed RAS-BRAF muta-
tion composition, with significantly higher incidence
of HRAS and NRAS mutations compared with the
poor prognosis group (Table 1). There was a signifi-
cantly higher incidence of the well-differentiated
follicular cell histological subtype and a depletion of
the more aggressive tall-cell subtype within the
intermediate-good prognosis group (Fig. 4). There
were no significant differences in distributions of age,
gender or race between prognosis groups. There was
no difference in MACIS score between intermediate-
poor (n = 189) and intermediate-good prognosis
groups (n = 146) (p = 0.2, Additional file 2: Figure S1).
Similar enrichments in the intermediate prognosis
group were found when all samples (including the 72
individuals with posterior probabilities between 40
and 60 %) were analyzed (Additional file 1: Table S6).

Fig. 3 Performance of a gene-expression based supervised predictor in classifying prognosis. ROC curve illustratrating the performance of a gene-
expression based supervised classifier in correctly predicting the prognostic group (good or poor prognosis) to which each patient belongs, over
10 rounds of cross-validation. The classifier was determined using Prediction of Microarray (PAM) analysis, and was limited to 100 genes, which
were differentially expressed between good and poor prognosis patients
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Robustness analysis of the supervised predictor
We investigated the robustness of the PAM supervised
predictor, i.e. its performance in predicting prognosis
when each poor prognostic clinical characteristic was ex-
cluded. Extreme poor prognosis patients assigned to each
of the seven poor prognostic factors were excluded, one
group at a time. For each left-out group, a PAM predictor
was trained using the remaining extreme prognosis sam-
ples, and the performance of the model in accurately pre-
dicting prognosis for left-out individuals was assessed. For
all but one of the left out groups, between 11 and 43 % of
the left out samples were classified as good prognosis
without including them for training (Additional file 2:
Figure S2, Additional file 1: Table S7). Additionally, we

predicted prognosis for the intermediate prognosis thyroid
cancer cases and investigated the enrichment of muta-
tions, stage, nodal status, extensions and histological
subtypes in the cases classified as intermediate-good or
intermediate-poor prognosis. This confirmed the previ-
ously reported profile of poor prognosis patients charac-
terized as BRAF mutated with high stage, lymph node
invasion, as well as enrichment for the tall cell subtype
and depletion of the follicular subtype, even when
removing one of the seven poor prognosis characteristics
(Additional file 1: Table S7). When examining the genes
defining these supervised predictors, we identified 56
genes that are selected in at least 6 out of seven left out
analyses (Additional file 1: Table S8). This signature

Table 1 Distribution of clinicopathologic and demographic factors in intermediate risk patients classified as good or poor prognosis
by PAM model

Factor Poor prognosis % (n) Good Prognosis % (n) P-valuea (different frequency
between prognostic groups)

Extra-thyroid extension N total 144 130 0.001

With extentions 32 % (47) 15 % (19)

Nodal involvement N total 127 114 <0.001

with nodal involvement 65 % (83) 35 % (40)

Clinical stage N total 144 135 0.08

Stage 1 22 % (32) 22 % (30)

Stage 2 40 % (58) 52 % (70)

Stage 3 38 % (54) 26 % (35)

Histological subtype N total 179 142 <0.001

Classical 80 (144) 54 (77)

Follicular 5 (9) 44 (62)

Tall cell 15 (26) 2 (3)

Age at diagnosis N total 184 143 0.41

less than 45 years 50 (92) 45 (64)

Gender N total 184 143 0.7834

Female 72 % (132) 76 % (108)

Male 28 % (52) 24 % (35)

Race N total 154 55 0.544

Asian 11 % (17) 14 % (8)

Black/African American (n) 7 % (11) 4 % (2)

White 82 % (126) 82 % (45)

Mutations BRAF N total 162 124 <0.001

With mutations 85 % (137) 21 % (26)

HRAS N total 162 124 <0.001

With mutations 0 % 9 % (11)

KRAS N total 162 124 0.36

With mutations 0 % 2 % (2)

NRAS N total 162 124 <0.001

With mutations 2 % (4) 15 % (19)
a(Pearson chi-squared (categorical variables), or Student’s T-test (continous variables)
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included five genes upregulated in poor prognosis pa-
tients, including NR1D1, a gene overlapping with the thy-
roid receptor THRA, the oncogene AREG, and 51 genes
downregulated in poor prognosis patients, including many
of the poor prognosis genes that were overlapping be-
tween our study and gene-sets downregulated in thyroid
cancer identified by GSE analysis, TSgene tumor suppres-
sor genes (LTF, RASL11A, IQGAP2, SYNM), and members
of cancer-related pathways, such as FZD9, a member of
the Wnt signaling pathway, MAP2K6, a MAP kinase,
IGFBPL1, a regulator of insulin-like growth factor signal-
ing, and LRRC4 and LRRC4B involved in cell proliferation,
migration and angiogenesis.

