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Abstract

Background: From a recent meta-analysis it appeared that online post-dilution hemodiafiltration (HDF), especially
with a high convection volume (HV-HDF), is associated with superior overall and cardiovascular survival, if
compared to standard hemodialysis (HD). The mechanism(s) behind this effect, however, is (are) still unclear. In this
respect, a lower incidence of intradialytic hypotension (IDH), and hence less tissue injury, may play a role. To
address these items, the HOLLANT study was designed.

Methods: HOLLANT is a Dutch multicentre randomized controlled cross-over trial. In total, 40 prevalent dialysis
patients will be included and, after a run-in phase, exposed to standard HD, HD with cooled dialysate, low-volume
HDF and high-volume HDF (Dialog iQ® machine) in a randomized fashion. The primary endpoint is an intradialytic
nadir in systolic blood pressure (SBP) of < 90 and < 100 mmHg for patients with predialysis SBP < 159 and ≥ 160
mmHg, respectively. The main secondary outcomes are 1) intradialytic left ventricle (LV) chamber quantification and
deformation, 2) intradialytic hemodynamic profile of SBP, diastolic blood pressure (DBP), mean arterial pressure
(MAP) and pulse pressure (PP), 3) organ and tissue damage, such as the release of specific cellular components, and
4) patient reported symptoms and thermal perceptions during each modality.

Discussion: The current trial is primarily designed to test the hypothesis that a lower incidence of intradialytic
hypotension contributes to the superior survival of (HV)-HDF. A secondary objective of this investigation is the
question whether changes in the intradialytic blood pressure profile correlate with organ dysfunction and tissue
damage, and/or patient discomfort.

Trial registration: Registered Report Identifier: NCT03249532 (ClinicalTrials.gov). Date of registration: 2017/08/15.

Keywords: Hemodialysis, Hemodiafiltration, Intradialytic blood pressure, Intradialytic tissue injury, Intradialytic
patient tolerance, Multicentre randomized controlled cross-over trial
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Background
Despite the use of high permeable dialyzers, which com-
bine diffusive with convective transport, the clinical out-
come of hemodialysis (HD) patients remains poor. In
online post-dilution hemodiafiltration (HDF), diffusion is
by and large similar to HD, while the amount of convect-
ive transport is considerable higher. Recently, four ran-
domized controlled trials (RCT) have been published
which compared HD with HDF [1–4]. Although the re-
sults of the individual studies were inconclusive, a recent
meta-analysis on individual participant data (IPD) showed
a superior outcome for patients treated with HDF (all-
cause mortality HR 0.86 [95% CI: 0.75; 0.99]). The largest
mortality reduction was obtained in patients receiving the
highest convection volume (high-volume HDF [HV-HDF]
> 23 L/1.73m2/session: all-cause mortality HR 0.78 [95%
CI: 0.62; 0.98], if compared to HD) [5].
Nonetheless, it is still unclear why HV-HDF is associ-

ated with an improved survival [6]. On theoretical
grounds, both the enhanced removal of middle molecular
weight uremic retention products and a superior bio-
incompatibility (BI) profile [7], including less inflamma-
tion [8, 9] and less dialysis-induced hypoxia [10, 11], may
play an important role. Moreover, since treatment with
HDF has been associated with a lower incidence of intra-
dialytic hypotension (IDH) than standard HD [12–15], in
which an altered sodium removal during HDF may play a
role [16], a lesser amount of dialysis-induced tissue dam-
age may also contribute to the beneficial effect of HDF on
survival.
Since IDH is a frequently occurring side-effect of HD

