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Abstract

Background: Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly,

despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas
cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after
radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of

nasopharyngeal carcinoma tissue.

Methods: In this study, we found accidentally that the transfection of pre-miR-29¢ or miR-29¢ mimics significantly
increases the expression level of miR-34c and miR-449a but doesn't affect that of miR-222 using real-time quantitative
PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are
treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222
accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with

western blot and real-time quantitative PCR.

Results: We found that pre-miR-29c or miR-29¢c mimics significantly increases the expression level of miR-34c
and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29¢. Restoration of miR-29¢
in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1.

Conclusions: The regulation of miR-29¢/DNMTs/miR-34c\449a is an important molecular axis of NPC development
and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC.
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Background

Nasopharyngeal carcinoma (NPC) is prevalent in South
East Asia and Southern China particularly. Despite the
reported 5-year survival ratio is relative higher than
other deadly cancer such as liver, renal, pancreas cancer,
the lethality is characterized by high metastasis in the
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early stage and high recurrence rate after radiation treat-
ment. Due to the secluded anatomical sites, early symptom
of patients is not typical, 80 - 90 % patients with NPC are
diagnosed until the late advanced stage. EB virus infection,
genetic factors, environmental and diet factor are widely
recognized to be associated with the etiology of NPC car-
cinogenesis [1, 2]. However, recent studies have found that
genome-wide epigenetic modifications in tumor associated
gene are also involved in this process [3-5].

Epigenetic modification refers to the changes in
gene expression, but not a genetic change in the
DNA sequence, and can be stably transmitted through
meiosis in the process of growth and cell proliferation.
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Epigenetic factor has been proved to play an important
role in the carcinogenesis and development of naso-
pharyngeal carcinoma (NPC). Detection of epigenetic
modifications can serve as molecular context of NPC
and it is advantageous in the prognosis of NPC. The
regulation of the epigenetic modification is reversible
so that different intervention measures in epigenetic
aspect may be used as a novel strategy to treat NPC,
as well as the development of novel NPC radiother-
apy sensitizing agent and novel drugs.

MicroRNAs (miRNAs), small non-coding RNA, exist in
many organisms and play a important role in the regula-
tion of protein expression by binding the 3’-untranslated
region (3-UTR) of their target mRNAs through com-
pletely or incompletely complementary seed sequences
and assembled in RNA-induced silencing complex(RISC),
mediating the degradation of mRNA or the blockade of
the translation of encoded protein. Abnormal expression
of miRNAs has been demonstrated in most tumor types
including NPC [6-8]. In previous studies of our laboratory
as well as other research groups, miR-29c was found to be
down-regulated in the serum of NPC patients [9-12],
while, the effect of miR-29¢ and the pathways in which
miR-29¢ works during the development and progression
of NPC are not well defined. Therefore, in this study, we
investigated the biological functions and molecular mech-
anism of miR-29¢ in NPC, which may help to further elu-
cidate the roles of miRNAs in the development of NPC
and provide a novel candidate target for therapeutic strat-
egies for NPC.

In this study, we accidently found that pre-miR-29c
transfection in nasopharyngeal carcinoma increased the
expression of miR-34c and miR-449a. In order to seek for
the molecular mechanism of this event, we hypothesized
that miR-29c¢ down-regulated DNA methytranferases
(DNMTs), which catalyze the addition of a methyl group
to the cytosine residue of CpG nucleotides. In NPC tissue,
the down-regulation of miR-29c¢ leads to the high level of
DNMTs, which further promote the methylation of the
CpG islands of tumor suppressors such as miR-34c and
miR-449a. Our experimental data showed that epigenetic
modifications of miR-34c and miR-449a are affected by
the DNMTs, especially DNMT3a and DNMT3b.