Discussion
We used a large cohort of PTC patients from the TCGA
project with detailed but heterogeneous clinical data to
determine a prognostic signature to separate good from

poor prognosis focusing on intermediate risk PTC. We
used extreme phenotypes based on a homogeneous def-
inition of good prognostic PTC cases and seven hetero-
geneous clinical characteristics determining poor
prognostic PTC. We discovered genomic signatures that
potentially allow distinguishing good from poor progno-
sis. Due to the indolent nature of PTC, most patients do
not die from PTC and long-term follow-up is often not
available, as is the case in TCGA. However, our work
shows that using clinical data capturing treatment-
related variables, it is possible to develop genomic signa-
tures of prognosis consisting of known tumor suppressor
genes, genes known to be deregulated in PTC, and genes
with specific roles in thyroid function. As expected, the
commonly used MACIS prognostic score was higher in
extreme poor prognosis patients defined by our classifi-
cation system, as we use some of the same clinical data
as used by the MACIS score. However, MACIS score

Fig. 4 Enrichment of clinicopathological prognositic features of papillary thryroid cancer within intermediate prognosis patients classified as good
and poor prognosis by a Prediction of Microarrays (PAM) model. Intermediate prognosis patients (n = 378) were classified as either good (n = 111)
or poor prognosis (n = 195) using the PAM model, which was trained using the gene signature of differential expression between extreme good
prognosis (n = 51) and extreme poor prognosis (n = 79) patients. Within the poor prognosis group there was a higher percentage of patients with
BRAF mutations, nodal involvement, extra-thyroid extension, and the aggressive Tall cell histological subtype, but a lower percentage of patients
with NRAS and HRAS mutations and the well-differentiated follicular histological subtype. *** Chi -squared p-value < 0.001
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did not differ between intermediate risk patients pre-
dicted as poor versus good prognosis by our prognostic
signature, indicating that our prognostic signature pre-
dicts prognosis based on information not picked up by
the MACIS score. This is likely because our classifier
does not rely on the clinical features used by the MACIS
score, which are mainly found within the more extreme
PTC cases of more obvious prognosis. Instead, our clas-
sifier captures ‘hidden’ prognostic information within
the tumor gene signature, which can be detected in
intermediate risk patients for which prognosis can rarely
be predicted using classification systems based on clin-
ical information alone. Over 90 % of the genes deregu-
lated in poor prognosis patients relative to good
prognosis patients were also significantly deregulated in
PTC relative to normal adjacent tissue, in the same dir-
ection, so that good prognosis patients displayed expres-
sion levels of prognostic genes that were intermediate
between normal tissue and poor prognosis patients. This
indicates more advanced gene deregulation in poor
prognosis individuals, and indicates that the relationship
between these genes and cancer prognosis is approxi-
mately linear. As the poor and good prognosis patient
groups had similar distributions of histological subtypes
and demographic factors for which data are available,
the differentially expressed genes are unlikely to reflect
different histological subtypes or confounding factors.
Moreover, the striking enrichment within the poor prog-
nosis gene-set of genes downregulated in papillary PTC
indicates that our poor-prognosis genes set is highly specific
to PTC. The genes overlapping between our poor prognos-
tic signature and previously reported thyroid cancer signa-
tures (Additional file 1: Table S5) provides a list of genes
that are reproducibly downregulated in thyroid cancer,
which are also associated with poor prognosis, and repre-
sent promising potential biomarkers.
Some poor prognosis genes identified were specific to

thyroid function. DIO1, downregulated in poor prognosis
patients in this study and a meta-analysis [25], is required
for both activation and degradation of thyroid hormone.
The most consistently upregulated gene in poor-prognosis
patients, NR1D1, is antisense to, and overlapping with the
thyroid receptor gene THRA, and these two genes form a
cis-natural antisense pair in tail-to-tail orientation (with 3’
ends overlapping), so that THRA transcription is impeded
by NR1D1 transcription [31]. This was supported by a
modest, but significant negative correlation between
NS1D1 and THRA expression within the TCGA PTC
study in primary tumors (cor = −0.09, p = 0.04, n = 501),
though not within a smaller set of normal adjacent tissue
samples (cor = −0.16, p = 0.24, n = 58) (Additional file 2:
Figure S3). While THRA is frequently mutated in thyroid
cancer, little has been reported about the role of THRA in
cancer [32].