treatment and microcirculatory dysfunction is a promin-
ent feature of patients with advanced chronic kidney dis-
ease (CKD) [17, 18], every single dialysis session may
further deteriorate the already affected structure and
function of vital organs, such as the brain, gut and heart
[19]. After all, HD-associated cardiomyopathy may result
not only from the various inflammatory and metabolic
derangements of pre-dialysis CKD [20], but also from
HD-induced perfusion deficits [21–27], which is consid-
ered a model of repetitive organ ischemia-reperfusion
injury. In this respect it is interesting to note that an
absolute intradialytic nadir of SBP < 90 and < 100 mmHg
for patients with a predialysis SBP < 159 and ≥ 160
mmHg, respectively, appeared most strongly associated
with mortality in a large study, comparing the relation
between various definitions of IDH and outcome [28].
Considering the gut, HD-induced hypoperfusion may
cause disruption of the intestinal barrier and permit the
translocation of gut-derived endotoxins, bacterial DNA
and/or intact bacteria into the blood. Circulating bacter-
ial fragments may contribute to systemic inflammation,
cardiovascular disease, and reduced survival in these
patients [29–34].

As intradialytic blood pressure measurements were
not the primary endpoint in any of the above-mentioned
studies in HDF patients [12–15], it is still unclear if, and
if so, why this modality is associated with less IDH than
standard HD (S-HD). Since IDH can be alleviated by
HD treatment with cooled dialysate (C-HD) and (HV-)
HDF may induce cooling of the extracorporeal circuit
and subsequent cooling of the patient‚ thermal factors
may play an important role in this respect [12–15, 35–
44] and are even considered to be exclusively responsible
for the superior outcome of HDF treatment [45]. Yet,
despite the physical benefits of a reduction in IDH and
related symptoms, patients may suffer from shivering
and cold (sensations). Interestingly, from a large recent
RCT it appeared that intradialytic patient tolerance was
significantly better during HDF, if compared to treat-
ment with S-HD [3]. As of yet, however, it is unknown
which intermittent extracorporeal renal replacement
therapy (S-HD, C-HD, LV-HDF or HV-HDF) has the
most favorable intradialytic patient tolerance profile.
Altogether, current data suggests that (HV)-HDF is the
preferred treatment to circumvent dialysis-induced IDH,
and hence, to alleviate the repetitive microcirculatory
dysfunction and subsequent tissue damage of dialysis
treatment. So far, however, comparative data between S-
HD, C-HD, LV-HDF and HV-HDF are lacking.
Therefore, the protocol for the current investigation

with the original title “Effect of high-volume Online
hemodiafiLtration on intradiaLytic hemodynamic (iN)-
sTability and cardiac function in chronic hemodialysis
patients” (HOLLANT) was designed. In this randomized
cross-over clinical study, not only intradialytic
hemodynamics will be investigated, but also changes in
cardiac performance and signs of myocardial injury. In
addition, besides markers of inflammation and oxidative
stress, intradialytic tissue damage, as indicated by vari-
ous cell surface markers and the transfer of microbial
DNA (mDNA) from the gut to the blood, will be investi-
gated. Hence, finally, since cool dialysate may induce
cold (sensations) and shivering [37], patient tolerance
and thermal perception will be compared between the
four modalities.

Objectives
The primary objective of the HOLLANT study is to
evaluate whether intradialytic hemodynamic stability is
better preserved during HV-HDF, by comparing the fre-
quency of intradialytic hypotensive episodes between S-
HD, C-HD, LV-HDF and HV-HDF. The main secondary
objectives include intradialytic signs of tissue damage as
measured by Speckle Tracking Echocardiography (STE),
a diversity of laboratory parameters, and patient reported
outcome measures (PROMs), such as tolerance and cold
(sensations).
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Methods
Study design
The HOLLANT study is an open, cross-over, multicen-
ter, intervention RCT in chronic intermittent dialysis pa-
tients who will be exposed to four different dialysis
modalities: 1) S-HD: HD with a dialysate temperature of
36.5 °C. 2) C-HD: HD with a dialysate temperature
35.5 °C. 3) LV-HDF: HDF with a convection volume of
15 L/1.73 m2/session and a dialysate temperature of
36.5 °C. 4) HV-HDF: HDF with a convection volume of
≥23 L/1.73 m2/session and a dialysate temperature of
36.5 °C.
After enrollment, participants will be randomized cen-