Methods

Cells and cell culture

Human nasopharyngeal carcinoma cell lines, HNE-1,CNE-
2,C666-1 and the immortalized human nasopharyngeal
epithelial cell, NP69 were described previously [13, 14].
The NPC cell lines were maintained in 1640 (Gibco,
Grand Island, NY, USA), supplemented with 10 % fetal bo-
vine serum (FBS) (Gibco, Grand Island, NY,USA) and 1 %
penicillin-streptomycin-glutamine (Gibco, Grand Island,
NY,USA) at 37 °C and 5 % CO, The nasopharyngeal
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epithelial cell line NP69, which is immortalized with an
SV40 T-antigen, was a kind gift from Professor Sai Wah
Tsao of the Department of Anatomy, University of Hong
Kong, China, and was maintained in keratinocyte-serum
free medium (Invitrogen, Carlsbad, CA, USA) with the
addition of growth factor supplements (Life Technologies,
Gaithersburg, MD, USA) [15].

Drug treatment

Cells were incubated with the 5-Aza-2’-deoxycyti-
dine(5-Aza-CdR) (10 puM) (Sigma, MO, USA) for 96 h,
with or without Trichostatin A(TSA) (10 uM) (Sigma,
MO, USA) or TSA alone for the last 24 h.5-Aza-CdR is
methylation methytranferase inhibitor, an epigenetic
modifier that inhibits DNA methyltransferase activity
which results in DNA demethylation (hypomethylation)
and gene activation by remodeling “opening” chromatin.
Genes are synergistically reactivated when the demethyla-
tion is combined with histone hyperacetylation. Trichosta-
tin A is a histone deacetylase inhibitor.

Pre-miRNA constructs and miRNA mimics transfection
Pre-miR-29¢ or scramble cDNA together with restric-
tion enzyme sites were inserted into pSuper vector
(OligoEngine,WA,USA) and transformed into Ecoli JM109.
The clones with positive inserts were subjected to the plas-
mids extraction and confirmed to be correct by DNA se-
quencing. Cells were seeded in 6-well dish (4*10°cells/well)
the day before and were transfected with scramble pSuper
or pre-miR-29¢/pSuper with Lipofectamine™ 2000 (Invitro-
gen, Carlsbad, USA) according to the manufacturer’s in-
structions. Forty-eight hours after the transfection, the
expression of miR-29¢, miR-34b, miR-449a was detected
by real-time PCR, and the expression of DNMT3a, 3b, T1
was tested by real-time PCR and Western blotting.

Quantitative real time PCR (qRT-PCR)

Total RNA was extracted using miRNeasy Mini kit
(Qiagen, Germany) according to the manufacturer’s
instructions. For miRNA expression analysis, cDNA
was synthesized using miScript II RT Kit (Qiagen,
Germany). A PCR analysis was performed using miScript
SYBR Green PCR Kit (Qiagen, Germany). Hsa-miR-29¢c-1
miScript Primer, Hsa-miR-34c-1 miScript Primer, Hsa-
miR-222-1, Hsa-miR-449a-1 miScript Primer (Qiagen,
Germany) were used and RNU6 (Qiagen, Germany)
acted as an internal control. The PCR cycle parame-
ters were as follows: 95 °C for 15 min, 39 cycles of
denaturation at 95 °C for 15 s, annealing at 50 °C for
30s, and extension at 70 °C for 30s. For mRNA expression
analysis, cDNA was synthesized using cDNA reverse tran-
scription kit (Thermo Fisher Scientific, MA, USA) and a
PCR analysis was performed using QuantiFast SYBR
Green PCR Kit following the manufacturer’s instructions.
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The PCR cycle parameters were as follows: denaturation
at 95 °C for 5 min, 39 cycles of denaturation at 95 °C for
10s, annealing at 60 °C for 30s, and extension at 72 °C for
30s. DNMT3a, 5 primer (5'-CCGGA ACATT GAGA
CATCT-3') and 3’ Primer (5'-CAGCAGATGGTGCAG-
TAGGA-3'); DNMT3b, 5 primer (5'-GGAGA CTCAT
TGGAG GACCA; and 3° Primer (CTCGG CTCTG
ATCTT CATCC-3'); DNMT1, 5" primer (5'-GAGCCA
CAGATGCTGACAAA-3’) and 3" primer (5'-TGCCA T
TAACACCACCTTCA-3’). B-actin, 5° primer(5'-CCTA
TCGAGCATGGAGTGGT-3") and 3" Primer (5-CTGA
GGCATAGAGGGACAGC -3’), B-actin acted as internal
control. These experiments were performed according to
the manufacturer’s protocol of Bio-Rad CFX96 System.

