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Abstract
Background The diagnosis of Parkinson’s disease (PD) and evaluation of its symptoms require in-person clinical 
examination. Remote evaluation of PD symptoms is desirable, especially during a pandemic such as the coronavirus 
disease 2019 pandemic. One potential method to remotely evaluate PD motor impairments is video-based analysis. In 
this study, we aimed to assess the feasibility of predicting the Unified Parkinson’s Disease Rating Scale (UPDRS) score 
from gait videos using a convolutional neural network (CNN) model.

Methods We retrospectively obtained 737 consecutive gait videos of 74 patients with PD and their corresponding 
neurologist-rated UPDRS scores. We utilized a CNN model for predicting the total UPDRS part III score and four 
subscores of axial symptoms (items 27, 28, 29, and 30), bradykinesia (items 23, 24, 25, 26, and 31), rigidity (item 22) and 
tremor (items 20 and 21). We trained the model on 80% of the gait videos and used 10% of the videos as a validation 
dataset. We evaluated the predictive performance of the trained model by comparing the model-predicted score 
with the neurologist-rated score for the remaining 10% of videos (test dataset). We calculated the coefficient of 
determination (R2) between those scores to evaluate the model’s goodness of fit.

Results In the test dataset, the R2 values between the model-predicted and neurologist-rated values for the total 
UPDRS part III score and subscores of axial symptoms, bradykinesia, rigidity, and tremor were 0.59, 0.77, 0.56, 0.46, and 
0.0, respectively. The performance was relatively low for videos from patients with severe symptoms.

Conclusions Despite the low predictive performance of the model for the total UPDRS part III score, it demonstrated 
relatively high performance in predicting subscores of axial symptoms. The model approximately predicted the total 
UPDRS part III scores of patients with moderate symptoms, but the performance was low for patients with severe 
symptoms owing to limited data. A larger dataset is needed to improve the model’s performance in clinical settings.
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Background
Parkinson’s disease (PD) is the second most common 
neurodegenerative disease, characterized by bradykine-
sia, resting tremor, muscle rigidity, and responsiveness 
to dopaminergic treatment [1, 2]. PD diagnosis and the 
evaluation of the effectiveness of its treatment require 
clinical examination. However, owing to the coronavirus 
disease 2019　pandemic, telemedicine, especially video 
consultation, has been promoted to reduce the risk of 
transmission [3, 4]. To further promote the use of tele-
medicine for PD, the development of methods that can 
be used to support the evaluation of PD symptoms in 
telemedicine is needed.

One potential method to evaluate PD motor impair-
ments remotely is video-based analysis [5]. Recently, 
convolutional neural networks (CNNs), a type of deep 
learning algorithm, have been used to analyze human 
actions from videos [6]. However, to date, these models 
have not been used to evaluate PD symptoms. If these 
CNN models can be used to evaluate PD symptoms from 
videos obtained using a standard video camera, remote 
evaluation through web cameras or smartphone appli-
cations, without in-person assessment, may become 
feasible.

In this study, we focused on gait videos because the gait 
of patients with PD includes many features characteris-
tic of PD symptoms, such as bradykinesia, shortness of 
step length, postural abnormality, decreased arm swing-
ing, and freezing of gait. In addition, as the recording of 
such gait videos does not require specialized skills and is 
not time-consuming, evaluation of PD symptoms from 
gait videos would be cost-effective. In both clinical prac-
tice and research, the Unified Parkinson’s Disease Rating 
Scale [7] (UPDRS) is widely used to evaluate PD motor 
symptoms. Therefore, the aim of this study was to assess 
the feasibility of predicting UPDRS scores from gait video 
data of patients with PD using a CNN model.