Next, there was a strong enrichment for genes down-
regulated within the poor prognosis group, relative to
those patients with a good prognosis. Many of these
genes were downregulated in good prognosis tumors
relative to normal tissue, and further downregulated in
poor prognosis tumors, indicating that incremental loss
of expression may promote cancer progression. Alterna-
tively, these genes may represent markers of more ag-
gressive PTC subtypes. Given the apparent enrichment
of genes downregulated in cancer, it is tempting to
speculate that a common mechanism of gene repression
may contribute to poor prognosis in PTC. One such
mechanism is aberrant DNA methylation of tumor sup-
pressor gene promoters in cancer, which commonly oc-
curs at genes that display bivalent epigenetic signatures
in embryonic stem cells [33]. There was a strong enrich-
ment for bivalent genes within our prognostic signature;
therefore, epigenetic silencing of bivalent genes may rep-
resent a common mechanism accounting for the enrich-
ment of downregulated genes in cancer associated with
poor prognosis. Supporting this is the identification of
multiple genes downregulated in poor prognosis patients
that are reported to be epigenetically silenced in cancer,
such as SYNM [34] and IGFBPL1 [35]. Many bivalent
genes play key roles in maintaining cellular differenti-
ation, and their silencing in cancer is thought to pro-
mote de-differentiation and pluripotency.
Some the poor prognosis genes identified, such as

TFF3 and CDH16, represent well-established thyroid
cancer markers. TFF3 has previously been proposed as a
potential biomarker to discriminate between benign
from malignant PTC [25, 36]. CDH16 is specifically
expressed in kidney and thyroid, playing a role in thyroid
differentiation and epithelial-mesenchymal transition,
and strongly downregulated across PTC subtypes [37].
CLCNKB, a chloride channel, is downregulated in malig-
nant papillary PTC versus benign disease [38]; however,
the oncogenic role of CLCNKB is unknown. PLA2R1 is
downregulated in malignant PTC versus benign disease
[38], and appears to suppress tumorigenesis by activating
the tyrosine kinase JAK2 [39]. Two ‘RAS-like’ genes of
unknown function, RASL11A and RERGL, as well as
RASF9, were downregulated in poor prognosis patients.
Given the important etiological role of RAS signaling in
PTC, exploration of the function of these RAS-like genes
in prognosis is warranted. Other notable genes of un-
known function within this list were WSCD2 and
IQGAP2, which have previously been reported as down-
regulated in thyroid cancer [25].
Some genes within poor-prognosis PTC patients may

not be specific to PTC, as some are known tumor sup-
pressor genes and prognostic markers within other can-
cers. Both LRRC4 and the closely related LRRC4B were
downregulated in poor prognosis patients. LRRC4 is a
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tumor suppressor gene in glioblastoma, apparently regu-
lating ERK/AKT/NF-kB signaling [40]. That these genes
may also be tumor-suppressor genes in PTC is a novel
and interesting finding, as expression of LRRC4 is
thought to be restricted to nervous tissue. Epigenetic si-
lencing of IGFBPL1, a member of the insulin-like growth
factor binding protein, is associated with nodal involve-
ment and poorer outcome in breast cancer [35]. Epigen-
etic silencing of the Synemin tumor suppressor gene
(SYNM) in breast cancer is associated with poorer sur-
vival, lymph node involvement and advanced tumor
grade [34] MAP2K6 was a member of a four gene-panel
used to predict prognosis in bladder cancer [41].
In addition, our results show that although the BRAF-

RAS signature is enriched in the prognostic signature it is
not an exact separator of prognosis. Although mutations in
RAS genes are only enriched in good prognosis cases and
BRAF mutations occur mostly in the poor prognosis cases,
there is still a significant group of good prognosis cases
with BRAF mutations. We also investigated developing
prognostic signatures using DNA copy number, DNA
methylation and microRNA data, but these models were
less predictive of prognosis than gene expression signatures
(data not shown). This is not surprising, as epigenetic
mechanisms and copy number variation likely influence
disease outcome through alteration of gene expression,
therefore measurement of expression itself may be more
directly related to disease outcomes.

