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Abstract 

Objectives The aim of the study is to assess the efficacy of the established computed tomography (CT)-based 
radiomics nomogram combined with radiomics and clinical features for predicting muscle invasion status in bladder 
cancer (BCa).

Methods A retrospective analysis was conducted using data from patients who underwent CT urography at our 
institution between May 2018 and April 2023 with urothelial carcinoma of the bladder confirmed by postoperative 
histology. There were 196 patients enrolled in all, and each was randomized at random to either the training cohort 
(n = 137) or the test cohort (n = 59). Eight hundred fifty-one radiomics features in all were retrieved. For feature selec-
tion, the significance test and least absolute shrinkage and selection operator (LASSO) approaches were utilized. 
Subsequently, the radiomics score (Radscore) was obtained by applying linear weighting based on the selected 
features. The clinical and radiomics model, as well as radiomics-clinical nomogram were all established using logis-
tic regression. Three models were evaluated using analysis of the receiver operating characteristic curve. An area 
under the curve (AUC) and 95% confidence intervals (CI) as well as specificity, sensitivity, accuracy, negative predic-
tive value, and positive predictive value were included in the analysis. Radiomics-clinical nomogram’s performance 
was assessed based on discrimination, calibration, and clinical utility.

Results After obtaining 851 radiomics features, 12 features were ultimately selected. Histopathological grading 
and tortuous blood vessels were included in the clinical model. The Radscore and clinical histopathology grad-
ing were among the final predictors in the unique nomogram. The three models had an AUC of 0.811 (95% CI, 
0.742–0.880), 0.845 (95% CI, 0.781–0.908), and 0.896 (95% CI, 0.846–0.947) in the training cohort and in the test 
cohort they were 0.808 (95% CI, 0.703–0.913), 0.847 (95% CI, 0.739–0.954), and 0.887 (95% CI, 0.803–0.971). According 
to the DeLong test, the radiomics-clinical nomogram’s AUC in the training cohort substantially differed from that of 
the clinical model (AUC: 0.896 versus 0.845, p = 0.015) and the radiomics model (AUC: 0.896 versus 0.811, p = 0.002). 
The Delong test in the test cohort revealed no significant difference among the three models.

Conclusions CT-based radiomics-clinical nomogram can be a useful tool for quantitatively predicting the status 
of muscle invasion in BCa.
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Introduction
One of the most prevalent urological malignancies and 
the tenth most common malignancy worldwide is blad-
der cancer (BCa) [1]. The most prevalent histological type 
of BCa is urothelial carcinoma [2]. Based on the degree 
of tumor infiltration into the bladder wall, BCa can be 
classified pathologically as either muscle invasive blad-
der cancer (MIBC) or non-MIBC (NMIBC) [2, 3]. Tran-
surethral cystectomy for bladder tumor (TURBT) is the 
recommended course of treatment for NMIBC, whereas 
MIBC typically necessitates additional therapies such 
radical cystectomy, adjuvant chemotherapy, and radio-
therapy [3]. This suggests that one of the most significant 
criteria determining therapy choices for the clinical man-
agement of BCa [4, 5] is histological muscle invasion.

Currently, cystoscopic biopsy is the main approach 
for tumor diagnosis and clinical staging [4, 6]. However, 
accurate preoperative diagnosis of muscle invasiveness is 
not an easy task. Since biopsies are operator-dependent, 
incorrect staging may occur due to inadequate biopsy 
samples or problems with sample quality [6, 7]. Accord-
ing to previous studies, 20–80% of BCa patients are 
incorrectly staged due to differences in biopsy [8, 9].

The most frequent noninvasive evaluation technique 
in BCa patients is computed tomography (CT), which 
can be used to locate the tumor and assess the tumor’s 
quantity, dimension, relationship to surrounding tissues, 
and metastasis [9]. However, traditional CT scans cannot 
be used to evaluate muscle invasion in BCa because they 
have poor soft-tissue resolution and cannot distinguish 
between the different layers of the bladder wall. Magnetic 
resonance (MR) is more accurate than CT, but the high 
cost, prolonged scanning time, and numerous contrain-
dications of MR prevent it from being used widely [9, 
10]. In addition, imaging remains a subjective assessment 
process based on the radiologist’s experience. Therefore, 
there is a need to develop more accurate techniques to 
assess BCa invasiveness.