Western blot analysis

Cells were harvested at the indicated time and rinsed
tweic with cold PBS. Cell extracts were prepared with
lysis buffer containing 50 mM Tris—HCl, pH7.5, 150
mM NaCl, 2 mM EDTA, 1%Triton, 1 mM phenyl-
methylsulfonyl fluoride, and protease inhibitor mixture(-
Roche, USA) for 20 min on ice. Lysates were cleared by
centrifugation at 14,000 rpm at 4 °C for 10 min. Super-
natants were collected, and protein concentrations were
determined by Pierce BCA Protein Assay (Pierce, USA).
The proteins samples were separated by sodium dodecyl
sulfate—polyacrylamide gel electrophoresis (SDS-PAGE)
in 10 % (wt/vol) polyacrylamide gels and transferred
to nitrocellulose membrane (Millipore, USA). After
blocking with 5 % non-fat dry milk for 1 h at room
temperature, the membrane was incubated with the pri-
mary antibodies in 5 % non-fat dry milk overnight at 4 - 8
°C. The following antibodies were utilized: anti-DNMT3a
mouse polyclonalantibody (Santa Cruz, USA), anti-
DNMT3b rabbit polyclonal antibody (Anbo, USA), anti-
DNMTT1 rabbit polyclonal antibody (Santa Cruz, USA),
anti-B-actin  mouse polyclonal antibody (Abclonal,
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USA). Membranes were washed and incubated with
horseradish peroxidase-conjugated secondary anti-
mouse antibody or anti-rabbit antibody (CST, USA).
After additional washes with phosphate-buffered sa-
line, the band signals were visualized and quantified
with chemiluminescence kit (AidLab, China).

Immunohistochemical staining and evaluation

The paraffin sections of NPC tissue microarray were
collected from the patients of the Pathology Depart-
ment of the Second Xiangya Hospital of Central South
University between 2007 - 2014. The tissue slides were
heated 65 °C for 1 h, and deparaffinized in xylene and
rehydrated through graded alcohols (100, 90, 70 and 50 %
alcohol; 5 min for each). For antigen retrieval, tissue slides
were incubated in sodium citrate buffer (0.01 M, pH 6.0)
for 20 min in a household Pressure cooker. After cool-
ing to room temperature, the slides were washed in
PBS (150 mM sodium chloride, 150 mM sodium phos-
phate, pH 7.2). The endogenous peroxidase activity was
removed by incubating with 3 % hydrogen peroxide for
10 min and was blocked in normal goat serum (Maixin,
China) for 30 min. The primary antibodies (anti-
DNMT1, anti-DNMT3a and anti-DNMT3b) were applied
at 4 °C overnight. Polymerized HRP and anti-rabbit IgG
(Maixin, China) were added according to the manufac-
turer’s instructions. A color reaction was developed using
DAB Color Developing Reagent Kit (Boster, China), and
all of the slides were counterstained with hematoxylin
staining kit. Negative control slides were included in
the experiment. The immune histochemical staining of
these sections was scored microscopically (Olympus,
Japan) at x 400 magnification in all of the available
tumor cells or epithelial cells meeting the typical mor-
phological criteria by 3 pathologists using the qualita-
tive scale that is described in the literature. The
number of cells staining was scored as 0 (no staining),
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Fig. 1 The expression of miR-29c is down-regulated in nasopharyngeal carcinoma cell lines and tissues. a Total RNA was extracted from normal
nasopharyngeal epithelium cells (NP69) and NPC cell lines (HNE1, HNE2, CNE2, C666-1, HK-1) and reversely transcribed into cDNA. Q-PCR
was performed and analyzed for the expression level of miR-29c normalized by RNAU6. b The same method and protocol was performed
from NPC tissue and reversely transcribed, Q-PCR was performed and analyzed. N: normal nasopharyngeal epithelium tissue, 2, 3, 4 were
presented for Clinical Stage 2, 3, 4, M was presented for the NPC tissue with metastasis. 30 samples were used, each group contains six samples
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Fig. 2 MiR-29c increases the level of miR-34c and miR-449a but not miR-222 in nasopharyngeal carcinoma cell lines. The pSuper-pre-miR-29¢c was

