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Abstract 

Skin cancer stands as one of the foremost challenges in oncology, with its early detection being crucial for successful 
treatment outcomes. Traditional diagnostic methods depend on dermatologist expertise, creating a need for more 
reliable, automated tools. This study explores deep learning, particularly Convolutional Neural Networks (CNNs), 
to enhance the accuracy and efficiency of skin cancer diagnosis. Leveraging the HAM10000 dataset, a comprehensive 
collection of dermatoscopic images encompassing a diverse range of skin lesions, this study introduces a sophis-
ticated CNN model tailored for the nuanced task of skin lesion classification. The model’s architecture is intricately 
designed with multiple convolutional, pooling, and dense layers, aimed at capturing the complex visual features 
of skin lesions. To address the challenge of class imbalance within the dataset, an innovative data augmentation strat-
egy is employed, ensuring a balanced representation of each lesion category during training. Furthermore, this study 
introduces a CNN model with optimized layer configuration and data augmentation, significantly boosting diagnostic 
precision in skin cancer detection. The model’s learning process is optimized using the Adam optimizer, with param-
eters fine-tuned over 50 epochs and a batch size of 128 to enhance the model’s ability to discern subtle patterns 
in the image data. A Model Checkpoint callback ensures the preservation of the best model iteration for future 
use. The proposed model demonstrates an accuracy of 97.78% with a notable precision of 97.9%, recall of 97.9%, 
and an F2 score of 97.8%, underscoring its potential as a robust tool in the early detection and classification of skin 
cancer, thereby supporting clinical decision-making and contributing to improved patient outcomes in dermatology.
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Introduction
Skin, the largest organ of the human body, serves as the 
primary barrier against environmental factors and plays 
a crucial role in protecting the body from various path-
ogens and harmful UV radiation. However, being the 
outermost layer, it is susceptible to a range of diseases, 
including various forms of skin cancer, which is among 
the most common types of cancer globally.

Skin diseases can range from benign conditions 
like acne or eczema to severe forms of cancer such as 
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melanoma, basal cell carcinoma, and squamous cell 
carcinoma. Actinic keratoses (AK) and intraepithelial 
carcinoma (AKIEC) represent precancerous and early 
malignant growths, respectively, often arising from pro-
longed UV exposure. Basal cell carcinoma (BCC) is the 
most prevalent form of skin cancer, typically manifest-
ing as pearly or waxy bumps, while melanoma (MEL) is 
an extremely aggressive malignancy arising from mel-
anocytes, with potential for metastasis if not promptly 
treated. Benign keratosis-like lesions (BKL), dermatofi-
broma (DF), melanocytic nevi (NV), and vascular lesions 
present a spectrum of non-cancerous growths, each 
requiring careful assessment to rule out malignancy or 
address cosmetic concerns [1].

The differentiation between these conditions is vital, 
as it determines the treatment path and prognosis. The 
timely identification and treatment of AK and AKIEC can 
prevent progression to invasive carcinoma, while prompt 
intervention for BCC and MEL can mitigate the risk of 
metastasis and improve outcomes [2]. Furthermore, 
understanding the benign nature of BKL, DF, NV, and 
vascular lesions helps avoid unnecessary interventions 
while addressing patient concerns effectively.

Skin cancer specifically poses a significant health chal-
lenge due to its potential to spread to other body parts 
if not detected and treated early. Regular skin examina-
tions, sun protection measures, and awareness of con-
cerning changes in moles or skin lesions are essential for 
maintaining skin health and preventing the development 
or progression of skin cancer. Collaboration between 
patients, dermatologists, and healthcare providers is vital 
for comprehensive skin care, facilitating timely diagnosis, 
intervention, and long-term management strategies tai-
lored to individual needs and risk factors [3].

Early detection of skin cancer significantly increases 
the chances of successful treatment and patient survival. 
Dermatologists traditionally diagnose skin conditions 
using visual examinations, which may be supplemented 
by dermoscopy, a non-invasive skin surface micros-
copy. However, these methods rely heavily on the clini-
cian’s experience and can sometimes lead to subjective 
assessments.

The advent of machine learning and, more specifically, 
deep learning, has introduced new possibilities in the 
field of dermatology. By leveraging large datasets of der-
matoscopic images, deep learning models, particularly 
Convolutional Neural Networks (CNNs), can be trained 
to recognize and classify various skin lesions with high 
accuracy [4]. This approach has the potential to support 
dermatologists in making more accurate diagnoses, lead-
ing to improved patient outcomes.

The motivation behind this research is to harness the 
power of deep learning to aid in the early detection and 

accurate classification of skin cancer, thereby addressing 
a critical gap in dermatological care. Despite advance-
ments in medical technology, the rising incidence of skin 
cancer worldwide underscores the need for more acces-
sible and reliable diagnostic tools. The ability of CNNs 
to analyze complex dermatoscopic images and learn 
from vast amounts of data presents an opportunity to 
develop an automated system that can assist even non-
specialists in identifying potential skin cancers at an early 
stage [5]. This research is driven by the goal of democ-
ratizing access to high-quality diagnostic tools, espe-
cially in regions where dermatological expertise is scarce, 
and thereby contributing to the global fight against skin 
cancer.

This research paper presents a detailed study on the 
application of Convolutional Neural Networks to clas-
sify skin lesions using the HAM10000 dataset, which is 
a diverse collection of dermatoscopic images. The contri-
butions of this research paper are:

•	 Introduce a sophisticated CNN model tailored 
for skin lesion classification, which significantly 
enhances diagnostic accuracy.

