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Abstract

Background: Antiangiogenic treatments have been shown to increase blood perfusion and oxygenation in some
experimental tumors, and to reduce blood perfusion and induce hypoxia in others. The purpose of this preclinical
study was to investigate the potential of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and
diffusion weighted MRI (DW-MRI) in assessing early effects of low dose bevacizumab treatment, and to investigate
intratumor heterogeneity in this effect.

Methods: A-07 and R-18 human melanoma xenografts, showing high and low expression of VEGF-A,
respectively, were used as tumor models. Untreated and bevacizumab-treated tumors were subjected to
DCE-MRI and DW-MRI before treatment, and twice during a 7-days treatment period. Tumor images of
K" (the volume transfer constant of Gd-DOTA) and v, (the fractional distribution volume of Gd-DOTA)
were produced by pharmacokinetic analysis of the DCE-MRI data, and tumor images of ADC (the apparent
diffusion coefficient) were produced from DW-MRI data.

Results: Untreated A-07 tumors showed higher K™, v, and ADC values than untreated R-18 tumors.
Untreated tumors showed radial heterogeneity in K™, ie, K" was low in central tumor regions and
increased gradually towards the tumor periphery. After the treatment, bevacizumab-treated A-07 tumors
showed lower K™" values than untreated A-07 tumors. Peripherial tumor regions showed substantial
reductions in K", whereas little or no effect was seen in central regions. Consequently, the treatment
altered the radial heterogeneity in K™"°. In R-18 tumors, significant changes in K™ were not observed.
Treatment induced changes in tumor size, v., and ADC were not seen in any of the tumor lines.

Conclusions: Early effects of low dose bevacizumab treatment may be highly heterogeneous within tumors
and can be detected with DCE-MRI.
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Background

To grow beyond a few millimeters in size, solid tumors
need to establish vascular networks that can supply the
tumor cells with oxygen and other nutrients [1]. The
tumor cells produce and secrete several proteins that
stimulate or inhibit angiogenesis, and the rate of angio-
genesis is governed by the balance between these pro- and
antiangiogenic factors [2]. Several antiangiogenic strat-
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egies are being investigated, including treatments with
endogenous antiangiogenic facors or small peptides that
mimic these factors [3, 4], monoclonal antibodies against
proangiogenic factors or their receptors [5, 6], and tyro-
sine kinase inhibitors which may target multiple proangio-
genic receptors [7]. The antiangiogenic treatments are
generally not cytotoxic, and treatment-induced reductions
in tumor volume often appear late compared to vascular
effects [8]. It is therefore recognized that assessment of
functional parameters are needed to detect early effects of
antiangiogenic treatment.
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Although antiangiogenic treatments may inhibit tumor
growth when used alone, the therapeutic benefit may be
even greater when used in combination with conven-
tional therapies such as radiation and chemotherapy [9].
The effect of radiation and chemotherapy can be signifi-
cantly affected by the tumor microenvironment, thus
tumors with extensive hypoxia are more resistant to ra-
diation and some forms of chemotherapy, and poor
blood perfusion may reduce the uptake of chemothera-
peutic drugs [10]. Antiangiogenic treatments have been
reported to reduce blood perfusion and induce hypoxia
in some experimental tumors [6, 11], and to increase
blood perfusion and oxygenation in others [5, 12]. The
reasons for these different effects are not well under-
stood but may have significant impact on combination
therapy [9]. It has been suggested that the effect of anti-
angiogenic treatment may vary with time after treat-
ment, and that low doses of the antiangiogenic agent are
required to increase blood perfusion and oxygenation
[13]. It is also possible that the effect of antiangiogenic
treatment may vary within tumors, although studies
investigating this possibility are sparse.