transformed into nasopharyngeal carcinoma cells HNE1 (a) and CNE2 (b) according to the protocol and the cells were cultured for 24 h.
Total RNA was extracted and inversely transcribed into cDNA. Q-PCR was performed and analyzed for the miR-29¢c, miR-34c, miR-449a and
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1 + (<1/3 positive cells), 2 + (>1/3 and < 2/3 positive
cells) and 3 + (>2/3 positive cells). The intensity of
staining was scored froml + (weak) to 3 + (strong).
The immune reactive score was categorized into three
groups by comprehensive evaluation of the percentage
of positive cells and staining intensity.

Results

Hsa-miR-29c is down-regulated in NPC cell lines and NPC
tissues, correlated with clinical stage of NPC

To investigate our hypothesis, we first examined the ex-
pression of miR-29¢ in NP69, HNE-1, HNE2, CNE2,
HK1, and C666-1 cells. As previously reported, miR-29¢
is relative high in normal nasopharyngeal epithelial cells
(NP69), and low in NPC cell lines (HNE-1, CNE2, HK1,
HNE?2, C666-1) (Fig. 1a). In the tissues of NPC patients,

snap-frozen NPC biopsies were obtained from NPC pa-
tients and normal healthy nasopharyngeal epithelial
samples from biopsy-negative cases were used as con-
trol. The criteria of clinical staging of NPC samples were
based on the 2008 staging system of NPC and AJCC sta-
ging system [16, 17]. Samples were first frozen-sectioned
by using a LEICA CM 1900 cryomicrotome. 6 NPC sam-
ples in each clinical staging II ~ V were used (numbers I
to IV) and control group. Samples were collected from
the Second Xiangya Hospital affiliated by Central South
University. The patients were informed about the sample
collection and had signed informed consent forms. Col-
lections and use of tissue samples were approved by the
ethical review committees of Xiangya Second Hospital.
Laser capture micro-dissection was used to separate the
cancer tissues from the normal tissues [18]. Phase
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Fig. 3 miR-34b/c and miR-449a levels were regulated by the epigenetic factors but miR-222 wasn't. Nasopharyngeal carcinoma cells were treated
with 5-Aza-CdR for 72 h, and then with or without Trichostatin A (TSA) for another 24 h. a, b Expression of miR-34b/c and miR-449a were
analyzed
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Fig. 4 DNMT3a and 3b but not DNMT1 are down-regulated by pSuper-pre-miR-29c¢ transfection. DNMT3a, 3b, 1 were predicted as tentative
targeted genes of miR-29c. Cells were transformed with pre-miR-29c and cultured for 24 h for Q-PCR and western blots for 48 h. a, b Q-PCR
analysis of DNMT3a, 3b, 1 regulated by miR-29¢ in HNE1 and CNE2. ¢ Western blot analysis of DNMT3a, 3b and DNMT1 in different cell lines

transfected with pre-miR-29¢

contrast images were acquired using LEICA CTR 6500
microscope. Total RNA was extracted using Trizol® re-
agent (Invitrogen) from samples. Two hundred nano-
grams (200 ng) of total RNA from each sample were
used for the follow-up microarray. As the result showed
the expression level of miR-29c¢ is negatively associated
with clinical stage (Fig. 1b).

MiR-29c increases the expression level of miR-34b/c and
miR-449a significantly

Pre-miR-29¢ c¢cDNA or scramble DNA was inserted
into pSuper vector and confirmed to be correct by
sequencing. The constructs were transfected into
nasopharyngeal carcinoma cell line HNE1 and CNE2
in which miR-29¢ expression is down-regulated. It is
surprisingly found that the expression of miR-34c and
miR-449a were increased, while that of miR-222