•	 Employ innovative data augmentation methods 
to address the issue of class imbalance within the 
HAM10000 dataset, enhancing the robustness of the 
model.

•	 Integrate Model Checkpoint callbacks to preserve 
the best model iteration during training, ensuring 
optimal performance in practical applications [6].

The next section provides a thorough review of the 
literature, highlighting previous studies on the use of 
deep learning in dermatology. The Methodology section 
details the dataset, the CNN architecture, the training 
process, and the evaluation metrics used in this study [7]. 
The results section presents the outcomes of the model 
training and validation, including performance metrics 
and a discussion on the model’s diagnostic accuracy. 
Finally, the paper concludes with a summary of the key 
findings and suggestions for further research in this rap-
idly evolving field.

Related work
The fusion of artificial intelligence (AI) and deep learn-
ing has catalysed groundbreaking progress, significantly 
enhancing the precision of skin cancer diagnoses [8]. A 
notable study unveiled a convolutional neural network 
(CNN) that eclipsed dermatologists in identifying skin 
lesions, showcasing the model’s adeptness at distinguish-
ing between benign and malignant lesions and illustrating 
AI’s potential to bolster dermatological clinical decision-
making. Another study introduced an AI framework that 
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amalgamates image analysis with demographic data, 
presenting a more holistic diagnostic approach that sur-
passes conventional image-centric models in predictive 
accuracy, highlighting the benefits of integrating diverse 
data types in AI-driven diagnostics.

Traditional approaches
The traditional methods for diagnosing skin cancer pri-
marily involve dermatological examinations and biop-
sies, where skilled dermatologists visually assess lesions 
and may take tissue samples for further histopathological 
analysis. These methods, while effective, rely heavily on 
the expertise and availability of specialists. This reliance 
can introduce variability in diagnosis accuracy and limits 
accessibility, particularly in underserved areas [9].

Deep learning revolution
The integration of deep learning, particularly Convo-
lutional Neural Networks (CNNs), into dermatologi-
cal diagnostics marks a significant shift from traditional 
methods. CNNs excel in analyzing vast arrays of derma-
toscopic images, automating the detection and classifica-
tion processes [10]. These models can process detailed 
visual data at speeds and accuracies that challenge or 
even surpass human capabilities, transforming skin 
cancer diagnosis into a more efficient and standardized 
procedure.

Challenges in deep learning
Deploying deep learning models in clinical settings is 
not without challenges. Key issues include the black-box 

nature of these models, which often lack transparency in 
their decision-making processes, making clinical accept-
ance difficult. Additionally, deep learning requires large, 
well-annotated datasets that are expensive and labor-
intensive to compile. Models also face generalization 
challenges, where performance can drop when applied 
to new, unseen datasets, reflecting differences from the 
training data [11].

Recent advances
To address these challenges, recent research has focused 
on enhancing the robustness and applicability of deep 
learning models. Approaches such as transfer learning 
have been employed to adapt pre-trained models to new 
tasks with less data, significantly improving performance. 
Innovations continue to emerge in model architecture 
and training methodologies, with some studies incorpo-
rating multiple data types—combining image data with 
patient demographic and clinical history—to refine diag-
nostic accuracy. These advancements are paving the way 
for more reliable and accessible automated diagnostic 
systems in dermatology [12]. Table 1 compares the meth-
odologies and results to contextualize this study within 
the broader field.

Methodology
This section delineates the methodology adopted in 
this research to develop and evaluate the CNN model 
for classifying skin lesions using the HAM10000 data-
set. It includes details on data preprocessing, model 
architecture, training procedures, and evaluation 

Table 1  Recent studies

Study Dataset Used Accuracy Remarks

Bhuvaneshwari Shetty et al. (2022) 
[13]

HAM10000 dataset (subset 
with augmentation)

95.18% Focuses on detecting dangerous skin 
illnesses, particularly skin cancer.

Ahmad Hameed et al. (2023) [14] MNIST HAM10000 dataset 95.2% Addresses challenges in skin lesion 
detection and classification.

Md. Khairul Islam et al. (2021) [15] HAM10000 dataset 96.10% in training, 90.93% in test-
ing

Focus on skin cancer detection.

Ankita Pramanik & Rivu Chakraborty 
(2021) [16]

Dermatoscopic images 
from the Kaggle dataset archive

87.58% Study on skin cancer detection 
in Caucasians in the USA.

Raut, Roshani et al. (2023) [17] Dermoscopy images database 90.1% AI integration for early melanoma 
identification.

Kalaycı, Serdar (2023) [18] ISIC 2019 and ISIC 2020 datasets AUC: 95.75% Focus on early skin cancer detection.

Maaz Ul Amin et al. (2024) [19] HAM10000 dataset, dataset of 3672 
categorized pictures

84.27% Study on global skin cancer concerns.

Aya Mostafa Mosa et al. (2022) [20] Augmented dataset of 17,731 
images + 3,800 from different types

Resnet18: 79.5%, Densnet121: 
81.2%, InceptionV4: 82.6%

Focus on melanoma caused by UV 
exposure.

Mariame Oumoulylte et al. (2023) 
[21]

ISIC dataset 87% Deep-learning models for binary clas-
sification of skin cancer.