Dynamic contrast enhanced magnetic resonance im-
aging (DCE-MRI) and diffusion-weighted MRI (DW-MRI)
have been used to evaluate the effect of antiangiogenic
treatment [14]. In DCE-MRI, pharmacokinetic models are
used to describe the tumor uptake of an intravenously ad-
ministered contrast agent. The most common model is
the generalized pharmacokinetic model of Tofts et al. [15].
In this model, the transfer rate constant, K"*", and the
fractional distribution volume, v., are estimated. K™
generally reflects blood perfusion and the vessel perme-
ability - vessel surface area product, and v, reflects the
extravascular extracellular volume fraction [15]. In DW-
MRI, the apperant diffusion coefficient (ADC) is esti-
mated. This parameter has been shown to reflect cell
density and to be sensitive to necrotic tissue in untreated
tumors [16, 17]. Reductions in K™ or K" related pa-
rameters have been reported in most studies evaluating
the effect of antiangiogetic treatment with DCE-MRI [14,
18], whereas both reductions and increases in ADC have
been reported in studies evaluating the effect of antiangio-
getic treatment with DW-MRI [19, 20]. In most of these
studies, high doses of antiangiogenic agents have been
used, and intratumor heterogeneity in the treatment-
induced effects has not been investigated.

We have previously shown that DCE-MRI and DW-
MRI are sensitive to effects of sunitinib treatment in
human melanoma xenografts [21]. Sunitinib is a tyrosine
kinase inhibitor which targets several receptors including
vascular endothelial growth factor receptors 1-3 (VEGFR-
1, -2, and -3), platelet-derived growth factor receptors a-3
(PDGFR-a and PDGFR-p), stem cell growth factor recep-
tor (c-KIT), and fms-like tyrosine kinase receptor 3 (FLT
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3) [7]. In the previous study, we used a relatively high
sunitinib dose which reduced microvascular density, in-
creased hypoxic fractions, and induced necrosis. More-
over, the effect of treatment was evaluated once in
xenografts from one melanoma line. In the current study,
we evaluated the effect of low dose bevacizumab treat-
ment with the same MR-techniques. Bevacizumab is a
humanized monoclonal antibody that targets VEGEF-A,
and thus inhibits the VEGF-A pathway specifically [22].
Xenografts from two melanoma lines with different
VEGE-A expression were used, and the tumors were sub-
jected to DCE-MRI and DW-MRI before the treatment
started and twice during a 7-days treatment period. We
report that low dose bevacizumab treatment reduced
K" in the high VEGF-A expressing tumors, and that the
effect was more pronounced in peripherial than in central
tumor regions.

Methods

Mice and tumors

Adult (8-12 weeks of age) female BALB/c-nu/nu mice,
bred at our research institute, were used as host animals
for xenografted tumors. Animal care and experimental
procedures were approved by the Institutional Commit-
tee on Research Animal Care and were performed in
accordance with the Interdisciplinary Principles and
Guidelines for the Use of Animals in Research, Market-
ing, and Education (New York Academy of Sciences,
New York, NY, USA). The experiments were performed
with tumors of the amelanotic human melanomas A-07
and R-18, established and characterized as described
previously [23]. A-07 and R-18 cells were obtained from
our frozen stock and were cultured in RPMI-1640
medium (25 mM HEPES and L-glutamine) supplemented
with 13 % bovine calf serum, 250 mg/l penicillin, and
50 mg/l streptomycin. Approximately 3.5 x 10° cells in
10 ul of Hanks’ balanced salt solution (HBSS) were inocu-
lated intradermally in the hind leg by using a 100-pl
Hamilton syringe.

Bevacizumab treatment

Mice were given two intraperitoneal doses of 5 mg/kg
bevacizumab (Avastin, F. Hoffman-La Roche, Basel,
Switzerland) or vehicle (saline), with 3 days between the
doses.

Anesthesia

MRI was carried out with anesthetized mice. Mice were
given 0.5 L/min O, containing ~4.0 % Sevofluran (Baxter,
linois, USA) during MRI. Respiration rate and body core
temperature were monitored continuously by using an ab-
dominal pressure sensitive probe and a rectal temperature
probe (Small Animal Instruments, New York, USA). The
body core temperature of the mice was kept at 37 °C by



Gaustad et al. BMC Cancer (2015) 15:900

adjusting the hot air flow automatically, and the sevo-
fluran dose was adjusted to maintain a stable respiration
rate.

MR scanner and coil

MRI was performed by using a Bruker Biospec 7.05 T bore
magnet with a mouse quadrature volume coil (Bruker Bios-
pin, Ettlingen, Germany). The tumors were positioned in
the isocenter of the magnet and were imaged with axial
slices covering the entire tumor volume.