Methods
Patients and video recording
This study included patients with PD who were video 
recorded from April 2013 to January 2021 while being 
rated according to the UPDRS [7] for the diagnosis or 
evaluation of the efficacy of treatment at Hokkaido Uni-
versity Hospital. The diagnosis of PD was made based 
on the UK Parkinson’s Disease Society Brain Bank cri-
teria [8]. According to the accepted diagnostic criteria, 
we excluded patients with the following parkinsonian 
disorders: drug-induced parkinsonism due to dopa-
mine receptor blocking agents; vascular parkinsonism; 
and atypical forms of parkinsonism, such as progressive 
supranuclear palsy, multiple system atrophy, or cortico-
basal degeneration [9]. Additionally, we excluded patients 
with a history of stroke, hospitalization for a psychiatric 

disorder, or other neurological, metabolic, or neoplas-
tic disorders, as well as those with symptomatic mus-
culoskeletal diseases such as acute bone fracture, spinal 
canal stenosis, and osteoarthritis. The Hoehn and Yahr 
(HY) stages, Mini-Mental State Examination (MMSE) 
scores, and levodopa equivalent daily dose (LEDD) scores 
[10, 11] at the first UPDRS assessment were obtained 
for each patient using their medical records. We also 
obtained information on whether each patient received 
device-aided therapies (deep brain stimulation [DBS] 
or levodopa-carbidopa intestinal gel [LCIG] treatment) 
from the medical records.

The study protocol was approved by the institutional 
review board of the Hokkaido University Hospital 
(approval number: 020–0446), and the requirement for 
informed consent was waived owing to the retrospective 
nature of the study. Procedures involving experiments 
on human participants were performed in accordance 
with the ethical standards of the Committee on Human 
Experimentation of the institution in which the experi-
ments were conducted.

We used video data recorded during gait examination 
to predict the severity of motor symptoms. Videos were 
captured using a consumer-grade video camera (HDR-
XR500V and HDR-CX470B, Sony Corporation, Tokyo, 
Japan) at 30 fps with a resolution of 1280 × 720 px in MP4 
format. In the video recordings, patients wore either a 
hospital gown provided by the hospital or simple, com-
fortable clothes. The recordings were conducted in a flat 
hallway at Hokkaido University Hospital. The camera was 
placed on a tripod in a fixed location during the record-
ing. The participants were instructed to walk directly 
toward the camera, turn around, and walk directly away 
again. Although the walking distance was not predeter-
mined, the patients were instructed to begin walking 
away from the camera at a distance of 5 to 7 m and then 
return to a position in front of the camera. They were 
permitted to use a cane or handrail or to receive assis-
tance from medical staff during the video recording if 
needed. Tha patients received walking assistance without 
considering the laterality of their symptoms, and no spe-
cific protocol for providing walking assistance was estab-
lished beforehand. We excluded the video data of patients 
who walked for less than 10  s and those who could not 
walk even with assistance (i.e., the score of item 30 of 
the UPDRS part III was 4). Videos in which the camera 
was unstable during the recording were also excluded. 
Whether the video was taken during the medication-
on or medication-off phases varied across patients and 
was not determined in advance. In some cases, certain 
patients were recorded in both the medication-on and 
medication-off phases. Video data recorded for the same 
patient with and without medication and DBS (medica-
tion on/off and DBS on/off, respectively) or recorded on 
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different dates were regarded as different videos. We did 
not repeatedly record videos of the same participant on 
the same date and during the same treatment state.

Assessment of UPDRS score
Patients were evaluated using the UPDRS part III at the 
time of gait analysis, and this examination was included 
in the video recording. Two experienced movement dis-
order specialists (T. Kano from April 2013 to June 2017 
and S. Shirai from July 2017 to January 2021), both Japa-
nese Society of Neurology-certified neurologists, rated 
the UPDRS part III score.

Preprocessing of video data
Ten-second clips were extracted from the recorded vid-
eos, specifically those segments where patients began 
walking. We converted all the frames in the 10  s clips 
(300 frames per clip) into static images in JPEG format. 
The static images were resized to 224 × 398 px, and the 
resized images were cropped to retain only the center 
224 × 224 px.