Mohammad Atikur Rahman 
et al. (2024) [22]

Dataset of 2637 skin images Optimized NASNet Mobile: 85.62%, 
NASNet Large: 83.98%

DCNN-based model for skin cancer 
classification.
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metrics. Figure 1 depicts the diagrammatic representa-
tion of the workflow of prosposed model.

Dataset description
The HAM10000 dataset, integral to dermatological 
advancements, encompasses over 10,000 dermato-
scopic images, crucial for developing machine learning 
models for pigmented skin lesion diagnosis. It offers 
unparalleled diversity in skin tones, lesion types, and 
conditions, featuring seven distinct skin cancer cat-
egories: Actinic keratoses, intraepithelial carcinoma/
Bowen’s disease, basal cell carcinoma, benign kerato-
sis-like lesions, dermatofibroma, melanoma, and mel-
anocytic nevi, alongside various vascular lesions. This 
diversity is vital for training robust algorithms. Over 
half of the lesions are histopathologically verified, with 
the remainder confirmed via follow-up, expert consen-
sus, or confocal microscopy, ensuring data authentic-
ity. The dataset’s utility is enhanced by metadata, such 
as lesion IDs, allowing for longitudinal lesion analysis, 
crucial for developing models that recognize temporal 
lesion changes. The HAM10000 dataset is a compre-
hensive, validated resource that propels the develop-
ment of diagnostic tools in dermatology, offering a 
real-world dataset challenge to automate skin lesion 
analysis. Its depth, verification rigor, and inclusion of 
multiple cancer types make it an indispensable tool 
for improving dermatological diagnostic accuracy and 
reliability through machine learning. Figure  2 dem-
onstrates different categories of skin cancer in the 
dataset.

Image Preprocessing
Data preprocessing is a crucial step in preparing the 
dataset for training with a Convolutional Neural Net-
work (CNN). It ensures that the input data is in a suitable 
format and is conducive to the learning process. In this 
study, the data preprocessing involved three main steps: 
image resizing, normalization, and data augmentation. It 
ensures that the model treats all features (pixels, in this 
case) equally.

Image resizing
To ensure that all images fed into the CNN have a con-
sistent shape and size, each image in the HAM10000 
dataset was resized to a standard dimension. This uni-
formity is essential because CNNs require a fixed size for 
all inputs to maintain a consistent architecture, especially 
when it comes to applying filters and pooling operations. 
Resizing images helps in creating a standardized input 
feature dimension, enabling the network to systemati-
cally extract features across all samples. The formula for 
resizing the image to a desired width ​ and height is pre-
sented in Eq. 1.

Here, Ioriginal represent the original image with dimen-
sions Woriginal ∗Horiginal

Normalization
Normalization refers to the process of scaling the 
pixel values of the images to a range of 0 to 1. This 
is achieved by dividing the pixel values by 255 (since 

(1)Iresized = resize(Ioriginal, (Wnew,Hnew)

Fig. 1  Workflow of the model
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pixel values range from 0 to 255) [23]. Normalizing the 
data is beneficial for the training process as it helps in 
speeding up the convergence by reducing the initial 
variability of the weights. When data is normalized, 
the gradients used in backpropagation are in a more 
manageable range, which helps in a smoother and 
faster optimization process, leading to more stable and 
quicker convergence. The formula for normalization is 
shown in Eq. 2.

Where, Inormalized ​ represent the normalized image and 
Ioriginal

(

x, y
)

represent the pixel intensity value of the orig-
inal image at location (x, y).

Data augmentation
Dataset augmentation is a critical strategy in machine 
learning that enriches training data diversity, particu-
larly vital in image processing. By applying specific 
transformations like rotation, zooming, flipping, shear-
ing, and brightness adjustment, this study simulate 
various real-world scenarios, thereby broadening the 
model’s exposure to potential data variations it might 

(2)Inormalized x, y =
Ioriginal x, y

255

encounter post-deployment. These transformations not 
only enhance the model’s ability to generalize across 
new, unseen data, thereby improving its predictive 
accuracy, but also serve as a regularization technique, 
significantly reducing the risk of overfitting. Overfitting 
is a common challenge where the model learns noise 
alongside the underlying pattern, which can degrade its 
performance on novel data [1]. Through dataset aug-
mentation, the model’s robustness and adaptability is 
ensured, reinforcing its performance stability across 
a spectrum of conditions, leading to more reliable and 
accurate predictions in practical applications. Together, 
these preprocessing steps form an integral part of the 
data preparation pipeline, setting a strong foundation 
for the subsequent training of the CNN model. Figure 3 
showcases distribution of data after augmentation. The 
formula for data augmentation can vary depending on 
the specific transformation applied is represented in 
Eq. 3.

Where, Iaugmentedrepresent the augmented image 
obtained from the original image Ioriginal by applying 
transformations T.