DCE-MRI

A fast spin echo pulse sequence (RARE) with varying repe-
tition time (TR =200, 400, 800, 1500, and 5000 ms), an
echo time (TE) of 8.5 ms, an image matrix of 128 x 128, a
field of view (FOV) of 3x3 cm? a slice thickness of
0.7 mm, and a slice gap of 0.3 mm was applied to measure
precontrast Ti-values (Tjo-map). Gd-DOTA (Dotarem,
Guerbet, Paris, France), diluted to a final concentration of
0.06 M, was administered in the tail vein of mice in a bolus
dose of 5.0 ml/kg during a period of 5 s by using an auto-
mated infusion pump (Harvard Apparatus, Holliston, MA,
USA). A 3-dimensional SPGR pulse sequence (3D-FLASH)
with a TR of 10 ms, a TE of 2.07 ms, a flip angle (a) of 20°,
an image matrix of 128 x 128 x 10, and a FOV of 3 x 3 x
1 cm® was applied to produce T;-weighted images with a
spatial resolution of 0.23 x 0.23 x 1.0 mm?, and a temporal
resolution of 14.8 s. T;-weighthed images were recorded
before Gd-DOTA injection, and every 14.8 s for 15 min
after the injection (6 precontrast, and 59 postcontrast
images). According to the theoretical equation for SPGR
pulse sequences [24, 25],

sina- (l—e‘TR/Tl)

sina- (1—e‘TR/T1)
Ao Sl A )
1-cosa-e"TR/T1

_TE/T;
.e 2 ~ SO _—
1-cosa-e"TR/T

where S is the signal intensity, and S, is a constant
depending on scanner gain and proton density. The
approximation e"7%/T> = 1 is valid when T3 » TE, which
was verified to be the case in our experiments. Images of
phantoms with different Gd-DOTA concentration
showed that the signal intensities produced by the 3D-
FLASH followed the theoretical equation, confirming
that the pulse sequence was appropriate for measure-
ment of contrast agent concentration (Additional file 1).
In contrast, the 2-dimensional SPGR pulse sequences
available on the 7.05 T Bruker scanner (2D-FLASH)
produced signal intensities that deviated substantially
from the theoretical equation, and were thus inappropri-
ate for measurement of contrast agent concentration
(Additional file 1). Concentration of Gd-DOTA was cal-
culated from the T;-weighted images in three steps.
First, the constant Sy was calculated for each voxel by
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using the precontrast images and the T;,-map. Seccond,
T;-values were calculated for the postcontrast images.
Third, the changes in T;-values were converted to Gd-
DOTA concentrations (C) by using the equation [25]:

1 1

C-rGa-pora T, Tr

rea-pora is the relaxivity of Gd-DOTA which was
measured to be 3.70 mM 's™! for the 7.05 T Bruker scan-
ner. The DCE-MRI series were analyzed on a voxel-by-
voxel basis by using the pharmacokinetic model described
by Tofts et al. [15], and the arterial input function of
Benjaminsen et al. [26]:

Ktrﬂns Ktrans (7_p)

Ct(T):m'/(; Cu(t)e v dt,

where Cy4(T) is the Gd-DOTA concentration in the
tumor tissue at time 7, K™ is the transfer rate con-
stant, Hct is the hematocrit, C,(¢) is the arterial input
function, and v, is the fractional distribution volume of
Gd-DOTA. Numerical values of K" and v, were deter-
mined for each voxel from the best curve fit. Unphysio-
logical voxels (voxels with v.>1) were excluded from
the analysis. The number of unphysiological voxels did
not differ between untreated and bevacizumab-treated
tumors and were ~5 % for A-07 tumors, and ~2 % R-18
tumors. Calculation of Gd-DOTA concentrations and
pharmacokinetic modeling were done with in-house-
made software developed in Matlab (MathWorks, Natick,
MA, USA).

