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Abstract

Background: Diuresis has been observed within a week following renal transplantation, suggesting that the
procedure causes acute disturbance of renal water homeostasis. Aquaporin (AQP) 1 and AQP2, important proteins
for renal water reabsorption, have been identified in urinary extracellular vesicles (UEV-AQP1 and -AQP2), and
experimental studies have shown that the presence of uEV-AQP1 and -AQP2 may be an indicator of their levels of
expression in the kidney. However, the release patterns of ukV-AQP1 and -AQP2 during the acute phase following
renal transplantation are largely unknown.

Methods: In this study, we examined the release of UEV-AQP1 and -AQP?2 in recipients until 6 days (day 6) after
renal transplantation. At Miyazaki prefectural Miyazaki Hospital, Japan, uEVs were obtained from 7 recipients, all of
whom had received renal allografts from living donors. utVs were isolated by differential centrifugation.

Results: Immunoblotting analysis showed that the release of uEV-AQP2 was significantly decreased on day 1 in
comparison with a control sample (from 3 healthy volunteers), accompanied by high urine output and low urine
osmolality. Thereafter, the level increased gradually to the control level by day 6. The release pattern of uEV-AQP1
was similar to that of uEV-AQP2, but the levels did not reach statistical significance in comparison with the control
level at any of the time points examined. Evaluation of the relationship between urinary osmolality and utV-AQPs
revealed a significant correlation for uEV-AQP2, but not for uEV-AQP1.

Conclusion: These results indicate that acute diuresis after renal transplantation might be due to a decrease in the

renal expression of AQP2, whose level can be estimated from the amount released in UEVs.
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Background

Following the introduction of renal transplantation in
the 1950s, diuresis in the recipients had been occasion-
ally observed within a week after the operation [1, 2].
However, the underlying mechanisms had remained
largely unknown because the molecular mechanism
responsible for urinary concentration had yet to be clari-
fied. In 1992, Agre’s group discovered aquaporin-1
(AQP1), which is now known to play critical roles in
water reabsorption in the renal proximal tubule and in
maintaining the renal medullary osmotic gradient [3, 4].
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One vyear later, Sasaki’s group found another AQP,
AQP2, which is regulated by vasopressin, and subse-
quent studies have revealed that this protein is involved
in the mechanism of urinary concentration in collecting
ducts [4, 5]. Currently, thirteen AQPs (AQP0-12) are
known to exist in mammals, of which eight (AQP1-4,
6-8, 11) are expressed in renal epithelial cells [4].
Extracellular vesicles (EVs) are composed of exosomes,
microvesicles, and apoptotic bodies, among which exo-
somes and microvesicles have been a focus of intense
translational research with the aim of developing novel
biomarkers and therapeutics for renal disease [6—10].
Exosomes, small EVs (30-150nm in diameter), are
derived from internal vesicles enclosed in multivesicular
bodies (MVBs). When the MVBs fuse with the plasma
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membrane, internal vesicles are released as exosomes
into extracellular fluids such as blood and urine. Micro-
vesicles are larger EVs with a diameter of 50—-2000 nm,
budding directly from the plasma membrane. Because of
the structural similarity of exosomes and microvesicles,
and the lack of appropriate markers that can discrimin-
ate between them, the International Society for Extracel-
lular Vesicles has recommended the use of the generic
term “EVs” for all released vesicles [8, 10], and we
adopted this recommendation in the present study.

EVs are known to selectively contain functional pro-
teins from their cells of origin, and their release has also
been observed to depend on the state of their original
cells [11-15]. Among the various AQPs, AQP1 and
AQP2 have been identified in urinary EVs (uEVs), and
several studies with animal models have shown that
their levels in uEVs are related to their levels in the
kidney [15-17].

Several experimental studies have shown that AQP1
and AQP2 might be involved in the diuresis evident dur-
ing the acute phase after renal transplantation [18-20].
On the other hand, information from humans is still
very limited. We have observed that the release of
AQP1-bearing uEVs (uEV-AQP1) was decreased in a
renal transplant recipient 48 h after surgery [16]. How-
ever, to our knowledge, no other information is available,
and the release patterns of uEV-AQP1 and -AQP2 in the
acute phase of renal transplantation in humans remain
largely unknown.

In order to characterize the release patterns of
uEV-AQP1 and -AQP2 after renal transplantation, we
examined seven recipients in the acute phase after
surgery. We also measured marker proteins for uEVs
including tumor susceptibility gene 101 (TSG101)
protein and apoptosis-linked gene 2-interacting pro-
tein X (Alix) [15, 21].

In the present paper, since uEVs are produced through
the above-mentioned mechanisms, we use the term
“release” for uEVs such as hormones and autacoids.