CNN architecture
We used the ECO-Lite CNN architecture [6] in this 
study, an overview of which is provided in Fig. 1. ECO-
Lite is an end-to-end CNN architecture that learns 
spatiotemporal features from videos. It was originally 
developed to analyze human action videos and exhibited 
high performance in classifying 400 human actions in the 
“Kinetics” video dataset [12]. This CNN model consists 
of the following two submodules: 2D-Net and 3D-Net. 
2D-Net is a neural network with two-dimensional con-
volutional layers that are used to capture visual features 
of images from individual frames, whereas 3D-Net has 

three-dimensional convolutional layers that are used to 
capture temporal relations between frames.

The input frames were processed with the CNN model, 
as follows. First, the static frames extracted from videos 
were provided as input to 2D-Net; second, the output fea-
ture maps from 2D-Net were stacked temporally and fed 
to 3D-Net; and third, the output features from 3D-Net 
were used for making predictions. For each submodule, 
we chose the same models as those in the original report 
[6]: we used a subpart of the “BN-Inception” architec-
ture [13] for 2D-Net and a subpart of the “3D-ResNet18” 
architecture [14] for 3D-Net, and we attached a fully con-
nected layer for the prediction of the UPDRS score of the 
input video. We hypothesized that 2D-Net would extract 
static features of PD, such as postural abnormality, and 
3D-Net would extract temporal features, such as walking 
speed, arm swing, and freezing of gait.

The input data for the model in the original report 
were 16 frames extracted from each video [6]. Therefore, 
as input data in this study, we also used 16 color frames, 
224 × 224-px in size, extracted at equal intervals from 
each gait video. The frames were processed using a two-
dimensional convolutional network (2D Net) to yield 96 
feature maps, 28 × 28 px in size, for each frame. These fea-
ture maps were stacked temporally and fed into a three-
dimensional convolutional network (3D Net), which 
was used to analyze the relationships between different 
frames. Thus, the size of the stacked feature maps used 
as input was 96 × 16 × 28 × 28. The final output was a pre-
dicted score of the UPDRS for each video.

Model training
At first, we tried to have the model predict the total 
UPDRS part III score (maximum score: 108) from the 
gait videos. However, the videos did not contain some 

Fig. 1 Overview of the ECO-Lite architecture. Input data were RGB color images, 224 × 224 px in size. Sixteen frames were used from each video. The 
frames were processed using a two-dimensional convolutional network (2D Net) to yield 96 feature maps, 28 × 28 px in size, for each frame. These feature 
maps were stacked temporally and fed into a three-dimensional convolutional network (3D Net), which was used to analyze the relationships between 
different frames. Thus, the size of the stacked feature maps used as input was 96 × 16 × 28 × 28. The final output was a predicted score of the Unified Par-
kinson’s Disease Rating Scale (UPDRS) part III for each video
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aspects of PD symptoms such as voice, tremor, and 
rigidity, and it would have been difficult for the model 
to predict the total UPDRS part III score. Therefore, we 
categorized UPDRS part III into four subscores: axial 
symptoms, bradykinesia, rigidity, and tremor. The defini-
tions for each subscore were as follows: Axial symptoms 
included the sum of scores of item 27 (arising from a 
chair), 28 (posture), 29 (gait), and 30 (postural instabil-
ity) (with a subscore range of 0–16); bradykinesia con-
sisted of the sum of scores of items 23 (finger taps, total 
of bilateral hands), 24 (hand movements, total of bilateral 
hands), 25 (rapid alternating movements of hands, total 
of bilateral hands), 26 (leg agility, total of bilateral legs), 
and 31 (body bradykinesia and hypokinesia) (with a score 
range of 0–36); rigidity was indicated by the score of item 
22 (rigidity, total score of head, bilateral hands, and legs) 
(with a subscore range of 0–20); tremor comprised the 
sum of scores of items 20 (tremor at rest, total score of 
head, bilateral hands, and legs) and 21 (action or postural 
tremor, total of bilateral hands) (with a subscore range of 
0–28). We also evaluated the CNN model’s capability to 
predict these subscores from the gait videos.