trally to the four dialysis modalities by using computer
randomization software [46]. Randomization occurs in
blocks. Enrolled patients will be treated with their usual
dialysis modality (either HD or HDF) during the first 2
weeks of the study. Patients who cannot achieve or toler-
ate a blood flow rate ≥ 350 mL/min during this run-in
phase will be excluded before the actual start of the
study. Treatment times will be fixed at 4 h per session
during the entire conduct of the study. Thereafter, pa-
tients start the study-phase and will be treated with S-
HD, C-HD, LV-HDF or HV-HDF in a random order.
Each dialysis modality will last 2 weeks. The total study
duration is 2 (run-in phase) + 8 (study phase) = 10 weeks
per patient. An overview of the study is shown in Fig. 1.

Study population
We plan to include 40 patients. For reasoning (see
“Sample size considerations” below), patients will be
recruited from three dialysis facilities: a commercial dialy-
sis clinic (Niercentrum aan de Amstel, Amstelveen, The
Netherlands), a large community based clinical hospital
(St. Antonius Hospital, Nieuwegein, The Netherlands) and
a university hospital (Amsterdam UMC, location VU Uni-
versity Medical Center, Amsterdam, The Netherlands).
The in- and exclusion criteria are depicted in Table 1. Se-
vere incompliance to the dialysis procedure and accom-
panying prescriptions is defined as non-adherence to the
dialysis prescription.

Dialysis prescription and equipment
Dialysis modalities
HDF will be performed in the post-dilution mode with a
target convection volume (substitution volume + net
ultrafiltration [UF] volume) of 15 L (LV-HDF) or 25 L
(≥23 L, HV-HDF). Extracorporeal blood flow rate will be
targeted at 350–400ml/min and filtration fraction
(blood flow rate / convection flow rate) at 25–30%,
which have been proven to be feasible [49]. Substitution
fluid is prepared from the dialysis fluid by one additional
step of UF with a dialysis fluid filter (Diacap® Ultra, B.
Braun Avitum AG, Melsungen, Germany), before it is
infused into the blood after the dialyzer. The electrolyte
composition of the substitution fluid is identical to the
electrolyte composition of the dialysate.
For a given patient, treatment settings will be kept

similar in all treatment modalities, e.g. UF profile, start
of treatment with either empty or filled lines, blood flow
rate, session length and type of anticoagulant. Any clin-
ically necessary change will be documented.

Fig. 1 Overview of study scheme. The run-in phase during week − 1 and week 0 (total duration of 2 weeks) is followed by the four different
dialysis treatment modalities (S-HD, C-HD, LV-HDF, HV-HDF) in a randomized order (total duration of 8 weeks). = Non-invasive advanced
hemodynamic monitoring (Clearsight) during the first or second treatment of the last week and measurement of blood pressure every 15 min;
= assessment of STE, blood sampling and measurement of blood pressure every 15min; = measurement of blood pressure every 30min

Table 1 Inclusion and exclusion criteria

Inclusion criteria

- Patients treated with HD or HDF 3 x per week during at least 4 h for
at least 2 months.

- Ability to understand study procedures.

- Willingness to provide informed consent.

- Dialysis single-pool Kt/V for urea (spKt/Vurea)≥ 1.2a

- Achievement of a blood flow of ≥350ml/min and/or convection
volume of ≥23 Liter per treatment during the run-in phase.

- Dialysis access recirculation < 10%a.

Exclusion criteria

- Age < 18 years.

- Life expectancy < 3 months.

- Participation in another clinical intervention trial.