wasn’t altered (Fig. 2a and b). In mammalian genome,
the miR-34 family (miR-34 s) consists of miR-34a,
miR-34b and miR-34c. miR-34a localizes to chromo-
some 1p36, while miR-34b and miR-34c form a clus-
ter and localize to chromosome 11q23. In additional
experiments, miR-29¢ mimics and negative control
reagents(Qiagen, German) were transfected into the
cell lines, we got similar results (data not shown).
Mir-34c and miR-449a belong to miR-34 family which
is found down-regulated in nasopharyngeal carcinoma
and other cancers [18-21]. Expression of miR-34 fam-
ily members were reported down-regulated in cancer
cells by abnormal DNA methylation [21-28]. How-
ever, the molecular mechanism of miR-34c/miR-449a
down-regulation in nasopharyngeal carcinoma is not
clear. In order to explore whether the expression of
miR-34c and 449a in nasopharyngeal carcinoma cells
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Fig. 5 MiR-29c inhibits the growth of nasopharyngeal carcinoma cells HNET and CNE2 by MTT assay. Cells were transformed with pre-miR-29¢
and cultured for 24 h. 5 x 10* cells were seeded into 96-well dish triplicately. 20ul MTT solution was added to each well and then 200ul DMSO
was added to the well with cells. Read optical density at 490 nm and subtract background at 570 nm. The readout was recorded at 4 time points
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is regulated by epigenetic factors, the cells were
treated with DNA methylation inhibitor, 5-Aza-2'-
deoxycytidine (5-Aza-CdR), or/and histone deacetylase
inhibitor, Trichostatin A (TSA). As expected, the ex-
pression of miR-34b/c and 449a is increased with the
treatment of 5-Aza-CdR and that of miR-222 was not
altered either in HNE1 and CNE2 (Fig. 3a and b). To
update, there has no literatures indicating that miR-
222 is regulated by epigenetic factors, which may
explain the reason why miR-222 expression wasn’t af-
fected by 5-Aza-CdR. Several software analysis also
showed no typical CpG islands exists in the genomics
sequences of miR-222 or miR-29c. DNA methyltrans-
ferase 3a and 3b expression were inhibited by 5-Aza-
CdR treatment, while DNA methyltransferase T1
seemed not to be altered (Fig. 3¢ and d).

DNMT3a and 3b are direct targets of miR-29c

In order to determine whether miR-29c¢ regulate the miR-
34c and 449a through down-regulating the DNMT3a and
DNMT3a, pre-miR-29¢ constructs or hsa-29¢ mimics and
scramble DNA were transfected into HNE1 and CNE2
cell line, respectively. It was found that the expression of
DNMT3a and DNMT3b were decreased significantly with
the transfection pre-miR-29¢ or hsa-29¢ mimics, but not
altered with scramble constructs. However, the level of
DNMT1 was not altered significantly (Fig. 4a, b and c).
The miR-29 family members have intriguing complemen-
tarities to the 3'-UTRs of DNMT-3a and -3b, involved in
DNA methylation. DNMT3a and 3b have been confirmed
as direct targets of miR-29¢ in lung carcinoma, breast can-
cer, and cutaneous melanoma [29-32]. The expression of
miR-29 family members are inversely correlated to
DNMT-3a and -3b in lung cancer, directly targeting both
DNMT3a and -3b [32-33].

Table 1 Correlation between DNMT3a expression and
clinicopathological characteristics of nasopharyngeal carcinoma

Variable No. of patients DNMT3a Chi-squared test
(n, %)
Low Exp  High Exp  P-value
(n, %) (n, %)
Age (years)
<45 25 22 (88) 3(12) 0.0557
>45 43 32 (744) 11 (256)
Gender
Male 54 43 (796) 11 (204) 0.0652
Female 14 10 (714) 4 (286)
Stage
TNM I 16 13(81.2) 3(1898) 0.0012"
TINMII-V- 39 27 (692) 12(30.8)
Unknown 13 10 (769) 3 (32.1)

*p < 0.05 was significant statistically
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Table 2 Correlation between DNMT3b expression and
clinicopathological characteristics of nasopharyngeal carcinoma

Variable No. of patients DNMT3b Chi-squared test
(n, %)
Low Exp High Exp  P-value
(n, %) (n, %)
Age (years)
<45 40 33(825) 7(175) 05747
>45 38 32 (842 6(158)
Gender
Male 64 54 (844) 10(156) 02127
Female 14 14 (100) O
Stage
TNM I- 19 13 (684) 6(31.6) 03122
TINM IV 47 40 (85.1) 7(149)
Unknown 12 110917) 1(83)