(3)Iaugmented = transform
(

Ioriginal,T
)

Fig. 2  Input Images from dataset
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Model architecture
A Convolutional Neural Network (CNN) is a deep neural 
network architecture used for analysing visual imagery, 
known for its efficacy in various computer vision tasks. 
At its core, a CNN employs convolutional layers where 
filters or kernels extract specific features from images, 
with the ReLU activation function introducing necessary 
non-linearities. Following these, pooling layers, typically 
max pooling, reduce the feature maps’ spatial dimen-
sions, aiding in computational efficiency and spatial 
invariance. The network then utilizes dense or fully con-
nected layers, where the data, now flattened, undergoes 
high-level reasoning through connections that encom-
pass weights and further activation functions. The cul-
mination is an output layer where a SoftMax activation 
function translates the final layer’s outputs into prob-
ability distributions across multiple classes. In training, 
the Adam optimizer is favoured for its adaptive learning 
rate, working alongside a sparse categorical cross entropy 
loss function to iteratively adjust the network’s weights, 
thereby minimizing the discrepancy between the mod-
el’s predictions and the actual data labels. This intricate 

orchestration of layers and functions allows CNNs to 
adeptly learn and identify patterns in visual data, making 
them particularly suitable for tasks like skin lesion clas-
sification where distinguishing nuanced visual features is 
paramount [24]. Table  2 provides the layer type, output 
shape, and the number of parameters for each layer in the 

Fig. 3  Dataset distribution after augmentation

Table 2  Parameters for training CNN Model

Layer (type) Output Shape Param #

conv2d_4 (None, 28, 28, 16) 448

max_pooling2d_4 (None, 14, 14, 16) 0

conv2d_5 (None, 14, 14, 32) 4640

max_pooling2d_5 (None, 7, 7, 32) 0

conv2d_6 (None, 7, 7, 64) 18,496

max_pooling2d_6 (None, 4, 4, 64) 0

conv2d_7 (None, 4, 4, 128) 73,856

max_pooling2d_7 (None, 2, 2, 128) 0

flatten_1 (None, 512) 0

dense_3 (None, 64) 32,832

dense_4 (None, 32) 2080

dense_5 (None, 7) 231
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model while Fig. 4 illustrates the network architecture of 
the model.

The architecture of this model, comprising sequential 
convolutional and pooling layers followed by a dense out-
put layer, is strategically designed for the effective classi-
fication of skin lesions. Starting with convolutional layers 
(conv2d_4, conv2d_5, and conv2d_7) that progressively 
increase in filter depth, the model captures increasingly 
complex features from the dermatoscopic images, essential 
for distinguishing subtle differences between various skin 
lesion types. Each convolutional layer is paired with a max 
pooling layer (max_pooling2d_4, max_pooling2d_5, max_
pooling2d_7), which reduces the spatial dimensions of the 
feature maps, thus lowering computational demands and 
focusing the model on dominant features critical for accu-
rate classification. The ‘flatten_1’ layer transitions these 2D 
feature maps into a 1D vector, preparing them for the final 
classification performed by the dense layer (dense_3). This 
architecture not only aligns with proven image classifica-
tion principles but also balances computational efficiency 
with high diagnostic performance, making it suitable for 
real-world clinical applications where resources may be 
limited and high accuracy is paramount.

The Convolutional Neural Network (CNN) architec-
ture is designed with a strategic layering of convolutional, 
pooling, fully connected, and dropout layers, each serv-
ing a distinct function in processing and classifying visual 
data, particularly for tasks like skin lesion classification.

Convolutional layers
These layers are the building blocks of the CNN, 
responsible for detecting patterns such as edges, tex-
tures, and more complex shapes within the images. The 
depth and number of filters in these layers are chosen 
to capture a broad spectrum of features without over-
whelming the model’s capacity. This Eq.  4 represents 
the mathematical operation of convolution, where f is 
the input image and g are the filter (kernel) applied to 
extract features.

The depth (number of filters) and size of the filters 
in these layers are meticulously chosen to optimize the 
model’s ability to detect a wide range of features without 
overburdening its computational capacity.

Activation Function: Following the convolution opera-
tion, an activation function, typically the Rectified Linear 
Unit (ReLU), is applied to introduce non-linearity into 
the network. This step is essential as it allows the model 
to learn and represent more complex patterns in the data. 
Equation 5 defines ReLU, which introduces non-linearity 
into the network by outputting the input if it is positive 
and zero otherwise.

(4)
(

f ∗ g
)

(t) =
∫ ∞

−∞
f (τ )g(t − τ )dτ

(5)f (x) = max(0, x)

Fig. 4  Layer wise network architecture diagram
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Pooling layers
After each convolutional layer, pooling layers reduce the 
dimensionality of the data, summarizing the features 
extracted while retaining the most salient information. 
This reduction is crucial for minimizing computational 
load and enhancing the model’s focus on essential fea-
tures. Equation  6 describes the max-pooling operation, 
which down samples the feature maps generated by con-
volutional layers.

Flatten layer
This layer transitions from the 2D output of the pooling 
layers to a 1D vector. It’s a crucial step, transforming the 
processed image data into a format suitable for the fully 
connected layers, enabling the network to interpret the 
extracted features comprehensively. Equation 7 reshapes 
the output of the convolutional layers into a one-dimen-
sional vector, which serves as input to the fully connected 
layers.

Fully connected
Following the extraction and down-sampling of features, 
the network transitions to fully connected layers. In these 
layers, neurons have connections to all activations in the 
previous layer, as opposed to convolutional layers where 
neurons are connected to only a local region of the input. 
This architecture allows the network to combine features 
learned across the entire image, enabling high-level rea-
soning and classification, and is computed by using the 
formula depicted in Eq. 8.

Dropout layers
To mitigate the risk of overfitting, dropout layers are 
incorporated, randomly disabling a fraction of the neu-
rons during training. This forces the network to learn 
more robust features that are not reliant on a small set 
of neurons, enhancing its generalization capability. To 
adjust for dropout at training time, activations at test 
time are scaled by the dropout probability p as in Eq. 9.