Radiomics is a new imaging analytical tool that quan-
tifies medical image data to provide information on the 
morphological features, size, and location of lesions, 
allowing physicians to make more precise diagno-
ses, particularly in oncology [5–7]. Computers extract 
potentially important information from large amounts 
of medical image data and use different algorithms to 
build models to explain the association between images 
and diseases [11]. These models can help physicians 
detect tumor lesions and assess the aggressiveness of 
the lesions, and estimate the prognosis and response to 

treatment in cancer patients [11, 12]. Previous studies 
have demonstrated the high diagnostic performance of 
multi-sequence MR-based radiomics in predicting mus-
cle invasion in BCa [5, 6, 9]. A radiomics analysis con-
ducted by Zhang et al. using CT-enhanced images from 
441 BCa patients revealed the better diagnostic perfor-
mance of the radiomics model in assessing muscle inva-
sion of BCa [7].

Therefore, to guide the choice of therapeutic treat-
ment option, this study aimed to assess the viability of a 
radiomics-clinical nomogram for determining the muscle 
invasion status of BCa.

Materials and methods
Patients
The Xiangyang City Centre Hospital’s institutional 
review board approved this retrospective investigation 
and removed the demand for informed consent.

We searched our hospital database for patients with 
BCa confirmed by postoperative pathology from May 
2018 to April 2023. These criteria were used to determine 
inclusion: [1] patients who underwent TURBT or radi-
cal cystectomy with pathologically confirmed urothelial 
carcinoma, and [2] patients who underwent CT urogra-
phy (CTU) within the preoperative period. The follow-
ing criteria were used to exclude patients: [1] artifacts on 
CTU images, [2] incomplete image sequence and/or layer 
thickness greater than 3 mm, [3] lesion width lower than 
5 mm, [4] underdistended bladder, [5] biopsy or treat-
ment such as chemotherapy or radiotherapy prior to the 
CT examination, and [6] muscle layer undistinguishable 
in specimens resected by TURBT. A total of 196 patients 
were included, including 97 NMIBC and 89 MIBC cases, 
as shown in Fig. 1. Cases were divided into training and 
test cohorts (n = 137, n = 59) by 7:3 stratified random 
sampling.

The patient’s demographic and clinicopathological 
information was retrieved from their medical record, 
including age, sex, history of smoking, clinical complaint 
(e.g., hematuria, hydronephrosis, or incidental findings), 
infiltrative status of the bladder wall’s muscular layer, 
and histopathological grading (high and low grades as 
determined by using biopsy prior to surgery). Moreover, 
imaging information was retrieved from the patient’s CT 
images, and the number of lesions, calcifications, lesion 
length and tortuous blood vessels visible to the naked eye 
around or within the lesions were documented (Supple-
mentary Material S1).
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CT data and image acquisition
All enrolled patients underwent CTU within 1–2 weeks 
prior surgery. Before the scan, patients were instructed 
to drink between 800 and 1000 ml of water, but not to 
urinate until the scan was over. After scanning, 50 mL 
of ioversol or 100 mL of iopamidol were intravenously 
administered, followed by 50 mL of saline at a rate of 
3 mL/s. Images of the renal corticomedullary, nephro-
graphic, and excretory phase were obtained at 25 s, 75 s, 
and 300 s after the thresholding of the thoracoabdominal 
aortic junction was reached. Subsequent analyses used 
only axial nephrographic phase images. Multidetector CT 
scanners with 64 to 128 detector rows (Siemens Health-
ineers, Philips Brilliance, and Philips Brilliance iCT) were 
used to obtain CT images. The scanning parameters were 
120 kV, automatic mA settings (range 80–320 mA), layer 
spacing of 1 mm, and layer thickness of 1.5–3 mm. Soft 
tissue algorithm (window width (WW): 300–500 HU, 
window level (WL): 45–60 HU) were used after imaging.