Expression of DNMT3a, 3b, T1 associated with prognosis
of nasopharyngeal carcinoma

Based on microarray analysis in previous study it has
been found that miR-29¢,miR-34c, and miR-449a are
down-regulated in NPC (data not shown). The target
genes of miR-29c¢ such as BCL2L2, HBEGF, HBPI,
HSPG2, ITGB1, LAMC2, LTBR, MIB1, MLFI,
MMP2,NDST1,SVEP1IMCL-1,BCL-2,TIAM1 were up-
regulated and miR-29¢ could sensitize NPC cells to
ionizing radiation and cisplatin treatment by promot-
ing apoptosis [10, 11, 18]. In our study, the recovery
of miR-29¢ expression delayed the proliferation and
growth of NPCs (Fig. 5a and b). We examined that
DNMT3a, 3b and T1 are strongly expressed in NPC
tissues. The clinical information of the patients was
listed in Tables 1, 2 and 3. DNMT3a, 3b, 1 expression

Table 3 Correlation between DNMT1 expression and
clinicopathological characteristics of nasopharyngeal carcinoma

Variable No. of patients DNMT1 Chi-squared test
(n, %)
Low Exp High Exp  P-value
(n, %) (n, %)
Age (years)
<45 29 21 (724) 8 (27.6) 0.7679
>45 31 24 (774) 7 (226)
Gender
Male 47 34(723) 13 (277) 07638
Female 13 9692 4308
Stage
TNM Il 12 9 (75) 325 0.6202
TNM -V 38 25(658) 13342
Unknown 10 9 (90) 1(10)




Niu et al. BMC Cancer (2016) 16:218

Page 7 of 11

considered to be significant statistically

b

100+ a 100+ b
3 ot Low DNMT3a expression E % Low DNMT3a expression
E 60+ g 60+
w @
§ 40- High DNMT3a expression § 40-
g g High DNMT3a expresion
@ «@
o 204 o 20+

o_].m Rank ["=0.0(‘]l4 . . . O-W P=p()0:l» —

0 20 40 60 80 100 120 0 20 40 60 80 100 120 140
Time (Months) Time

Fig. 6 Representative image of IHC staining of DNMT3a in nasopharyngeal carcinoma tissue. a Negative (—) (a-c), weak (+) (d-f), positive (++) (g-i)
staining of DNMT3a in NPC tissue. b The correlation of DNMT3a staining with 5-year survival (a) and total survival time (b). * p < 0.05 is

is not associated with gender (p = 0.0652, 0.2127,
0.7638 respectively) or age (p = 0.0557, 0.5747,
0.7679, respectively). The expression of DNMT3a, but
neither DNMT3b nor DNMT1 was associated with
clinical stage of NPC (p = 0.0012, p = 0.3122 and
0.6202 respectively). The representative images of
positive and negative expression of DNMT3a, 3b and
T1 are shown in Fig. 6a (a-i), 7A (a-i), 8A (a—i).

The score was evaluated by 3 experienced patholo-
gists were analyzed with x2 test. The expression of
DNMT3a is negatively associated with 5-year survival
time (log Rank p = 0.0014) and total survival time
(Fig. 6B a-b), however, the expression of DNMTS3b,
DNMT1 are not significantly associated with 5-year
survival time and total survival time (Fig. 7b a-b,
Fig. 8b a-b).
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Fig. 7 Representative image of IHC staining of DNMT3b in nasopharyngeal carcinoma tissue. a Negative (—) (a—c), weak (+) (d-f), positive (++)
(g-i) staining of DNMT3b in NPC tissue. b The correlation of DNMT3b staining with 5-year survival (a) and total survival time (b). * p < 0.05 is