(6)max pooling(x, y) = maxi∈ Rx[i, y]

(7)f
(

xij
)

= xk

(8)y = f (Wx + b)

Batch normalization
Batch normalization standardizes the inputs of each 
layer, improving the stability and speed of the network’s 
learning phase. The formula in Eq.  10 scales the activa-
tions of a layer by the learned parameter di ​. Equation 11 
calculates the batch-normalized output for each activa-
tion and Eq.  12 adjusts the activations during training 
and testing phases to maintain consistency.

Output layer
The final layer in a CNN is the output layer, where a 
SoftMax activation function is typically used for multi-
class classification tasks. The SoftMax function con-
verts the output scores from the final dense layer into 
probability values for each class. In the context of skin 
lesion classification, it provides the probabilities of an 
image belonging to each of the seven lesion categories. 
The SoftMax function, expressed in Eq. 13 converts the 
logits (raw predictions) from the last dense layer into 
a probability distribution across the classes. This equa-
tion represents the partial derivative of the SoftMax 
output Sj with respect to the input xj​, where δ ij is the 
Kronecker delta.

The CNN architecture adeptly learns to identify and 
classify complex patterns in visual data, making it an 
ideal choice for medical image analysis, including skin 
lesion classification. Algorithm  1 encapsulates a com-
prehensive approach to classify dermatological con-
ditions using CNNs, addressing key aspects like data 
preprocessing, augmentation, model construction, 
training, and evaluation.

(9)
∼
x= x

p
· Bernoulli(p)

(10)ai = ai · di

(11)x̂i =
xi − µ√
σ 2 + ∈

(12)atesti = p · atraini

(13)
∂ Si

∂ xj
= Si

(

δ ij − Sj
)
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 Algorithm 1.  Enhanced image classification for dermatological conditions

Training procedure
Training the model is a delicate balance of maximizing 
learning while avoiding overfitting, with various strate-
gies employed to achieve this equilibrium.

Data splitting
The division of data into training, validation, and test 
sets is pivotal. The training set is the model’s learning 
ground, while the validation set guides the tuning of 
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hyperparameters and early stopping criteria. The test set 
remains untouched until the final evaluation, ensuring an 
unbiased assessment of the model’s generalization capa-
bilities [25].

Optimization and loss
The Adam optimizer is a choice grounded in its adaptive 
learning rate mechanism, which tailors the update mag-
nitude for each weight, optimizing the learning process. 
The categorical cross-entropy loss function quantifies 
the disparity between the predicted probabilities and the 
actual distribution, guiding the model toward more accu-
rate predictions. Figure 5 Visualizes the model’s increasing 
accuracy through training phases, emphasizing its learn-
ing efficiency. Equation 14 adjusts the learning rate using 
the ReduceLRonPlateau method based on the old learning 
rate and a reduction factor, Eq.  15 updates the weight in 
the Adam optimizer by incorporating the first and second 
moment vectors, a small constant epsilon, and the learning 

rate and Eq. 16 computes the loss in classification tasks by 
summing the negative logarithm of predicted probabilities 
weighted by true labels.

While initial model training was originally planned for 
50 epochs to thoroughly optimize learning and parameter 
adjustments, Fig.  5 reveals signs of overfitting emerging 
after 20 epochs. Despite this, in the study it was chosed 
to continue training for the full 50 epochs to fully exploit 
the model’s learning potential under controlled condi-
tions, facilitating fine-tuning of parameters like learning 

(14)η new = ReduceLRonPlateau
(

η old, factor
)

(15)Wt+1 = Wt − vt + ∈ηmt

(16)L = −
∑

i
yilog(pi)

Fig. 5  Training and validation loss and accuracy per epochs
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rate and regularization techniques. To counteract the 
observed overfitting risk post-20 epochs, several strate-
gies were implemented: Early Stopping was employed 
to halt training when validation loss ceased to improve, 
preventing the model from memorizing noise; Model 
Checkpointing saved the best-performing model based on 
validation set performance; and regularization techniques 
such as dropout and L2 regularization were utilized to 
mitigate overfitting by penalizing complex models. These 
efforts ensured this model’s resilience and generaliz-
ability despite the extended training period. Detailed per-
formance metrics in the results section underscore the 
effectiveness of these strategies in combating overfitting 
and optimizing overall model performance.

Callbacks
Early Stopping monitors the validation loss, ceasing 
training when improvements halt, thereby averting over-
fitting. Model Checkpoint saves the model at its peak 
performance on the validation set, ensuring that the best 
version is retained for evaluation and future application.

Evaluation metrics
To evaluate the effectiveness and robustness of the deep 
learning model, various metrics were employed:

Exploratory Data Analysis (EDA)
A comprehensive exploratory data analysis (EDA) was 
conducted on the HAM10000 dataset to extract criti-
cal insights for the development of a Convolutional Neu-
ral Network (CNN) aimed at diagnosing skin cancer. The 
analysis encompassed an examination of the distribution 
of patient demographics and lesion localizations, facilitat-
ing a broad representation of cases to augment the model’s 
generalizability. Age distribution and lesion type frequen-
cies were scrutinized to strategically address the dataset’s 
class imbalance through targeted data augmentation tech-
niques. An in-depth visual assessment of dermatoscopic 
images from each lesion category informed the CNN 
architecture design and data preprocessing methods. This 
extensive EDA process yielded essential statistical insights, 
guiding a data-driven model development approach that 
ensures accuracy, equity, and generalizability across var-
ied patient demographics and lesion types, laying a robust 
foundation for the modeling endeavors that followed.