CT image segmentation and feature extraction
Three-dimensional regions of interest (3D-ROIs) were 
manually outlined on thin-layer CT images during the 
nephrography phase using the ITK-SNAP program (ver-
sion 4.0.1; http:// itk- snap. org). Only the largest lesion in 
patients who had multiple lesions was chosen for seg-
mentation in this study. 3D-ROIs along the tumor mar-
gins were manually drawn by radiologist 1 (ZR, with 
6 years of genitourinary imaging experience and 5 years 
of tumor segmentation experience). Radiologist 1 was 
uninformed of the status of muscle invasion in its post-
operative pathology. To ensure the reproducibility of the 
regions of interest (ROI), intragroup correlation (ICC) 
was used to assess intra-observer agreement. We ran-
domly selected 30 patients, and the ROI was manually 
outlined again after 4 weeks by the same radiologist and 
another one (ZLH, with 3 years of experience in genitou-
rinary imaging and tumor segmentation). A good agree-
ment was defined as an ICC of 0.75 or higher.

Fig. 1 Patient selection flowchart illustration

http://itk-snap.org
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The PyRadiomics package (version 3.0.1, available at 
https:// github. com/ AIM- Harva rd/ pyrad iomics. git) and 
Python (version 3.7.5) were used to obtain the radiomics 
features from the CT images. The original and wavelet-
filtered image allowed for the retrieval of all radiom-
ics features, which could be divided into seven groups, 
namely first-order statistics, shape features, glcm fea-
tures, gldm features, glrlm features, glszm features and 
ngtdm features. The features extraction method is avail-
able from https:// pyrad iomics. readt hedocs. io/ en/ latest. 
Finally, 851 features were extracted in each volume of 
interest of CT images, respectively.

Feature selection and Radiomics model building
All features were normalized using z-score normalization 
prior to feature selection and model development. The ICC 
was used to assess the repeatability of each radiomics fea-
ture both intra- and inter-observer. In our study, only the 
features with ICC values greater than 0.75 were included. 
Features filtering was performed by using a significance 
test (Student’s t-test if the data adhered to a normal distri-
bution, otherwise the Mann-Whitney U test) to select the 
features with high predictive power (p < 0.05). The most 
beneficial predictive muscle invasion status-related fea-
tures were then chosen from the training cohort using the 
least absolute shrinkage and selection operator (LASSO) 
and 10-fold cross-validations. The radiomics score (Rad-
score) was obtained by applying linear weighting based on 
the selected features by the LASSO algorithm.

Development and performance of a Radiomics‑clinical 
nomogram
The included clinical indicators were subjected to inde-
pendent univariate and multivariate analyses to identify 
the clinicopathological predictors for muscle invasion 
and create a clinical model. The final predictors for mus-
cle invasion were chosen by using a multivariate logistic 
regression analysis that included the Radscores and the 
independent clinical indicators. The approach used for-
ward stepdown selection with a liberal p < 0.05 as the 
retention criteria. Based on the results of the multivariate 
logistic regression analysis, a radiomics-clinical nomo-
gram was created. Utilizing the Hosmer-Lemeshow test 
and the calibration curve, the radiomics-clinical nomo-
gram’s calibration was evaluated.

Models comparison and clinical usefulness evaluation
To further assess the applicability of the radiomics-clinical 
nomogram, it was compared with the clinical and the radi-
omics model. The diagnostic efficacy of the different models 
for BCa prediction was assessed by using receiver operat-
ing characteristic (ROC) curve to quantify the assessment 
power of each model. The area under the ROC curve (AUC) 

and 95% confidence intervals (CI) along with specificity, 
sensitivity, accuracy, negative predictive value (NPV), posi-
tive predictive value (PPV) were used to analyze the diag-
nostic efficacy of the radiomics models. Decision curve 
analysis (DCA), which calculated the net benefit at different 
threshold probabilities and compared the radiomics-clinical 
nomogram with the clinical model, was used to evaluate the 
clinical value of the radiomics-clinical nomogram.