Conclusions
There is a pressing clinical need for prognostic biomarkers
to direct therapy and treatment planning for patients pre-
senting with PTC. Given the precipitous rise in this disease,
robust clinical indicators may help reduce the potential
consequences of overtreatment for patients with this mostly
indolent disease. Our identification of a prognostic signa-
ture for PTC provides proof of concept that gene expres-
sion patterns can be used to identify patients who may
otherwise be subject to overdiagnosis. This work may pro-
vide a rational first step towards identifying a prognostic
test that can help clinicians to tailor therapy in patients
with good prognosis and intensify management of patients
with poor prognosis. The analytical methods we adopted
provided an alternative to standard survival analysis to
identify genes associated with prognosis, due to the small
number of deaths from PTC. Unfortunately, this analytical
method does not entail adjustment for potential confound-
ing factors that may influence patient prognosis such as age
or different treatments. The key limitation of this study,
however, is that we were unable to validate our prognostic
gene signature in independent patient cohort, due to lack
of existing data or samples with clinical annotation. Our
work motivates the collection of long-term clinical follow-
up data to further develop, refine and validate prognostic

signatures for PTC. Such a signature may be developed as a
clinically applicable biomarker using technologies such as
the NanoString nCounter (The platform used for the com-
mercially available PAM50 breast cancer test [42]) to rou-
tinely measure expression of hundreds of genes. Moreover,
it will also be important to determine whether this signa-
ture is detectable in ultrasound-guided fine needle aspirate
(FNA) biopsies that are collected routinely for examination
of thyroid nodules to detect cancer. Identification of pa-
tients with good prognosis PTC at this stage may allow
them to avoid unnecessary surgery.

Additional files

Additional file 1: Table S1. Demographic factors in extreme good and
extreme poor prognosis patient groups (in samples for which data was
available). Table S2. Genes deregulated in extreme poor prognosis PTC
patients relative to extreme good prognosis patients. Table S3.
Differential expression of prognostic genes in normal tissue, extreme
good prognosis cancers and extreme poor prognosis cancers. Table S4.
Genes consistently upregulated or downregulated [1] in extreme poor
prognosis patients in leave-one-out cross validation. Table S5. Genes
downregulated in poor-prognosis PTC & overlapping with published
(referenced) gene-sets. Table S6. Distribution of clinicopathologic and
demographic factors in intermediate risk patients classified as good or
poor prognosis by PAM model (All samples). Table S7. Distribution of
clinical characteristics of intermediate good and intermediate poor
prognosis groups in leave-one-out cross validation. Table S8. Genes used
within the PAM classifier, and presence [1] or absence (0) of each gene
within classifier, when patients representing each of 6 poor prognostic
factors are left out. (PDF 1097 kb)

Additional file 2: Figure S1. MACIS score in extreme prognsos and
intermediate prognosis patient groups: MACIS score (based on the
presence of distant Metastases, patient Age, Completeness of tumor
resection, presence of local Invasion, and tumor Size) was higher in poor
prognosis patients (n = 77) than good prognosis patients (n = 50) within
the Extreme prognosis patient (training set) patient group (p = 4.28e-07).
However, there was no difference in MACIS score between patients
predicted as poor (n = 189) and good prognosis (n = 146) witin the
medium prognosis (test set) patient group (p = 0.2). This indicates that
the MACIS score, indicating that the MACIS score does not have ability to
predict patient prognosis as determined by our gene expression classifier.
Figure S2. Checking the robustness of the PAM model gene signature:
Leaving out one of 7 extreme prognosis patient groups in each round,
and using the remaining 6 patient groups to train a Prediction Analysis
of Microarrays (PAM) model, the performance of the PAM model in
correctly classifying patients within the left-out group to either the good
or poor prognosis groups, was tested. ROC curves illustrate the performances
of the models for each left out group. Left out groups represent extreme poor
prognosis patients, each group associated with a specific poor prognostic
clinical factor. Figure S3. Negative correlation between NR1D1 and the
overlapping thyroid hormone receptor gene THRA. There was a significant
Pearson correlation of expression of NR1D1 and THRA (measured using RNA-
Seq) in tumor (cor =−0.09, p= 0.04, n= 501), but not within a smaller set of
normal adjacent tissue samples (cor = −0.16, p= 0.24, n= 58). NR1D1 was the
gene most strongly upregulated in poor prognosis PTC patients relative to
good prognosis patients, and may influence thyroid cancer through
downregulation of THRA. (PPTX 1109 kb)
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