Methods

Study participants

This study was approved by the Miyazaki Prefectural
Miyazaki Hospital Institutional Review Board in accord-
ance with the Ethical Guidelines for Clinical Studies in
Japan (Miyazaki of Health, Labour and Welfare, July 30,
2003, Amended December 28, 2004). Spot urine samples
were obtained from 7 patients (2 males aged 42 and 52
and 5 females aged 25, 43, 53, 59, and 62) on days 1, 2,
and 6 after receiving renal allografts from living donors
(including one case of pre-emptive renal transplantation)
at Miyazaki Prefectural Miyazaki Hospital Institution
between 2009 and 2011. All of the patients were treated
with a triple immunosuppressive regimen including
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tacrolimus (0.15—0.3 mg/kg/day, Astellas Pharma Ltd.,
Tokyo, Japan), mycophenolate mofetil (2 g/body/day,
Novartis, Basel, Switzerland), and methylprednisolone (8

mg/body/day, Sanofi Aventis, Paris, France). Also,
basiliximab (20 mg/body/day, Novartis) was added on
days 0 and 4.

We employed a standard form of fluid management,
including infusion during the operation and compensa-
tory infusion in accordance with urine output after the
operation. Since the patients had rather limited water in-
take during the first 24 h after the operation, compensa-
tory infusion was carefully performed. Thereafter, their
water intake increased. When the patients were able to
drink well and their water balance was maintained, the
infusion was withdrawn.

A spot urine sample from donor was also collected on
days 1, 2, and 6 in some cases. Control spot urine
samples were also collected from 3 healthy male
volunteers aged 21 to 46 years. A sample made from the
three healthy volunteers was always used to normalize
quantification in each gel. Urine osmolality was
measured using an automatic osmometer (Osmostation
om-6060, Arkray, Kyoto, Japan).

Isolation of uEVs

Isolation of uEVs was performed as described previously
[16]. Briefly, just after collection, each urine sample was
mixed with a protease inhibitor mixture (final
concentration, 1 mM EDTA, 0.5mM p-amidinophenyl
methanesulfonyl fluoride hydrochloride, and 0.12 mM
leupeptin). Thereafter, the urine was centrifuged at 1000
x g at 4°C for 15min to eliminate urinary debris. The
supernatant was centrifuged at 17,000 x g at 4 °C for 30
min. The resulting supernatant was then ultracentri-
fuged at 200,000 x g (Optima TL Ultracentrifuge,
Beckman Instruments, CA) at 4°C for 1h to isolate a
low-density membrane fraction. Many studies use the
term exosomes to refer to the EVs in this low-density
membrane fraction [10]. After the ultracentrifugation, a
protease inhibitor mixture was added to the pellet.
Subsequently, the suspended pellet was solubilized in
4 x sample buffer (8% SDS, 50% glycerol, 250 mM Tris-
HCL, 0.05% bromophenol blue, 400 mM DTT, pH 6.8),
then incubated at 37 °C for 30 min and stored at — 80 °C
until use.

Gel electrophoresis and immunoblot analysis

Immunoblot analysis was performed as described previ-
ously [16]. Briefly, each urine sample was loaded with an
equal amount of creatinine per lane, and separated by
SDS-PAGE. For the detection of each protein, we used
the following primary and secondary antibodies: anti-
AQP1 (catalog no. sc-20810, Santa Cruz Biotechnology,
Santa Cruz, Dallas, TX), anti-AQP2 (catalog no. sc-9882,
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Santa Cruz Biotechnology), anti-TSG101 (catalog no.
ab83-100, Abcam, Cambridge, UK), anti-Alix (catalog
no. sc-49268, Santa Cruz Biotechnology), anti-rabbit IgG
(catalog no. 7074, Cell Signaling Technology, Danvers,
MA), anti-mouse IgG (catalog no. 1858413, Thermo
Fisher Scientific, Waltham, MA), and anti-goat IgG
(catalog no. P0449, Dako Japan, Tokyo, Japan).
Antibody-antigen interactions were visualized using the
SuperSignal West-Femto Chemiluminescence detection
system (Thermo Fisher Scientific, Waltham, MA).
Quantitative analysis of the resulting bands was per-
formed using the WinRoof software package version 5.7
(Mitani, Tokyo, Japan).

Statistical analysis

Box plots were generated using the BoxPlotR: a web tool
for generation of box plots (http://boxplot.tyerslab.com)
[22]. Differences between renal transplant patients and
controls were analyzed by the Mann—Whitney U test or,
when the sample mean should be compared with a hy-
pothesized population mean, one sample t-test using
EZR (Saitama Medical Center, Jichi Medical University,
version 1.29) (http://www.jichi.ac.jp/saitama-sct/Saita-
maHP files/statmedEN.html) on R commander (version
2.1-7), which is a graphical user interface for R (The R
Foundation for Statistical Computing, version 3.2.1)
[23]. Statistical analysis of correlations between osmolal-
ity and uEV-AQPs was performed using Pearson’s
correlation test. All values were considered to be statisti-
cally significant at P < 0.05.