- Severe incompliance to the dialysis procedure and accompanying
prescriptions.

aBased on the most recent (before start of the study) measurements from
daily practice, in accordance with the applicable national and international
guidelines [47, 48]
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Dialyzers
Both HD and HDF will be performed with high-flux dia-
lyzers: Xevonta® 23 dialyzers (membrane material:
Amembris, i.e. polysulfon-based membrane with poly-
vinylpyrrolidone; UF coefficient: 124 ml/min/mmHg;
surface area 2.3 m2; sterilization by gamma radiation; ca-
pillary internal diameter 195 μm; B. Braun Avitum AG,
Melsungen, Germany). In exceptional cases, the attend-
ing nephrologist can decide to treat the patient with a
Xevonta® 18 dialyzer (membrane material: Amembris,
UF coefficient 99 ml/min/mmHg; surface area 1.8 m2;
sterilization by gamma radiation; capillary internal
diameter 195 μm; B. Braun, Avitum AG, Melsungen,
Germany), or comparable.

Dialysis machines
All dialysis treatments will be performed on the Dialog
iQ® dialysis machine equipped with Adimea®, automatic
blood pressure monitor (ABPM), Hematocrit (HCT)
sensor with integrated oxygen saturation (spO2) moni-
toring device, mantled with the captive tubing system
DiaStream® iQ (all B. Braun Avitum AG, Melsungen,
Germany).

Dialysis fluids
All treatments will be performed with ultrapure (UP) dia-
lysis fluids (< 0.1 CFU [colony forming units]/ml, < 0.03
EU [endotoxin units]/ml). Dialysate flow rate will be 500
mL/min during S-HD and C-HD, and 600ml/min in LV-
and HV-HDF (as the substitution fluid is derived from the
dialysate flow, the dialysis machine automatically increases
the dialysate flow during online HDF). The electrolyte
composition of the dialysis fluid is: Na 138–140mmol/L;
K 2.0–3.0mmol/L; HCO3 30–35mmol/L; Ca 1.25–1.75
mmol/L; Mg 0.5mmol/L; Cl 108–109.5 mmol/L; glucose
5.6 mmol/L; acetate 3mmol/L and will not be changed for
each individual patient during the conduct of the study.

Patient care
Routine patient care is performed according to current
national [47] and international [48] quality of care guide-
lines, including the measurement of single-pool Kt/V for
urea (spKt/Vurea) and access recirculation. As in daily
clinical practice, dry-weight is assessed weekly by the at-
tending nephrologist by evaluating clinical symptoms,
edema and blood pressure before, during and after dialy-
sis. All patients will be administered their usual dose of
low molecular weight heparin (LMWH) anticoagulation
(i.e. nadroparin or dalteparin). No sodium profiling will
be applied and the conductivity of the dialysis fluid will
be recorded continuously by the Dialog iQ dialysis ma-
chine during the conduct of the study. When a symp-
tomatic IDH occurs during treatment with a dialysate
temperature (Td) of 36.5 °C and there is no reaction to

fluid administration, Td will be lowered by 0.5–1.0 °C
according to standard protocol and noted on patients’
individual record list.

Data collection
Table 2 provides an overview of the data that will be col-
lected during the study.

Baseline data registration
At baseline, all relevant information will be documented:
i.e. demographical data, information on cardiovascular
disease (CVD), cause of renal failure, time on dialysis,
co-morbidity, medical history and medication. A history
of CVD is defined as a confirmative answer on any of
the questions regarding a previous acute myocardial
infarction, coronary artery bypass graft, percutaneous
transluminal coronary angioplasty, angina pectoris,
stroke, transient ischemic attack, intermittent claudica-
tion, amputation, percutaneous transluminal angioplasty,
peripheral bypass surgery, and renal percutaneous trans-
luminal angioplasty.