In this study, we obtained an average of 10 videos per 
patient; however, this number greatly varied between 
patients. Therefore, we divided all video data randomly 
by stratifying the videos based on the UPDRS score 
instead of individual patients to create the training, vali-
dation, and test datasets (i.e., we permitted videos from 
the same patient to be in multiple datasets). We strati-
fied the videos into three groups according to the total 
UPDRS part III score as follows: (1) mild (bottom third), 
(2) moderate (middle third), and (3) severe (top third). 
By stratifying the videos according to the UPDRS score, 
we intended to train the model equally using videos with 
various severities of PD symptoms. Then, all the video 
data were randomly divided into 80% (591 videos) for the 
training dataset, 10% (73 videos) for the validation data-
set, and 10% (73 videos) for the test dataset, each with the 
same proportion of each stratified group. The training 
dataset was used to train the model, whereas the valida-
tion dataset was used to improve hyperparameters, such 
as the number of training epochs and the learning rate 
(lr). Finally, we used the test dataset to evaluate the mod-
el’s prediction performance using the parameters that 
showed the best prediction performance in the validation 
dataset.

The model was trained to predict the total UPDRS 
part III score and each subscore separately (in this study, 
we developed five distinct models to predict the total 
UPDRS part III score and each of the four subscores). 
The model-predicted scores were compared with neu-
rologists-assigned scores. The prediction errors were 
calculated as the mean squared error between these two 
scores. The CNN parameters were updated to reduce the 

mean squared error in predicting the total UPDRS part 
III score or the individual four subscores. In the previ-
ous report [6], the same model was trained using the 
“Kinetics” video dataset; therefore, we assumed that the 
already-trained model could capture basic visual features 
and their temporal patterns to recognize 400 different 
human actions. As a result of preliminary evaluations, we 
implemented a warm-start strategy using the parameter 
values of this pretrained model as initial values. We fine-
tuned those parameters by gradually training submodules 
with a small lr in the following schedule: 1–20 epochs, 
only the final fully connected layer was trained with ran-
dom initialization and lr = 0.001; 21–50 epochs, the fully 
connected layer and 3D-Net module were trained with 
lr = 0.0005; 51–70 epochs, all the parameters of the model 
were trained with lr = 0.0001; and 71–100 epochs, all the 
parameters of the model were trained with lr = 0.00001. 
For parameter optimization, we used the Adam opti-
mizer with a weight decay of 0.0005. We set a mini-batch 
size of 8. We also applied the following data augmenta-
tion techniques in every training epoch:

  • random horizontal flip (flipping the videos with a 
50% probability).

  • random rotation (rotating the videos within 5°).
  • random color jitter (changing the color values of the 

videos within 50%).
We used the Python (version 3.8.8) programming lan-
guage and PyTorch deep learning library (version 1.5.1) 
[15] to implement, train, and evaluate the CNN models.

Evaluation of the prediction performance of the model
The workflow of our prediction evaluation is illustrated 
in Fig.  2. After the model training described above, we 
evaluated the prediction performance using the test 
datasets. For prediction, the output values of the model 
were rounded to the nearest integers. To assess the dis-
agreement between the model-predicted and neurolo-
gist-rated scores, we calculated the mean absolute error 
(MAE) and the standard deviation (SD). We also calcu-
lated the coefficient of determination (R2) between the 
model-predicted and neurologist-rated scores to evaluate 
the goodness of fit of the model for predicting the total 
UPDRS part III score and each of the four subscores.

Results
During the study period, gait videos of 101 patients were 
recorded during the UPDRS examination. We excluded 
27 patients whose final diagnosis was atypical parkin-
sonism or vascular parkinsonism. Finally, 737 consecu-
tive gait videos of 74 patients with PD were analyzed 
in this study (mean, 10.0 ± 10.5 videos per patient). The 
demographic data of the participants are summarized in 
Table 1. The mean LEDD ± SD of all participants, except 
for one patient, at the first UPDRS assessment was 
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847 ± 444  mg. We excluded one patient from the calcu-
lation of mean LEDD owing to the usage of a ropinirole 
patch, the corresponding LEDD value for which is cur-
rently unavailable. Of the 737 analyzed videos, 323 were 
recorded during the DBS on state, and 2 videos were 
captured while the patients were undergoing LCIG treat-
ment. There was a total of 72 videos in which the patients 
used a cane or required assistance during the record-
ing. Additional demographic information for each of 
the 74 participants is presented in Additional file 1. The 
mean ± SD neurologist-rated scores for the total UPDRS 
part III and subscores of axial symptoms, bradykinesia, 
rigidity, and tremor were 23.7 ± 13.3, 4.2 ± 3.1, 9.8 ± 6.7, 
5.3 ± 3.7, and 2.3 ± 2.8, respectively. The distributions of 
the total UPDRS part III score are illustrated in Fig.  3, 
while the distributions of the four subscores are depicted 
in Fig.  4. The total UPDRS score and four subscores of 
each patient are provided in Additional file 2.