Accuracy
This metric measures the overall correctness of the 
model, calculated as the ratio of correctly predicted 
observations to the total observations [26]. It provides 
a high-level overview of the model’s performance and is 
calculated by using the formula presented in Eq. 17.

Precision
Precision, or the positive predictive value, indicates the 
ratio of correctly predicted positive observations to the 
total predicted positives. It’s crucial for scenarios where 
the cost of false positives is high [27]. Equation 18 illus-
trates the formula to calculate precision.

Recall (sensitivity)
Recall measures the ratio of correctly predicted positive 
observations to all actual positives [28]. It’s particularly 
important in medical diagnostics, where failing to detect 
a condition could have serious implications. Recall is cal-
culated using the formula depicted in Eq. 19.

F1‑score
The F1-score is the harmonic mean of precision and 
recall, providing a single metric that balances both [29]. 
In addition to accuracy, precision, and recall, the F1 score 
serves as a critical indicator of model performance, espe-
cially in the domain of medical diagnostics. The F1 score, 
which is the harmonic mean of precision and recall, pro-
vides a single metric that balances the trade-off between 
these two critical aspects. This is particularly important 
in medical image classification where both false positives 
and false negatives carry significant consequences. A 
high F1 score indicates not only that the model accurately 
identifies a high number of relevant instances but also 
that it minimizes the number of incorrect classifications 
on crucial negative cases. This balance is essential for 
ensuring reliable clinical decisions based on the model’s 
predictions. It’s useful when it is needed to balance pre-
cision and recall and is depicted by a formula in Eq. 20. 
This metric is particularly advantageous in scenarios 
where an uneven class distribution might render other 
metrics less informative. For instance, in cases where the 
prevalence of positive class (skin lesions that are can-
cerous) is much lower, precision and recall individually 
may not adequately reflect the performance nuances of 
the diagnostic model. By combining these metrics, the 
F1 score provides a more robust indicator of the model’s 

(17)Accuracy = TP + TN

TP + TN + FP + FN

(18)Precision = TP

TP + FP

(19)Recall = TP

TP + FN
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effectiveness across various classes, thereby supporting 
its utility in clinical applications where accuracy and reli-
ability are paramount.

Confusion matrix
This matrix provides a detailed breakdown of the model’s 
predictions, showing the correct and incorrect predic-
tions across different classes.

ROC curve and AUC​
The Receiver Operating Characteristic (ROC) curve 
and the Area Under the Curve (AUC) provide insights 
into the model’s ability to distinguish between classes. A 
higher AUC indicates a better performing model. Equa-
tion  21 calculates the True Positive Rate (TPR), also 
known as Sensitivity or Recall. Similarly, Eq. 22 calculates 
the False Positive Rate (FPR) and Eq.  23 is used to cal-
culate the Area Under the Curve (AUC) for a Receiver 
Operating Characteristic (ROC) curve.

(20)F1 = 2× Precision× Recall

Precision+ Recall

Through this detailed methodology, the research aims 
to forge a CNN model that is not just statistically accu-
rate but also clinically viable, providing a tool that can 
potentially revolutionize the early detection and classifi-
cation of skin lesions.

Model training and validation
The training process involved feeding the pre-processed 
images and their corresponding labels into the CNN, 
allowing the network to iteratively learn from the data 
through backpropagation and gradient descent. The 
model’s parameters were updated to minimize the loss 
function, which quantifies the difference between the 

(21)TPR = True Positives

True Positives + False Negatives

(22)FPR = False Positives

False Positives + True Negatives

(23)AUC =
∫ 1

0
TPR d(FPR)

Fig. 6  Training and validation loss graph for augmented dataset
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predicted and actual labels. To prevent overfitting, 
techniques such as dropout and early stopping were 
employed, wherein the training is halted when the valida-
tion loss ceases to decrease, ensuring the model’s gener-
alizability to unseen data.

During the model’s training, validation played a pivotal 
role, offering a lens through which the model’s perfor-
mance on a subset of data, unseen during the training, 
was monitored. This phase was instrumental in identi-
fying overfitting instances and guiding the hyperparam-
eter tuning process. Hyperparameter tuning, an essential 
facet of the training regimen, involved the careful selec-
tion and adjustment of various parameters, including the 
learning rate, batch size, number of epochs, and archi-
tecture-specific settings such as the number and size of 
filters in convolutional layers, and the dropout rate. The 
learning rate, a critical hyperparameter, dictates the step 
size at each iteration while moving toward a minimum 
of the loss function, requiring a delicate balance to avoid 
underfitting or missing the minimum. Batch size influ-
ences the model’s convergence speed and generalization 
capabilities, with smaller batches offering a regularizing 
effect and larger batches providing computational effi-
ciency. Through a combination of techniques like grid 

search, random search, or more sophisticated methods 
like Bayesian optimization, these hyperparameters were 
iteratively adjusted, with the model’s performance on 
the validation set serving as the benchmark for selecting 
the optimal combination, culminating in the selection 
of the best model iteration for evaluation on the test set 
[30]. Figure  6 tracks the model’s learning progress over 
epochs, highlighting improvements and stabilization in 
loss values.