DW-MRI

DW-MRI was carried out by applying a diffusion-
weighted single-shot fast spin echo pulse sequence
(RARE) with a TR of 1300 ms, a TE of 26 ms, an image
matrix of 64 x 64, a FOV of 3 x 3 cm?, a slice thickness
of 0.7 mm, and a slice gap of 0.3 mm. Four different
diffusion-weightings with diffusion encoding constants
(b) of 200, 400, 700 and 1000 s/mm?, a diffusion gradi-
ent duration of 7 ms, and a diffusion separation time of
14 ms were used. Diffusion sensitization gradients were
applied in three orthogonal directions with the following
physical gradient combinations: [1 0 0], [0 1 0], [0 O 1].
ADC maps were produced with in-house-made software
developed in Matlab. Briefly, the directional diffusion
images were averaged on a voxel-by-voxel basis to non-
directional diffusion images. ADC values were calculated
for each voxel by fitting signal intensities (S) to the
mono-exponential model equation:

In(S(b)) = -b-ADC + ¢

by using a linear least square fit algorithm. The signal
decay of a large number of voxels was investigated to
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verify that the mono-exponential model gave good fits
to the data. The fits generally had a correlation coeffi-
cient of 0.95-0.99. DW-MRI was performed before
injection of contrast agent.

Statistical analysis

Statistical comparisons of data were carried out by the
Student’s t test when the data complied with the condi-
tions of normality and equal variance. Under other
conditions, comparisons were done by nonparametric
analysis using the Mann—Whitney rank sum test. The
Kolmogorov-Smirnov method was used to test for nor-
mality, and the Levene’s test was used to test for equal
variance. Probability values of P < 0.05, determined from
two-sided tests, were considered significant. The statis-
tical analysis was performed by using the SigmaStat
statistical software (SPSS Science, Chicago, IL, USA).

Results

Untreated A-07 and R-18 tumors were subjected to
DCE-MRI and DW-MRI to investigate whether the MR-
techniques were sensitive to differences between these
tumor lines. A-07 tumors generally showed higher up-
take of Gd-DOTA than R-18 tumors, and the uptake dif-
fered substantially for individual voxels in both tumor
lines. This is illustrated in Fig. 1 which shows plots of
Gd-DOTA concentration versus time and the corre-
sponding pharmacokinetic model fits for individual
voxels in a representative A-07 and R-18 tumor. The
signal-to-noise ratio was sufficiently high that well-
defined pharmacokinetic model fits were produced for
voxels with both high and low uptake of Gd-DOTA in
both tumor lines. The K", v,, and ADC image and the
K", v, and ADC frequency distribution of a represen-
tative A-07 and R-18 tumor are presented in Fig. 2a-b.
Untreated A-07 tumors showed significantly higher
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K™, y,, and ADC values than untreated R-18 tumors
(Fig. 2c-e; P < 0.001).

A-07 and R-18 tumors were divided in groups with
matched tumor sizes to receive bevacizumab treatment
or vehicle. The tumors were subjected to MRI before
the treatment started (day 0), and twice during the treat-
ment period (day 3 and day 7), allowing accurate meas-
urement of tumor volume at these time points. All
tumors grew during the 7-days treatment period, and
the bevacizumab-treated tumors did not differ from the
untreated tumors in size at any time point, regardless of
whether A-07 (Fig. 3a; P> 0.05) or R-18 tumors (Fig. 3b;
P> 0.05) were considered.

A-07 and R-18 tumors differed in their response to
low dose bevacizumab treatment. This is illustrated
qualitatively in Fig. 4 which shows the K"*"* images and
the K" frequency distributions of a representative
untreated A-07 tumor (Fig. 4a), a representative
bevacizumab-treated A-07 tumor (Fig. 4b), a representa-
tive untreated R-18 tumor (Fig. 4c), and a representative
bevacizumab-treated R-18 tumor (Fig. 4d). The images
were recorded before treatment, and 3 and 7 days after
the treatment start. Quantitative studies showed that
K" values were significantly reduced during growth in
A-07 tumors (Fig. 5a; day 7 vs day 0: P=0.032 for
untreated tumors, and P = 0.015 for bevacizumab-treated
tumors). After the treatment period, K"*" values were
lower in bevacizumab-treated than in untreated A-07
tumors, suggesting that the treatment reduced K™*"*
(Fig. 5a). This difference was borderline significant when
the absolute values of K™ were considered (P = 0.053)
and significant when the K™" values were normalized
to the pretreatment values (P =0.032). In R-18 tumors,
changes in K" during growth were small, and signifi-
cant differences between untreated and bevacizumab-
treated tumors were not found, regardless of whether
the absolute or normalized K™ values were considered
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Fig. 1 Uptake of Gd-DOTA in individual voxels. Plots of Gd-DOTA concentration versus time (symbols) and the corresponding pharmacokinetic model
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Fig. 3 Low dose bevacizumab treatment did not affect tumor growth. Tumor size before treatment, and 3 and 7 days after the treatment started
in untreated and bevacizumab treated A-07 (a) and R-18 (b) tumors. Colums, means of 4-7 tumors, bars, SEM. Statistical comparisons of the data
were carried out by the Student’s t test or the Mann-Whitney rank sum test. Significant differences in tumor size were not found between
untreated and bevacizumab-treated A-07 tumors (a; P> 0.05), or between untreated and bevacizumab-treated R-18 tumors (b; P> 0.05)
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(Fig. 5b; P>0.05). v, and ADC values did not change
during the treatment period for any of the tumor lines.
Thus neither growth-induced nor treatment-induced
changes in these parameters were observed (Fig. 5a-b;
P>0.05).