The CNN model was first trained on 591 videos in the 
training dataset; thereafter, predictions of the 73 videos 
in the test dataset was evaluated as described previously. 
Figure  5 shows the scatter plots of the predicted total 
UPDRS part III scores in the test dataset. The MAE ± SD 
for the prediction of the scores for the total UPDRS part 
III in the test dataset was 6.9 ± 5.2, and the R2 value for 
these predictions was 0.59.

Figure  6 demonstrates scatter plots of the predicted 
four subscores of UPDRS part III in the test dataset (a, 
axial symptoms; b, bradykinesia; c, rigidity; d, tremor). 
The MAE ± SD for the prediction of scores for axial 
symptoms, bradykinesia, rigidity, and tremor in the test 
dataset were 1.0 ± 1.1, 3.6 ± 2.6, 2.1 ± 1.7, and 2.1 ± 1.9, 
respectively. The corresponding R2 values for these 
predictions were 0.77, 0.56, 0.46, and 0.0, respectively. 
These results indicated that the model exhibited a more 

Table 1 Demographic data of participants (N = 74)
Characteristics Data
Women, n (%) 44 (59)
Men, n (%) 30 (41)
Age at first video assessment, years, mean ± SD 63.4 ± 8.2
Disease duration at first video assessment, years, mean ± SD 11.3 ± 5.0
HY stage at the medication-on state at first video assessment,
mean ± SD

2.6 ± 0.8

HY stage at the medication-off state at first video assessment,
mean ± SD

3.7 ± 1.1

MMSE score at first video assessmenta, mean ± SD 27.9 ± 2.0
LEDD score at first video assessmentb, mg, mean ± SD 847 ± 444
Patients who underwent DBS, n (%), mg, mean ± SD 42 (57%)
Patients who received LCIG, n (%) 2 (2.7%)
Patients who required assistance or used a cane at least once during the video recording, n (%) 31 (41.9%)
SD, standard deviation; HY stage, Hoehn and Yahr stage; MMSE, Mini-Mental State Examination; LEDD, levodopa equivalent daily dose; DBS, deep brain stimulation; 
LCIG, levodopa-carbidopa intestinal gel.
aTwo patients were not assessed via the MMSE.
bOne patient was excluded from the calculation of LEDD because of the usage of a ropinirole patch.

Fig. 2 Study workflow. First, we gathered gait videos of patients with Parkinson’s disease, which were recorded using a consumer-grade video camera. 
Ten-second clips were then cropped from these videos, and 16 static frames were extracted at equal intervals. After preprocessing of the frames, they 
were inserted into the ECO-Lite convolutional neural network (CNN) model for the prediction of the Unified Parkinson’s Disease Rating Scale (UPDRS) 
score. The model was trained using training and validation datasets. Finally, we compared the UPDRS scores rated by neurologists and those predicted 
by the CNN model using the test dataset
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Fig. 4 Histogram of the neurologist-rated subscores of the UPDRS part III score. (a) Axial symptoms, (b) Bradykinesia, (c) Rigidity, (d) Tremor

 

Fig. 3 Histogram of the neurologist-rated total UPDRS part III score
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accurate predictive performance for the subscore of axial 
symptoms than for the other subscores.