Experimentation and results
In this study an experimental framework to evalu-
ate the performance of the Convolutional Neural Net-
work (CNN) on the HAM10000 dataset is designed, a 
comprehensive collection of dermatoscopic images of 
skin lesions. The dataset was split into training (80%), 
validation (10%), and test (10%) sets to ensure a robust 
evaluation. The CNN architecture was constructed with 
multiple convolutional and pooling layers, followed by 
fully connected layers, and a SoftMax output layer to 
classify the images into seven distinct skin lesion catego-
ries. Figure 7 showcases the detection of skin cancer for 
different categories of skin cancer.

Fig. 7  Predicted label with images
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To enhance the model’s ability to generalize and to 
mitigate the risk of overfitting due to the limited size of 
the dataset, author’s applied extensive data augmentation 
techniques including rotations, zooming, and flipping. 
This approach not only expanded training dataset but 
also introduced a diversity of image perspectives, simu-
lating real-world variations. Alongside augmentation, 
each image was resized and normalized to maintain con-
sistency and to facilitate faster convergence during the 
training process.

The CNN was trained using the Adam optimizer and 
a sparse categorical crossentropy loss function. In this 
study early stopping and model checkpoint callbacks 
is employed to prevent overfitting and to save the best 
model during training. The training was conducted over 
numerous epochs, with real-time monitoring of perfor-
mance metrics on both training and validation sets to 
ensure the model’s learning efficacy and generalization 
capability.

Upon completion of the training, the model demon-
strated remarkable performance on the test set, achiev-
ing an overall accuracy of 97.858%. This high accuracy 
underscores the CNN’s ability to effectively differenti-
ate between various types of skin lesions. The precision, 
recall, and F1-scores across different categories fur-
ther validated the model’s robustness, with most classes 

showing scores above 90%, reflecting the model’s preci-
sion and reliability in classification.

The classification report provided detailed insights into 
the model’s performance across individual classes. Nota-
bly, the model excelled in identifying Melanoma (mel) 
and Basal cell carcinoma (bcc), which are critical for early 
cancer detection. The high F1-scores in these categories 
indicate a balanced precision-recall trade-off, crucial in 
medical diagnostics where both false negatives and false 
positives have significant implications. Figure 8 illustrates 
the classification report of the model.

The confusion matrix offered a granular view of the 
model’s classification behaviour across the various skin 
lesion types. It revealed that the model had a high true 
positive rate across most classes, with minimal confusion 
between different lesion types. This indicates that the 
CNN has effectively learned distinguishing features for 
each lesion category, a testament to the network’s feature 
extraction and pattern recognition capabilities. Figure  9 
depicts the confusion matrix between different categories 
of skin cancer.

The AUC-ROC curve analysis further cemented 
the model’s diagnostic capability. The model show-
cased an excellent AUC score, indicating its strong 
discriminative power across all lesion classes. This 
performance metric is particularly crucial in medical 

Fig. 8  Classification report
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imaging diagnostics, where the ability to distinguish 
between benign and malignant lesions can have signifi-
cant patient care implications. Figure 10 Maps out the 
trade-offs between true positive and false positive rates, 
underlining the model’s discriminative ability.

In the study, Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), and Mean Absolute Error 

(MAE) acts as pivotal metrics to evaluate the predictive 
accuracy of the convolutional neural network model, 
designed for skin cancer classification. The MSE, quan-
tified at 0.375, offers insight into the model’s preci-
sion by averaging the squares of the prediction errors, 
a fundamental measure indicating the model’s vari-
ance from the actual outcomes. Complementarily, the 

Fig. 9  Confusion matrix
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RMSE, calculated at 0.612, provides a more intuitive 
gauge of the model’s predictive error magnitude, being 
in the same units as the target variable. This metric is 
instrumental in understanding the average error extent 

to which the model’s predictions deviate from the 
observed values. Figure  11 Showcases the distribution 
of regression metrics. Equations  24, 25 and 26 illus-
trates the formula to calculate MAE, MSE and RMSE 
respectively.

Fig. 10  ROC Curve

Fig. 11  Regression metrics distribution
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Furthermore, the MAE, recorded at 0.5, serves as a 
robust indicator of the average discrepancy between the 
predicted and actual values, delineating the model’s con-
sistency in prediction across the dataset. Unlike MSE 
and RMSE, MAE delivers a linear representation of 
error magnitudes, offering a direct interpretation of the 

(24)MAE = 1

n

∑ n

i=1

∣

∣yi − ŷi
∣

∣

(25)MSE = 1

n

∑ n

i=1

(

yi − ŷi
)2

(26)RMSE =
√

1

n

∑ n

i=1

(

yi − ŷi
)2

model’s predictive accuracy without squaring the errors, 
thus avoiding disproportionate influence from outliers. 
Collectively, these metrics substantiate the model’s effi-
cacy in classifying dermatoscopic images for skin cancer 
detection, underpinning its potential as a reliable tool in 
dermatological diagnostics and emphasizing its contribu-
tion to the advancement of automated, precise medical 
analyses.

Comparative analysis
To contextualize proposed model’s performance, it is 
compared against other state-of-the-art models reported 
in the literature on the same dataset. Proposed CNN 
model not only aligned with but in several metrics, 
surpassed the performance of existing models. This 
comparative analysis underscores the effectiveness of 
architectural choices and training strategies. Table  3 
showcases the comparison of the proposed model 
with different existing techniques and their observed 
accuracy.