To investigate intratumor heterogeneity in treatment
effects, tumor images were divided in 5 concentric
regions of interest (ROIs) as illustrated in Fig. 6a-b.
Before the treatment period, A-07 tumors showed ra-
dial heterogeneity in K™, i.e., K™ values were low
in the central ROIs and increased gradually towards
the tumor periphery (Fig. 6¢; day 0, ROI 1 vs ROI 5:
P<0.001). In untreated A-07 tumors, K" was simi-
larly reduced in all ROIs during the treatment period,
and thus tumor growth did not alter the radial

heterogeneity (Fig. 6¢c; day 0 vs vehicle day 7). Com-
pared with untreated tumors, bevacizumab-treated A-
07 tumors showed similar K™*"* values in the central
ROIs and significantly lower K" values in the
tumor periphery after the treatment period (Fig. 6c;
vehicle day 7 vs bevacizumab day 7: P> 0.05 for cen-
tral ROIs, and P =0.016 for peripherial ROI). This im-
plies that the treatment was more effective for
peripherial than for central tumor regions, and conse-
quently the treatment altered the radial heterogeneity
in A-07 tumors. Radial heterogeneity in K" was
also found in R-18 tumors before the treatment
period (Fig. 6d; day 0, ROI 1 vs ROI 5: P = 0.048).
After the treatment period, bevacizumab-treated R-18
tumors did not differ from untreated R-18 tumors in
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any ROI, indicating that the treatment did not affect
any region in these tumors (Fig. 6d; vehicle day 7 vs
bevacizumab day 7: P> 0.05).

Discussion

A-07 and R-18 melanoma xenografts were used as tumor
models in the current study. We have previously shown
that A-07 and R-18 cells differ substantially in the expres-
sion and secretion of VEGF-A, and that A-07 tumors have
higher microvascular density, higher blood perfusion, and
lower cell density than R-18 tumors [27-29]. In the
current study, we demonstrate that these tumor lines also
differ in the MR-derived parameters K", v,, and ADC,
and we demonstrate that the tumor lines differ in their
response to low dose bevacizumab treatment.

K" generally reflects blood perfusion and the vessel
permeability - vessel surface area product [15]. However,
in tumors with a high and uniform vessel permeability,
the uptake of small-size contrast agents like Gd-DOTA
is not limited by the vessel permeability, and K™ re-
flects blood perfusion [30]. We have previously shown
that A-07 and R-18 tumors show high and similar per-
meability for macromolecules, and that K™ reflects
blood perfusion in these tumor lines [31, 32]. Conse-
quently, the difference in K™ values between A-07 and
R-18 tumors reported here probably reflected a differ-
ence in blood perfusion between the tumor lines. v,
reflects the extravascular extracellular volume fraction
which is inversely correlated to the cell density [15], and

ADC has been shown to reflect cell density and to be
sensitive to necrosis [16, 17]. Untreated A-07 and R-18
tumors show insignificant necrotic fractions but differ
substantially in cell density [29]. The difference in v, and
ADC values between A-07 and R-18 tumors thus prob-
ably reflected a difference in cell density between the
tumor lines.