Results

Blood parameters in renal transplant recipients at 1 (day
1), 2, and 6 days after surgery are shown in Table 1. The
levels of blood urea nitrogen (BUN) in these patients
were within the normal range (8.6-22.9 mg/dl) at all of
the time points examined. The serum creatinine (SCr)
concentration on day 1 was higher and then decreased
to the normal range (male, 0.6—1.2 mg/dl, female, 0.4—
1.0 mg/dl). Figure 1 summarizes data for daily urine
volume and urine osmolality. Urine output on day 1 was
markedly higher than normal (500-2000 ml/day), and
thereafter decreased but still remained high. Similarly,
urine osmolality was obviously low in comparison with
the normal range (580-1130 mOsm/kg H2O) at any of
the time points examined, especially on days 1 and 2. In
fact, when we compared the urinary osmolality of the

Table 1 BUN and SCr concentrations in recipients

Day 1 Day 2 Day 6
BUN (mg/dl) 186+4.0 (7) 122+26 15.1+32
SCr (mg/dl) 26£0.7 (7) 1202 1.0+£02

Values are represented as means + SE. Parentheses indicate the numbers
of patients
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patients with our pooled data from healthy volunteers
(477-946 mOsm/kg H20, n =9), urine osmolality in the
recipients was significantly lower at any of the time
points examined (unfortunately, urine volume data for
healthy volunteers were not available). On the other
hand, on days 1 and 2, the water balance was maintained
by isotonic infusion (see Methods). These data suggested
that the patients we had recruited exhibited acute diur-
esis after renal transplantation, being most prominent
on day 1.

Figure 2 shows a representative immunoblot of uEV-
proteins in a recipient and a donor. The levels of AQP1
and AQP2 in the recipient were reduced in comparison
with those of the control (shown on the far right) on
days 1 and 2, while on day 6 the levels recovered to the
control level. The level of TSG101 showed alterations
similar to those of AQPs, being somewhat higher than
the control level on day 6. The level of Alix was de-
creased on day 2 and increased on day 6. In the donor,
the levels of AQP1 and AQP2 were moderately de-
creased on day 2. Figure 3 summarizes the data from the
immunoblot analyses of the recipients. Release of uEV-
AQP2 in recipients was significantly decreased on day 1.
On day 2, in 5 out of 7 patients, a decreased release of
uEV-AQP2 was observed, but the decrease did not reach
significance. The level on day 6 was comparable to the
control level. For AQP1, a similar tendency was ob-
served but did not reach statistical significance in com-
parison with the control level at any of the examined
time points. Release of uEV-TSG101 was significantly
decreased on day 1 and the level on day 6 tended to be
increased. For Alix, the levels were increased at all of the
time points examined, becoming statistically significant
on days 2 and 6 in comparison with the control level.

Next, we examined the correlation between urine
osmolality and release of uEV-AQP1 or -AQP2 using all
of the data from recipients (Fig. 4). This revealed a
significant relationship between osmolality and release
of uEV-AQP2, but not that of uEV-AQP1.

Discussion

One major finding in this study was that release of uEV-
AQP2 might be applicable as a biomarker of the urinary
concentration defect in renal transplant recipients. A
significant reduction in the release of UEV-AQP2 was
observed on day 1, accompanied by high urinary output
and low urine osmolality. Thereafter, the release of
uEV-AQP2 gradually increased to the control level,
along with recovery of the urinary concentration
mechanism. Furthermore, a significant correlation be-
tween urinary osmolality and release of uEV-AQP2
was observed. On the other hand, the correlation for
AQP1 was not significant. These data indicate that
release of uEV-AQP2 might be an indicator of the
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Fig. 1 Urinary volume and osmolality in renal transplant recipients. Dot and box plots of urine volume (a) and osmolality (b) are shown for
recipients on days 1, 2, and 6. The central line, top border and bottom border represent the median, 25th and 75th percentiles, and the whiskers
show 1.5 times the interquartile range from the lower and upper percentiles. Only four samples were available for measurement of urine volume
on day 2. Parentheses indicate the numbers of patients
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urinary concentration defect in recipients within a
week after renal transplantation.

Previously, we observed a decrease in release of uEV-
AQP2 in rats treated with gentamicin [17]. Along with
this decrease, we also detected a defect in the urinary
concentration mechanism and polyuria, and a reduced
level of renal AQP2 expression. Although the present
study did not examine the renal expression level of
AQP2, our previous observation strongly suggests that
the decrease in the release of uEV-AQP2 in recipients
was due to the reduced renal expression of AQP2.