Baseline laboratory assessments
Data will be used from the last routine assessment as
indicated by the national guideline [47]: Hb, Ht,
phosphate, calcium, parathyroid hormone (PTH); spKt/
V urea (monthly). Residual kidney function will be
expressed as the estimated GFR (eGFR), calculated by
the mean of 24-h urinary creatinine and urea clearances
and adjusted for body surface area (mL/min/1.73 m2).
The plasma concentrations used for this calculation are
the mean of the values before and after dialysis. eGFR
is considered zero in patients with a urinary produc-
tion < 100 mL/day.

Dialysis-related recordings
Before dialysis, the bodyweight and the interdialytic
weight gain (IDWG) of the patients will be noted. Dur-
ing dialysis, hemodynamics will be recorded according
to the protocol (see below) as well as all other treatment
related variables, including UF volume, UF rate and on-
line monitoring of estimated Kt/V from UV-absorbance
measurements in spent dialysate via Adimea® [50]. Fur-
thermore, data on the anticoagulation type and dose,
vascular access (central venous catheter [CVC], graft or
AV fistula, including documentation of distance between
arterial needle and anastomosis in the 2 latter, vascular
access flow (if fistula or graft), needle size and type,
blood pump speed, dialysis machine and dialyzer. In case
of HDF treatment, the achieved convection volume will
be noted at the end of each procedure. Convection vol-
umes will be calculated as the sum of the intradialytic
weight loss and the substitution volume in L/session.
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Finally, at the end of each dialysis procedure the patients
achieved dry weight will be recorded.

Patient tolerance
Since simple questions on intradialytic symptoms appear
to predict patient outcomes better than complicated
questionnaires [51–53], a modified version of the Dialy-
sis Symptom Index (DSI) will be handed out after each
treatment period (Table 3). Thermal perception will be
assessed by the Visual Analogue Scale - Thermal Percep-
tion (VAS-TP) [54, 55], before HD(F) and after 1 and 3
h (Fig. 2). Upon a continuous line, patients can indicate
their actual thermal perception.

Hemodynamic monitoring
Diastolic (DBP) and systolic (SBP) blood pressure, pulse
pressure (SBP minus DBP), mean arterial pressure
(MAP: [(SBP + 2*DBP)/3]), heart rate (HR) and

intradialytic hypotensive episodes (IDH, see Primary
endpoint) will be recorded before, after and during each
dialysis treatment every 30 min (during the first week of
every treatment modality) and every 15 min (during the
second week). Measurements will be performed with a
manometric cuff in different sizes, which is connected to
the dialysis machine (automatic blood pressure measure-
ment cuff, B. Braun Avitum AG, Melsungen, Germany).

Non-invasive advanced hemodynamic monitoring
During the first or second dialysis of the last week of
every treatment modality, every 20 seconds MAP, stroke
volume (SV), heart rate, total peripheral resistance and
cardiac output (CO) will be obtained using the Clear-
sight monitor (BMEYE/Edwards Lifesciences,
Amsterdam, The Netherlands), which is a non-invasive
arterial pressure measuring device. This monitor turns
finger arterial pressure with a fast-pneumatic system to

Table 2 Overview of collected variables

Hemodynamic parameters Intradialytic SBP, DBP, MAP, PP, HR, IDH events, Clearsight measurements

Markers of cardiac damage CK-MB, EVs, intradialytic speckle tracking echocardiography

Markers of endothelial damage sv-ICAM-1, EVs

Markers of gut ischemia mDNA, sCD14

Markers of inflammation hs-CRP, IL-6R, EVs

Special biomarkers FGF23 C-term, EVs

Patient tolerance DSI, VAS-TP

Others pO2 from the arterial line, SaO2, body temperature

Table 3 Modified Dialysis Symptom Index (DSI)

During the past week: did you experience this symptom? Not at all A little bit Some-what Quite a bit Very much