We have previously shown that sunitinib treatment
reduces microvascular density and K" values in A-07
tumors, suggesting that the sunitinib-induced reduction
in K" reflected reduced blood perfusion in that study
[21]. It is highly likely that the treatment-induced reduc-
tion in K™ observed in the current study also reflected
reduced blood perfusion, because both sunitinib and
bevacizumab treatment inhibit the VEGF-A pathway [7].
Inhibition of the VEGF-A pathway has also been shown
to reduce vessel permeability in experimental tumors
[5], and consequently, the bevacizumab-induced reduc-
tion in K" reported here may also have been influ-
enced by reduced vessel permeability. The bevacizumab
treatment did not affect v, and ADC values in any of the
tumor lines, implying that the treatment did not change
cell density and did not induce necrosis. This observa-
tion confirms that the bevacizumab dose was low. In
contrast, increased ADC values reflecting induction of
tumor necrosis have been observed after sunitinib treat-
ment in A-07 tumors [21].

The different effect of low dose bevacizumab treat-
ment between A-07 and R-18 tumors was probably a
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Fig. 6 Intratumor heterogeneity in the effect of low dose bevacizumab treatment. a-b, K™ image of a representative untreated A-07 tumor (a), and
image illustrating how the tumor was divided in 5 concentric circular ROIs (b). The circular ROIs are bounded by lines drawn at distances of nR/5 from the
tumor center, where R is tumor radius and n is ROl number. Color bar shows K" scale, scale bars are 2 mm. c-d, K™ in 5 concentric circular ROls before
treatment, and in untreated and bevacizumab-treated tumors 7 days after the treatment started. The graphs refer to A-07 (¢) and R-18 (d) tumors. Symbols,
means of 4-9 tumors, bars, SEM. Statistical comparisons of the data were carried out by the Student’s t test or the Mann-Whitney rank sum test. After the
treatment period (day 7), differences in K™ values between untreated and bevacizumab-treated A-07 tumors were not significant in ROl 1-3 (P> 0.05),
were borderline significant in ROI 4 (P=0.063), and were significant in ROl 5 (P=
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0016). For R-18 tumors, significant differences between untreated and

consequence of a difference in the rate of VEGF-A in-
duced angiogenesis. Thus A-07 tumors show high
VEGEF-A expression, high microvascular density, and
high pretreatment K"**"* values, and respond to bevaci-
zumab treatment with reduced K™" values, whereas R-
18 tumors show low VEGEF-A expression, low micro-
vascular density, low pretreatment K" values, and no
change in K™ values after bevacizumab treatment.

In A-07 tumors, bevacizumab treatment reduced &
in peripherial regions with high pretreatment K
values and had little or no effect in central regions with
low pretreatment K™ values. We have previously dem-
onstrated that untreated A-07 tumors show radial het-
erogeneity in several vascular parameters including
microvascular density and blood perfusion [26, 33],
suggesting that these tumors show similar heterogeneity
in the rate of angiogenesis. These observations suggest
that bevacizumab treatment was most effective in tumor
regions with a high angiogenic rate. This suggestion is
consistent with several studies reporting that antiangio-
genic agents selectively removes immature blood vessels,

rans

rans

because the fraction of immature blood vessels is ex-
pected to be high in tumor regions with high angiogenic
rates [6, 12, 34].

In most studies evaluating the effect of antiangiogenic
treatment with MR techniques, intratumor heterogeneity
in the treatment effect has not been investigated [35].
Our study demonstrates that the effect of antiangiogenic
treatment may be highly heterogeneous within tumors,
and that careful monitoring of intratumor heterogene-
ities may provide mechanistic information about treat-
ment effects and may identify poorly responding tumor
regions. Detection of poorly responding regions can be
important in a therapeutic setting because these regions
may repopulate the tumor even if the treatment com-
pletely eradicates the tumor mass in other regions. If
the effect of antiangiogenic treatment is evaluated
with average parameters, poorly responding tumor re-
gions may be overlooked. In addition, our study sug-
gests that treatment-induced effects may be separated
from growth-induced effects by evaluating changes in
intratumor heterogeneities.
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Treatment-induced reductions in tumor size generally
occur late after antiangiogenic treatment [8]. However, if
non-responding patients could be identified shortly after
treatment initiation, any ineffective treatment could be
stopped to avoid toxicity, and other treatments could be
considered. In the current study, low dose bevacizumab
reduced K" without affecting tumor growth, suggest-
ing that DCE-MRI may be used to identify patients that
respond to low dose bevacizumab treatment before
treatment-induced reductions in tumor size can be
detected.