Finally, we divided the videos of the test dataset into 
groups based on the neurologist-rated total UPDRS part 
III score in 10-point increments and compared the model 
performance for each group. The model performance 
for each group is described in Table 2. The MAE values 
were larger in predicting the scores of videos with higher 
UPDRS scores (more than 40) those of videos with low 
and moderate UPDRS scores. In the prediction of high 
UPDRS scores, the mean model-predicted scores were 
apparently lower than the mean neurologist-rated scores, 
suggesting that the model tended to underestimate the 
UPDRS scores in cases where the UPDRS scores were 
high.

Discussion
In this study, we assessed the feasibility of predicting the 
UPDRS part III score from patients’ gait videos by using 
a CNN model. Only a few studies have compared video-
based (remote) and in-person assessments with the 
UPDRS. In one study conducted in a single institute in 
Spain with 44 patients with PD, the intraclass coefficient 
values between remote and in-person assessments with 
a modified version of the UPDRS part III were 0.53–0.68 
at three intervals [16]. In a study including 11 partici-
pants in Australia, the median difference and interquar-
tile range scores of a modified version of the UPDRS 
(sponsored by the Movement Disorder Society [17], 
MDS-UPDRS) between video-conference (remote) and 

in-person examinations were 3.0 and 1.5–9, respectively 
[18]. Compared with that in the abovementioned studies, 
our model’s predictive performance for the total UPDRS 
part III score seemed relatively low. A previous study that 
investigated the natural progression of the motor symp-
toms of PD reported that the UPDRS part III score in 
the drug-off state increased on average by 3.7 after 1 year 
[19]. The performance of our model seems too low to 
evaluate the natural progression of PD motor symptoms 
over 1 year. One of the potential reasons for its low per-
formance is that the gait videos used in this study did not 
contain all aspects of PD motor symptoms. As the gait 
videos included limited information regarding patients’ 
speech, tremor, and muscle rigidity, it was difficult for 
the model to predict the total UPDRS part III score, as 
these aspects are also contained in the score. Therefore, 
we conducted an assessment to determine if the model 
could predict the UPDRS subscores of axial symptoms, 
bradykinesia, rigidity, and tremor. Among these sub-
scores, the model displayed the highest performance in 
predicting axial symptoms, achieving an R2 value of 0.77. 
This high predictive performance might be attributed to 
the inclusion of items 28 (posture) and 29 (gait) in the 
axial symptoms subscore, which could be directly evalu-
ated from the gait videos. However, the model exhibited 
relatively lower predictive performance for the bradyki-
nesia and rigidity subscores, with R2 values of 0.56 and 
0.44, respectively. The severity of bradykinesia was par-
tially predictable from the gait speed, while the severity 
of rigidity was partially predictable from the arm swing. 
Nevertheless, the information available in the gait videos 
may not have been sufficient for accurate prediction of 
these subscores. The model failed to predict the tremor 
subscores, as indicated by an R2 value of 0. This could be 
attributed to the fact that the gait videos contained lim-
ited information on resting tremor involving the lower 
extremities or postural tremor, despite some patients 
exhibiting upper extremity tremor while walking. Addi-
tionally, the low sampling rate of frames in this model 
could have contributed to this issue. The frequency of 
resting tremor in typical Parkinson’s disease is 4–7  Hz 
[20]. However, in this study, we sampled 16 frames from a 
10-second video and input them into the model, resulting 
in a sampling rate of 1.6 Hz. This sampling rate was too 
low to adequately capture resting tremor, suggesting that 
the model failed to predict the tremor subscore.

Another factor that may have affected the predictive 
performance for the total UPDRS part III is the limited 
amount of data, especially for patients with severe symp-
toms. Although the model performed well in predict-
ing the UPDRS scores of patients with mild to moderate 
symptoms, the performance was low for videos that had 
been assigned high UPDRS scores by the neurologists. 
In all datasets, only 108 (14.7%) videos were assigned a 

Fig. 5 Scatter plots of neurologist-rated and CNN model-predicted scores 
for the total UPDRS part III score
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score of > 40 for the total UPDRS part III score. Owing 
to limited data, the model was biased toward the predic-
tion of values around the mean score and experienced 
difficulties in accurately evaluating patients with severe 
motor symptoms. Therefore, larger datasets, especially 
of patients with severe motor symptoms, would improve 
the performance of the model, and further studies will be 
required to resolve this issue.