1. Dizziness or lightheadedness 0 1 2 3 4

2. Nausea 0 1 2 3 4

3. Vomiting 0 1 2 3 4

4. Headache 0 1 2 3 4

5. Muscle cramps 0 1 2 3 4

6. Swelling of the legs 0 1 2 3 4

7. Shortness of breath 0 1 2 3 4

8. Chest pain 0 1 2 3 4

9. Itching 0 1 2 3 4

10. Feeling cold 0 1 2 3 4

11. Shivering 0 1 2 3 4

12. Feeling tired or lack of energy 0 1 2 3 4

13. Recovery time after dialysis:
0 = none
1 = after 1 h
2 = after half a day
3 = the next day
4 = the day of the next dialysis

0 1 2 3 4

Are there any other symptoms not mentioned on this questionnaire that you have experienced during the past week?
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account, as well as photoplethysmography to detect
changes in finger arterial diameter during inflations [56].
A volume clamp method is used whereby rapid varia-
tions in the cuff pressure allow maintenance of a con-
stant arterial diameter, with an automatic algorithm
(Physiocal). The pressure within the cuff is therefore re-
flective of finger arterial pressure [56]. The Clearsight
finger cuff will be attached to the mid-phalanx of the
third digit of the hand at the contralateral side of the
dialysis shunt. The heart reference system will be placed
on the middle of the left side of the thorax. The mea-
sured hand and the manometric arm cuff are placed at
the mid-thorax to account for hydrostatic pressure
differences.

Body temperature
Body temperature will be assessed before and after each
dialysis session by a tympanic thermometer (Genius 2
Tympanic Thermometer, Covidien, Mansfield, USA).

2D speckle tracking echocardiography
Speckle Tracking Echocardiography (STE) will be per-
formed before, after 1 and after 3 h of treatment during
the last dialysis of each modality. Two-dimensional left
ventricular (LV) measurements of wall thickness and
cavity diameters, 2D biplane Simpson measurement of
volumes and ejection fraction are measured using a
commercial scanner (Affiniti 70C, Philips Healthcare,
The Netherlands) with a fully sampled matrix array (S5–
1) transducer. These measurements are indexed for body
surface area (BSA). For the assessment of global longitu-
dinal deformation (GLS) as well as distribution of re-
gional longitudinal strain, 2DSTE is performed from an
apical position. Diastolic LV function is measured by 2D
LAVI (left atrial volume index), transmitral E/A ratio
and deceleration time, e’ wave velocity, E/e’ ratio and
SPAP (systolic pulmonary artery pressure). Estimated
right ventricular function will be done by TAPSE (tricus-
pid annular plane systolic excursion), s’ wave velocity
and RV (right ventricular) regional and global strain.
The data will be recorded electronically and assessed
off-line by a trained research physician in Xcelera Cardi-
ology Information Management Version 4.1 (Philips
Healthcare, The Netherlands).

Blood sampling
Blood sampling will be performed in the last session of
each dialysis modality, after the long interdialytic interval
(see Fig. 1). Blood samples will be drawn from the arter-
ial line of the extracorporeal circuit (ECC) before treat-
ment (but after administration of LMWH) and after 4 h
of treatment (see Table 2). After processing, all blood
samples will be stored at − 80 °C until assessment in the
central laboratory of the hospital of the Amsterdam Uni-
versity Medical Centers.

Markers of inflammation, cardiac- and endothelial damage
and FGF23
Soluble CD14 (sCD14), interleukin-6 receptor (IL-6R),
high sensitive C-reactive protein (hs-CRP), creatine kin-
ase myocardial band (CK-MB), soluble vascular intercel-
lular cell adhesion molecule 1 (sv-ICAM-1), and
fibroblast growth factor 23 C-terminal (FGF23 C-term)
will be assessed in EDTA or heparin plasma samples
after being placed on ice and centrifuged within 30min,
at 1800 g for 10 min.