Discussions

As well known, miRNAs play an important role in vari-
ous cellular activities by regulating gene expression of
their targets. Recent studies have shown that the expres-
sion of miRNA is regulated by epigenetic modifications
by DNA methylation or histone modification. MiRNA
also can be the key factor to regulate the levels of DNA
methylation or histone modification which affect the
expression level of other molecules. All these factors
(extracellular signals, miRNAs, transcription factor,

targeted gene) are the members of the vast gene expres-
sion regulatory networks. In cancer cells, the epigenetic
modifications of miRNAs have been reported. Those
miRNAs acting as tumor suppressor often were si-
lenced by frequent hypermethylation or histone deace-
tylation. Furthermore, it shows tumor specialty. When
treated with demethylating agent 5-aza-deoxycytidine
(5-Aza-CdR) and histone deacetylase (4-Phenylbutyrie
acid, PBA), the expression of 5 % miRNAs in bladder
carcinoma cell line T24 increased by 3 folder than that
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to be significant statistically
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Fig. 8 Representative image of IHC staining of DNMT1 in nasopharyngeal carcinoma tissue. a Negative (=) (a—c), weak (+) (d-f), positive (++)
(g-i) staining of DNMTT1 in NPC tissue. b The correlation of DNMT1 staining with 5-year survival (a) and total survival time (b). * p < 0.05 is considered

of untreated. MiR-34c acts as a suppressor in many
tumors. It's down-regulated and the target genes
DCBLD2, FOXN3, IKZF1, NPTN PAFAH1B1, USP10,

YY1, ARHGAP1, ARHGEF3, BCL11B, Clé6orf5,
CNTNAPI1, FOXN3, FUTS, IL6R, ITGBS8, ITSNI,
JAG1, MLL2, NDST1,NOTCH2, NPNT, PPFIAL,

PTPRM, PVRL1, SERPINE1, VCL were up-regulated in
NPC [18]. Single hyper methylation of CpG island in
the promoter region of miR-34c gene repressed miR-
34c expression by reducing DNA binding activities of

Spl and promoted self-renewal and epithelial-

mesenchymal transition of breast tumor-initiating
cells [32]. Differential methylation of CpG islands
neighboring the miR-34c promoter inhibited the ex-
pression of miR-34c in gastric cancer cell lines and in
paclitaxel-resistant gastric cancer samples. MiR-34c
was down-regulated and its target microtubule-
associated protein tau (MAPT) protein expression
was high. Over expression of miR-34c significantly
down-regulated MAPT protein expression and in-
creased the chemo sensitivity of paclitaxel-resistant
gastric cancer cells [34]. Aberrant DNA methylation
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of miR-34c was correlated with a high probability of
recurrence and associated with poor overall survival
and disease-free survival in non-small cell lung cancer
[35, 36]. MiR-449a was also found to be down-
regulated in NPC [20]. MiR-449a can directly target
HDAC1 in primary lung cancer and inhibit cell
growth and anchorage-independent growth [37]. Tri-
chostatin A (TSA) could strongly increase miR-449a
levels in testicular cancer cell lines and miR-449a
down-regulated the histone deacetylase Sirtl [38].
These studies manifest that miR-34c and miR-449a
were regulated by the epigenetic factors. According to
our previous data, miR-29c, miR-34c, miR-449a were
down-regulated in NPC. In this study, we treated the
NPC cell line HNE-1 and CNE-2 by 5-AzadC for 96
h and then found that miR-34c and miR-449a in-
creased. MiR-34c and miR-449a were associated with
cell proliferation, apoptosis, anti-tumor drug resist-
ance and serum biomarkers of recurrence in other
cancers, this new miRNA-miRNA pathway may pro-
vide a new sight on the diagnosis, treatment and
prognosis of NPC.

Conclusions

In a summary, we found that miR-29¢ was further con-
firmed to be down-regulated in NPC cell lines HNE-1,
CNE2, C666-1 and tissues, and firstly reported that res-
toration of miR-29¢ increases the expression miR-34c
and miR-449a which were regulated by DNA methytran-
ferases through epigenetic factors. Our experiments veri-
fied that DNMT-3a and -3b are the targets of miR-29c.
As epigenetic regulation is reversible, the effects can be
available through specific drugs such as DNMT inhibi-
tors (5-Aza-CdR) with or without HDAC inhibitor
(TSA). Another kind of strategy, oligonucleotides (syn-
thetic miRNA oligonucleotides) can be used directly in
vivo to correct the disorders in miRNA expression
levels, which is expected as a new therapeutic tool for
the nasopharyngeal carcinoma patients.
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