It has been suggested that antiangiogenic agents includ-
ing bevacizumab can selectively remove immature blood
vessels, increase tumor perfusion, and increase oxygen-
ation [5, 12, 13]. These effects have been labeled vascular
normalization and have been reported to occur within a
limited time period [36]. Vascular normalization may be
reversed if the treatment is stopped, and tumors may
switch to other angiogenesis pathways during treatment
and become resistant to the antiangiogenic agents. More-
over, the beneficial effects of vascular normalization may
be balanced by severe vascular regression after prolonged
exposure to antiangiogenic agents, or if the dose of the
antiangiogenic agent is too large [36]. Appropriate timing
and low doses are thus required to induce vascular
normalization. It has also been demonstrated that inhib-
ition of the VEGF-A pathway fails to normalize tumor
vasculature and induces hypoxia in some preclinical tu-
mors, suggesting that vascular normalization cannot be
induced in all tumor models [6, 34]. In the current study,
low dose bevacizumab treatment did not increase blood
perfusion in A-07 and R-18 human melanoma xenografts.
It is unlikely that the lack of increased blood perfusion
was due to inadequate observation time points or to too
large bevacizumab dose, because both similar and higher
bevacizumab doses have been shown to increase blood
perfusion and oxygenation at similar time points in several
tumor models, including human breast carcinoma xeno-
grafts, human ovarian carcinoma xenografts, human
neuroblastoma xenografts, murine melanoma, and murine
breast carcinoma [5, 12 37]. The effect of low dose bevaci-
zumab treatment reported here is similar to our previous
experience with sunitinib treatment. In those studies,
sunitinib treatment did not improve vascular function but
induced hypoxia in A-07 and R-18 tumors [11, 21]. Taken
together, our current and previous studies suggest that
inhibition of the VEGF-A pathway does not induce vascu-
lar normalization in these melanoma lines.

In tumors where antiangiogenic treatment induces hyp-
oxia, neoadjuvant antiangiogenic therapy is expected to
reduce the effect of radiation and chemotherapy [9, 10]. In
contrast, neoadjuvant bevacizumab treatment has been
shown to enhance the effect of radiation and chemother-
apy in preclinical tumors where bevacizumab normalizes
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the vasculature and the microenvironment [5, 12]. We
have previously shown that DCE-MRI and DW-MRI can
be used to identify tumors where antiangiogenic treatment
does not normalize the microenvironment [21]. In that
study, sunitinib treatment reduced K"*" values and in-
creased ADC values reflecting reduced perfusion and
induction of tumor necrosis. The current study suggests
that DCE-MRI can be used to identify such tumors, also
when the treatment does not induce necrosis. These tu-
mors respond to antiangiogenic treatment with reduced
K" values and no change in ADC values. Others have
reported that vascular normalization results in increased
K™ values and reduced ADC values [19 38]. Taken
together, these studies suggest that DCE-MRI and DW-
MRI may be used to monitor the effect of antiangiogenic
treatment to detect vascular normalization, and to identify
tumors where such treatment does not induce vascular
normalization. Importantly, the MR-techniques are able
to identify tumors where antiangiogenic treatment does
not normalize the vasculature also when the treatment
effect is small and tumor necrosis is not induced.

Conclusion

A-07 and R-18 tumors differed in the response to low
dose bevacizumab treatment, and the response was associ-
ated with the rate of VEGF-A induced angiogenesis.
Effects of low dose bevacizumab treatment were detected
by DCE-MRI before tumor growth was affected. Our
study suggests that DCE-MRI may be used to identify
tumors where antiangiogenic treatment does not induce
vascular normalization, also when the treatment does not
induce necrosis. Moreover, the effect of low dose bevaci-
zumab treatment was highly heterogeneous within A-07
tumors. Our study demonstrates that careful monitoring
of intratumor heterogeneity may identify poorly respond-
ing tumor regions, may provide mechanistic information
about the treatment effect, and may be used to differenti-
ate treatment-induced from growth-induced effects in
tumors similar to A-07 tumors.
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