Relative blood volume and oxygenation
Hematocrit measurements, reflecting relative blood
volume (RBV), and spO2 will be assessed continuously
in the ECC by the HCT sensor and with the integrated
spO2-monitoring device located on the Dialog iQ® dialy-
sis machine (B. Braun Avitum AG, Melsungen
Germany). RBV- and spO2 values will be read out from
the trend-files, which are retrieved by service techni-
cians. In addition, blood samples for pO2, pH, bicarbon-
ate and base excess analysis will be drawn from the
arterial line before and after treatment (at the moment
of activation and before de-activation of the oxygen sat-
uration monitoring device on the Dialog iQ®), and
assessed directly with a point-of-care device (Epoc blood
analysis, Epocal Inc., Ottawa, ON, Canada).

Bacterial DNA
Microbial DNA (mDNA) will be assessed in EDTA
blood with 16S–23S interspace (IS) pro after DNA isola-
tion. In short, IS-pro is a eubacterial PCR-based tech-
nique for detection of most bacterial species within a
sample, and is based on length and sequence polymor-
phisms of the bacterial 16S–23S ribosomal interspace

Fig. 2 Visual Analogue Scale – Thermal Perception (VAS-TP). Thermal perception will be assessed by the Visual Analogue Scale - Thermal
Perception (VAS-TP) before HD(F) and after 1 and 3 h. Upon the continuous line patients can indicate their actual thermal perception
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regions. IS-pro has been optimized to detect bacterial
loads as low as 1 CFU per 5 ml blood [57, 58].

Extracellular vesicles
Citrate blood samples will be centrifuged for 15 min at
2500 g, 20 °C to remove red blood cells. Subsequently,
the EV-containing supernatant is isolated and centri-
fuged again (15 min at 2500 g, 20 °C). The EV-containing
supernatant will be frozen and stored at − 80 °C until
further use. Before assessment, samples will be thawed
at 37 °C. Subsequently, direct measurement of the EVs
in plasma will take place, as extensively described by van
der Pol et al. [59].

Endpoints
Primary endpoint
The primary endpoint of this study is an absolute intradia-
lytic nadir in SBP of < 90 and < 100mmHg for patients
with a predialysis SBP < 159 and ≥ 160, respectively.

Secondary endpoints
Secondary endpoints include: 1) intradialytic LV cham-
ber quantification and deformation (longitudinal func-
tion with speckle tracking) and LV diastolic function; 2)
the intradialytic hemodynamic profile of SBP, DBP,
MAP and PP; 3) organ and tissue damage, such as the
release of specific cellular components; and 4) patient-
reported symptoms and thermal perceptions during each
modality.

Statistical methods
Descriptive data will be represented as mean ± standard
deviation (SD), median (interquartile range) or number
(percentage), when appropriate. The between-treatment
number of IDH episodes (based on an intradialytic nadir
in SBP as described above) will be analyzed using regres-
sion analysis with a Poisson distribution. The mean
inter-treatment variability of continuous variables will be
calculated using generalized linear mixed effects models
with a random intercept, random slope or both, based
on the lowest Aikaike’s Information Criterion. A two-
sided p-value ≤0.05 is considered statistically significant.
Statistical evaluations will be performed using IBM SPSS
Statistics version 26.0 (Chicago, IL, USA) or RStudio
version 1.1.456.

Sample size considerations
We plan to include 40 patients. Loss to follow-up (due
to an event) is expected to be about 20%. The number
of patients with complete follow-up will be sufficient to
detect a 40% lower risk (relative risk of 0.60, α = 0.05,
β = 0.80) in the occurrence of the primary endpoint. The
power calculation applied was designed for cross-over
studies [60].

Data management
Clinical data will be extracted from the hospital’s elec-
tronic information systems and dialysis machines. Data
will be collected on electronic case record forms (CRF)
using web-based Castor EDC [61]. Data will be entered
in the data file by an experienced research nurse or re-
search physician. Beforehand, ranges will be defined in
the electronic file for all data values to ensure their val-
idity and integrity. Data entry will be checked for 5% of
randomly selected CRFs. Patient data will be coded.
Analyzing and publication of the results of this study
will be performed anonymously.