In the present study, tacrolimus was used to suppress the
immunoreaction after renal transplantation. Tacrolimus is
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Fig. 2 Representative immunoblot images of AQP1, AQP2, TSG101,
and Alix in urinary extracellular vesicles. Representative immunoblot
images of AQP1 (UEV-AQP1), AQP2 (UEV-AQP2), TSG101 (UEV-TSG101),
and Alix (UEV-Alix) in urinary extracellular vesicles in a donor and
recipient. Urine was collected from each individual on days 1, 2, and 6.
The control sample was made from 3 healthy volunteers

known to inhibit phosphatase 2B [24], which would be ex-
pected to enhance the phosphorylation of AQP2. Increase
in the phosphorylation of AQP2 in the renal collecting duct
cells would stimulate the translocation of AQP2 from
intracellular vesicles to the apical membrane, and the ex-
pression of AQP2 protein through increased transcription
[4]. Therefore, treatment of patients with tacrolimus is
considered to affect the release of uEV-AQP2. However,
several studies have shown that tacrolimus had little effect
on both the phosphorylation and the expression of AQP2
in the renal collecting duct cells [24, 25], and thus the
contribution of tacrolimus to the release of uEV-AQP2 was
considered to be minimal.

In contrast to the release of uEV-AQP2, that of uEV-
AQP1 tended to be decreased on day 1, but the decrease
did not become statistical significant in comparison with
the control group. Several experimental studies have re-
vealed that warm renal ischemia-reperfusion dramatic-
ally decreases the renal expression of AQP1 [26, 27],
suggesting a decrease in the release of uEV-AQP1 after
renal ischemia-reperfusion. On the other hand, in the
human renal transplantation setting, renal ischemia-
reflow has been performed at a low temperature in
comparison with the above experimental models. It has
been reported that a lower temperature reduces the
severity of renal ischemia-reperfusion injury [28]. There-
fore, a possible reason for the non-significant release of
uEV-AQP1 on day 1 may have been the different
temperature conditions for renal ischemia-reperfusion
between humans and experimental animals.

In the present study, the release patterns of uEV-
TSG101 and -Alix, both of which have been used as
exosomal marker proteins [15, 21], did not show a
comparable tendency. The release of uEV-TSG101 was
significantly reduced on day 1 and then increased to
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above the control level. On the other hand, the release
of uEV-Alix was higher at all of the time points exam-
ined in this study relative to the control group. Although
the reason for this discrepancy is currently unclear, one
possibility may be that factors other than the number of
exosomes released into urine affected the release of
either uEV-TSG101 or -Alix. Since Alix is involved in

cell death signaling as an apoptosis inducer [29], such
signaling might be activated at all time points. In order
to develop proteins in uEVs as a diagnosis tool, marker
proteins in the uEVs would be important as an internal
control for estimating the number of exosomes, and
therefore further studies will be needed to clarify the
internal control proteins that might be appropriate.
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UEV-AQP2, but not that of UEV-AQP1 (Pearson analysis, P < 0.01)
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Fig. 4 Correlation between urinary osmolality and release of UEV-AQP1 or uEV-AQP2. The relationships between urinary osmolality and release of
UEV-AQP1 (@) or -AQP2 (b) for all samples (on days 1, 2, and 6) are shown. The line is the least-squares regression line. n and r indicate the
number of individuals and the correlation coefficient, respectively. There is a significant correlation between urinary osmolality and the release of
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Our present findings suggest that uEV-AQP2 might be
a useful marker for estimation of renal AQP2 dysregula-
tion, thus affecting urinary concentration ability in recip-
ients after renal transplantation. Recently, the beneficial
effect of water intake has been discussed in terms of
preservation of kidney function in patients with certain
types of kidney disease through suppression of the
plasma level of vasopressin [30]. Since AQP2 is a
vasopressin-regulated water channel protein [4, 5], uEV-
AQP2 as a marker of renal water handling function
might be useful for determining whether water intake
therapy might be appropriate. Although direct measure-
ment of blood vasopressin is problematic, as most of it
(more than 90%) binds to platelets and is unstable in
collected plasma, it would be important in a future study
to evaluate the relationship between uEV-AQP2 and
plasma copeptin, which has been shown to be a useful
surrogate marker of vasopressin [31].

Conclusion

This study has clearly provided information on the
relationship between release of uEV-AQP2 and the renal
urinary concentration defect in the early phase after
renal transplantation. However, this results were limited
by the small sample size. Further studies with larger
samples may provide more accurate information
concerning the usefulness of this marker in renal
transplantation.
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