We used the ECO-Lite architecture to analyze the gait 
videos. One of the major features of this model is that it 

initially performs two-dimensional convolution at the 
frame level to extract feature maps, followed by three-
dimensional convolution on these maps. This strategy 
sets it apart from other three-dimensional convolutional 
neural network architectures [21, 22] and offers the 
advantage of being computationally less expensive while 
still demonstrating high performance in video classifica-
tion tasks, all within a relatively short learning time [6]. 
Given these advantageous characteristics, we made the 

Table 2 Model performance in predicting the total UPDRS part III score based on neurologist-rated UPDRS scores
Neurologist-rated UPDRS score Number of videos Mean neurologist-rated 

score ± SD
Mean model-predicted 
score ± SD

Mean 
absolute 
error ± SD

0–10 10 5.8 ± 3.2 13.4 ± 4.2 7.8 ± 5.4
11–20 29 16.0 ± 2.9 18.0 ± 4.7 4.2 ± 3.3
21–30 13 26.0 ± 2.9 27.0 ± 7.0 5.6 ± 4.4
31–40 11 35.5 ± 3.4 30.5 ± 8.6 8.5 ± 4.5
41–108 10 47.7 ± 9.1 33.7 ± 7.7 14.0 ± 4.6
UPDRS, Unified Parkinson’s Disease Rating Scale; SD, standard deviation

Fig. 6 Scatter plots of neurologist-rated and CNN model-predicted subscores of UPDRS part III score. (a) Axial symptoms, (b) Bradykinesia, (c) Rigidity, 
(d) Tremor
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decision to utilize the ECO-Lite model for the current 
study.

The major strength of our study is our use of a CNN 
model to analyze video data for the direct prediction of 
a part of the UPDRS score, without performing feature 
extraction in advance. In most previous studies of video-
based analysis of the severity of PD motor symptoms, 
researchers used the position of a certain body part, such 
as the joints and fingers, to calculate the movement of 
that body part using pose estimation algorithms [23–26]. 
It is difficult to compare the accuracy of the evaluation of 
PD symptoms obtained by our model and those of pre-
vious studies because different items of the UPDRS were 
evaluated. However, our model has several advantages. 
First, our model requires only static frames of gait vid-
eos as input to predict UPDRS scores. In previous stud-
ies [23–25], further signal processing had to be applied to 
the data obtained from pose estimation algorithms before 
the severity of PD symptoms could be evaluated. In con-
trast, our method does not require this additional feature 
extraction. Second, our model could be used to predict 
the cumulative score of multiple items of the UPDRS, 
including items other than that for gait (item 29). Previ-
ous models using pose estimation algorithms could pre-
dict the scores of only those items in the UPDRS part III 
relevant to the analysis of joints [27]. Our model, how-
ever, could be used to evaluate a broader range of PD 
symptoms and could be more useful in clinical settings. 
Although the model could predict only the part of the 
UPDRS score associated with PD symptoms such as bra-
dykinesia, postural abnormality, and gait disturbance, our 
model is easy to use and could provide clinically useful 
information to evaluate PD symptoms.

An alternative solution to the remote assessment of PD 
symptoms is having patients wear sensing devices, such 
as accelerometers and gyroscopes [28]. There have been 
many studies in which PD symptoms, such as tremor, 
bradykinesia, postural instability, and gait impairment, 
were successfully assessed in this way [29]. However, sen-
sor-based assessment of PD symptoms has several limita-
tions. First, wearable devices are commercially available 
in only a few developed countries. Second, patients with 
PD are likely to be older individuals who may not be 
familiar with contemporary digital devices. Older indi-
viduals who cannot use wearable devices properly may 
not be included in studies on these devices, which may 
cause selection bias [28]. Conversely, our model uses 
only video data obtained from standard cameras, which 
are commonly accessible and easy to use. In contrast to 
sensor-based analysis, our method is difficult to use for 
the assessment of tremors. However, our model does 
not exclude the concurrent use of sensor-based analysis. 
Combining our model with wearable devices may allow 
the assessment of a broader range of PD symptoms.