Potential consequences of the COVID-19 pandemic
Given the current COVID-19 pandemic and the fact that
this study is carried out in a vulnerable population, it is
conceivable that the practical implementation of this
study will encounter some serious obstacles. As such, in-
terventions requiring direct patient contact and per-
formed solely in the interest of the study, such as
cardiac ultrasounds, may be undesirable in times of
alarming virus spread.

Discussion
The HOLLANT study is principally designed to evaluate
prospectively whether intradialytic hypotension, as
defined under the primary endpoint, is less frequently
observed during HV-HDF than during the three other
modalities (S-HD, C-HD and LV-HDF). Second, the
study aims to assess whether a more favourable intradia-
lytic hemodynamic profile, as measured by various
hemodynamic parameters including MAP and DBP, is
associated with a lower degree of tissue injury and organ
dysfunction, and a better patient tolerance. After all, it is
conceivable that a lower blood pressure and/or dimin-
ished perfusion is accompanied by tissue injury, organ
dysfunction and subjective discomfort, since pre-existing
microcirculatory dysfunction is already present in the
majority of patients with advanced CKD [17]. In the
present study, all these aspects are addressed and,
depending on the outcome, analysed for potential
interrelationships.
As for the heart, functional changes as observed by

STE, will be correlated with intradialytic hemodynamics
and with biochemical signs of myocardial damage, such
as an increase in the blood levels of CK-MB and release
of EVs from cardiomyocytes. Considering the gut, hypo-
perfusion of the intestinal microcirculation may promote
enterocyte injury, loss of the gut-blood-barrier function
and increased permeability, thus permitting the intradia-
lytic transfer of mDNA into the circulation. Any increase
during dialysis will be correlated with both blood pres-
sure alterations and changes in the inflammatory state,
as measured by sCD14 and IL-6R. Tissue injury of
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various origin, including circulating blood cell elements,
the endothelium and cardiomyocytes will be assessed by
measuring alterations in the blood levels of EVs. The lat-
ter parameters will be correlated with intradialytic
hemodynamics as well, and the aforementioned signs of
tissue injury, including a rise in CK-MB and mDNA in
the blood. Finally, all topics will be related to changes in
tympanic body temperature, oxygen and inflammatory
status, patient reported temperature sensations and
treatment tolerance.
If HV-HDF appears indeed to be associated with a bet-

ter intradialytic hemodynamic profile and less tissue
damage, this will enhance our understanding why HDF
is associated with a superior patient outcome and allow
the nephrological community to improve this treatment
modality even further. If not, the outcome of this study
will anyhow teach us if, and to what extent intradialytic
hemodynamic instability is associated with tissue injury
and patient discomfort, and thus help the medical staff
to optimize dialysis treatment in individual cases.
The largest strength of this study is its randomized

cross-over design, which prevents that inter-individual
differences, such as co-morbidity and prescribed medica-
tion, influence the results. An important limitation may
be the duration of each dialysis modality, which may be
too short to answer all questions. Yet, to minimize pa-
tients’ discomfort the underlying protocol was designed
in its current form. Since this study is primarily designed
to investigate the intradialytic hemodynamics and its
consequences on organ and tissue damage between the
four most practiced extracorporeal dialysis techniques
(S-HD, C-HD, LV-HDF and HV-HDF), potential differ-
ences in thermal and sodium balance are not addressed.
Another important issue of any study with a cross-over
design is the duration of the wash-out period that will
most likely prevent carry-over effects of the previous
modality. For this study, a wash-out period of 1 week
(the first week of every treatment modality) was arbitrar-
ily chosen, since relevant information on this topic is
absent.

Trial status
The recruitment and inclusion of patients started at 29-
08-2018. Currently, 25 (62.5%) of the intended 40 pa-
tients have been included in the study.
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