The results from the experimentation indicate that 
CNNs hold significant promise in automating the diag-
nosis of skin lesions. The high accuracy and nuanced 
performance across various metrics suggest that such 
models could serve as valuable tools in clinical settings, 
potentially aiding dermatologists in screening and diag-
nosing skin lesions more efficiently.

However, it is crucial to acknowledge the limitations 
inherent in this study. To show the same Fig.  12 repre-
sents some misclassified instances where the model is 
ambiguous about the classification.

While the HAM10000 dataset is diverse, the model’s 
performance in real-world settings would require vali-
dation on a broader array of dermatoscopic images. 
Moreover, integrating clinical context and patient history, 

Table 3  Comparison with existing methods

Study Technique Accuracy

Saket S. Chaturvedi et al. (2021) 
[31]

MobileNet 83.1%

Rishu Garg et al. (2021) [32] ResNet & CNN 90.51%

Amit Sanjay Shete et al. (2021) 
[33]

ResNet & CNN 90.51%

Satin Jain et al. (2021) [34] InceptionResNetV2 90.48%

Dhivya et al. [35] CNN 90.55%

Haider K.M.M et al. (2022) [36] VGG16 and CNN 84.87%

Mayank Upadhyay et al. (2024) 
[37]

DenseNet201 93.24%

Turker Tuncer et al. (2024) [38] TurkerNet 92.12%

Abdulmateen Adebiyi et al. (2024) 
[39]

ALBEF (Align before Fuse) 94.11%

K A Arun & Matthew Palmer 
(2024) [40]

CNN 95%

Proposed Model Convolutional Neural 
Networks (CNNs)

97.78%

Fig. 12  Misclassified instances
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factors not accounted for in this study, could further 
refine diagnostic accuracy.

Ablation study
This study systematically explored the impact of vari-
ous model configurations and training components on 
the performance of a Convolutional Neural Network 
(CNN) designed for skin lesion classification. Configu-
rations with and without checkpoint callbacks, varia-
tions in the number and complexity of convolutional 
layers, the presence or absence of dropout layers, and 
the utilization of data augmentation techniques were 
tested. The results revealed that each component plays 
a critical role in enhancing model performance. For 
instance, the removal of the model checkpoint callback 
led to a slight decrease in accuracy, underscoring its 
effectiveness in capturing the best model state against 
overfitting. Similarly, reducing convolutional layers 
or omitting dropout layers significantly impacted the 
model’s ability to generalize and learn complex pat-
terns, as reflected by a drop in accuracy and other per-
formance metrics. The ablation study thus provides 
vital insights into the dependencies and importance of 
each model component and training strategy, affirm-
ing their collective contribution to the model’s high 
classification accuracy and robustness in practical 
applications. Table  4 summarizes the ablation study, 
highlighting the effects of different model configura-
tions and training strategies on performance metrics.

Conclusion
This research has meticulously explored the capabilities 
of Convolutional Neural Networks (CNNs) in classify-
ing various types of skin lesions using the HAM10000 
dataset, a comprehensive assembly of dermatoscopic 
images. The results from experiments offer compel-
ling evidence of the potential that deep learning, 

particularly CNNs, holds in the realm of dermatologi-
cal diagnostics.

Proposed CNN model, designed with a series of 
convolutional, pooling, and fully connected layers, 
achieved a remarkable test accuracy of 97.858%, dem-
onstrating its adeptness at distinguishing between 
seven different skin lesion types. The precision, recall, 
and F1-scores across these categories further validated 
the model’s precision and its balanced performance in 
classifying various skin lesions, including critical types 
such as melanoma and basal cell carcinoma.

The significance of findings extends beyond the num-
bers. In the clinical context, where timely and accurate 
diagnosis can drastically alter patient outcomes, the 
implementation of such AI-driven tools could revo-
lutionize the diagnostic process. By offering a high-
throughput, accurate, and non-invasive diagnostic tool, 
CNNs could augment the capabilities of dermatologists, 
potentially improving the screening process and ena-
bling early intervention for skin cancers and other skin 
conditions.

This research underscores the transformative poten-
tial of CNNs in dermatological diagnostics. In the field of 
medicine, where AI complements and enhances clinical 
expertise, this study contributes to the growing body of 
evidence supporting the integration of AI into health-
care, promising a future where technology and medicine 
converge to enhance patient outcomes and advance the 
frontier of medical diagnostics.
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Table 4  Ablation study on Model configurations and Checkpoint Callback Strategy

Configuration Description Weighted 
Avg 
Precision

Weighted 
Avg Recall

Weighted 
Avg 
F1-Score

Accuracy

Without Augmentation, Reduced Layers Only the first two Conv2D layers active, no data 
augmentation.

0.89 0.89 0.89 87.500%

Reduced Layers (32 Conv only) Model with only the first two Conv2D layers (16 
and 32 filters).

0.91 0.91 0.91 89.000%

Without Augmentation All layers and callbacks active, but no data augmenta-
tion.

0.93 0.93 0.93 93.750%

No Dropout All layers active but without dropout layers. 0.95 0.95 0.95 95.200%

No Checkpoint Callback Model trained without using the checkpoint callback. 0.96 0.96 0.96 96.460%

Baseline Model All layers and callbacks active. 0.97 0.97 0.97 96.995%
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