This study has some limitations. A major limitation 
was that the number of participants was relatively small. 
In general, the performance of deep learning models can 
be enhanced by incorporating a larger amount of data for 
training. To address the limitation of having a small num-
ber of participants, we employed multiple videos from a 
single patient for training purposes and utilized a num-
ber of data augmentation techniques. However, the num-
ber of videos obtained varied greatly between patients. 
We accounted for this variance by randomly dividing all 
the video data and stratifying them based on the UPDRS 
score rather than on individual patients. Therefore, vid-
eos from the same patient were divided into training, 
validation, and test datasets. Although the UPDRS score 
varied even for the same patient with different medica-
tion states (medication on/off), DBS states (DBS on/off), 
and dates of video recording, the repeated use of videos 
from the same patient could have overestimated the final 
predictive performance of the model. Additionally, the 
use of repeated UPDRS ratings of the same patients could 
have created potential bias in the results. Second, we 
did not evaluate the inter-rater difference of the UPDRS 
scores between the two neurologists who assigned those 
scores because they did not assess the same patients at 
the same time; this could have also affected the result. 
Third, it is important to note that we did not strictly 
predetermine the walking distance during the gait video 
recording. This variation in walking distance might have 
influenced the predictive performance of the model. 
Fourth, we acknowledge that our assessment of the 
patient’s cognitive function was not exhaustive. Although 
we conducted the MMSE for most patients (except two) 
during the initial video recording, it is recognized that 
the MMSE may not be the most optimal instrument to 
detect cognitive impairment in PD [30]. Furthermore, for 
several patients, MMSE scores at follow-up assessments 
were not available, even though some patients were fol-
lowed up for up to seven years. Therefore, cognitive 
decline could have potentially influenced gait patterns in 
some patients. To address these limitations, further stud-
ies with additional datasets divided based on individual 
patients, including new patients under standardized con-
ditions with adequate cognitive assessment, are required 
to assess the external generalizability of the results. Fifth, 
because of the nature of the CNN, it is difficult to under-
stand which information from the videos was used by our 
model to predict the UPDRS score. We speculate that 
gait features, such as walking speed, posture, arm swing, 
and freezing of gait, were used. However, elements in the 
videos that are irrelevant to PD symptoms (e.g., patients’ 
clothes, medical staff, and the background scene) could 
have influenced the predicted score. By using videos 
with various backgrounds, the model would learn that 
the background is not relevant to the UPDRS scores. 
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Therefore, obtaining videos with various backgrounds 
through a multicenter study would contribute to the gen-
eralizability of the model. Sixth, it is important to note 
that this study did not include healthy controls, which 
hinders our ability to assess whether the model can accu-
rately detect Parkinson’s disease symptoms in a popula-
tion that includes healthy individuals. Finally, we could 
not assess the reproducibility of the model because we 
did not repeatedly record videos of the same participant 
on the same date and in the same treatment state.  In fur-
ther studies, the reproducibility of the model should be 
assessed.

Conclusion
In this study, we aimed to determine the feasibility of 
predicting UPDRS scores from gait video data of patients 
with PD using a CNN model. While the model exhibited 
a low predictive performance for the total UPDRS part 
III score, it demonstrated relatively high performance in 
predicting subscores of axial symptoms. The result sug-
gested that the model can capture aspects of PD symp-
toms, such as postural abnormality and gait disturbance, 
from gait videos and can thus be used to predict the 
UPDRS score associated with these symptoms. While the 
model’s predictive performance needs to be improved for 
use in clinical settings, we believe our model is a poten-
tial stepping-stone toward developing a computer-aided 
method for the evaluation of PD symptoms from patient 
videos. This kind of method will contribute to reducing 
patients’ burden of visiting the clinic and their exposure 
to diseases during the pandemic era.
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