Statistics
The statistical analysis was completed using R (version 
3.6.1, accessible at https:// www.r- proje ct. org). Image pro-
duction was performed using Microsoft Visio for Windows 
(version 2021). Data that failed to conform to the nor-
mal distribution criteria were compared between the two 
groups using the Mann-Whitney U test. Following a nor-
mality check, the continuous data were used the Student’s 
t-test. Normal data were represented as mean ± standard 
deviation. Counting data were reported as the number of 
cases (rate), and the chi-square test was applied to compare 
the two groups. Inter-observer reproducibility of radiom-
ics characteristics was assessed using the ICC to evaluate 
inter-observer agreement between radiologists, with coef-
ficients greater than 0.75 indicating good reproducibility. 
The diagnostic efficacy of the clinical and radiomics model, 
as well as radiomics-clinical nomogram for BCa prediction 
were assessed using ROC curve. To determine the p value 
for the AUC, DeLong’s test was utilized. The two-sided p 
value threshold for statistical significance was 0.05.

Results
Clinical characteristics
In this study, data were collected from 196 patients. The 
test cohort consisted of 59 patients and the training cohort 
of 137 patients. Age, sex, history of smoking, number of 
lesions, clinical symptoms, histopathological grading, cal-
cification, lesion length, and presence of tortuous blood 
vessels were among the clinical traits present in both the 
training and test cohorts. The training and test cohorts’ 
clinical and radiological characteristics are listed in Table 1, 
with their distributions shown in Table  2. There were no 
appreciable variations in the age, sex, history of smok-
ing, clinical complaints, numbers of lesions, calcifications, 
or lesion length between the training and test cohorts. In 
contrast, the histopathological grading of the lesions and 
presence of tortuous blood vessels differed statistically 
throughout the training and test cohorts. Statistics showed 
that the differences were significant (p < 0.05).

Feature selection and Radiomics score building
In total, 851 features were extracted from each lesion in 
the axial nephrographic-phase CT images. A total of 799 

https://github.com/AIM-Harvard/pyradiomics.git
https://pyradiomics.readthedocs.io/en/latest
https://www.r-project.org
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features with an ICC of more than 0.75 were extracted, 
including first-order, shape, gldm, glcm, glszm, glrlm, and 
ngtdm features. After significance test analysis, 325 fea-
tures were retained. Features screening using the LASSO 
method with 10-fold cross-validation resulted in the selec-
tion of the 12 best radiomics features. A model was cre-
ated, and these features were defined as the Radscore 
(Table 3). The AUC of the radiomics model in the training 
cohorts and test cohorts were 0.845 (95% CI, 0.781–0.908) 
and 0.847 (95% CI, 0.739–0.954), respectively. Figure  2 
depicts the steps used in the LASSO binary logistic regres-
sion model. The following Radscore was used to establish 
the radiomics features:

Radscore = 0.0288301363804109− 0.528980248435895 ∗ original_shape_Sphericity − 0.128902934155834 ∗ wavelet.HHL_ngtdm_Strength

− 0.0883729124410026 ∗ wavelet.HHL_glszm_ZonePercentage− 0.078874563

∗wavelet.LHH_glszm_LargeAreaEmphasis−0.027663448∗wavelet.HHH_gldm_SmallDependenceLowGrayLevelEmphasis−0.019698515

∗wavelet.HHL_gldm_DependenceVariance+ 0.011777035 ∗ original_gldm_LargeDependenceHighGrayLevelEmphasis

+ 0.133742823 ∗ original_shape_Elongation + 0.15340688 ∗ wavelet.LLL_glcm_MCC+ 0.169020499 ∗ original_shape_LeastAxisLength

+ 0.349791508 ∗ wavelet.HLL_glcm_Correlation + 0.413107304 ∗ wavelet.HLH_ngtdm_Busyness

Development and performance of a Radiomics‑clinical 
nomogram
The results of univariate and multivariate analyses showed 
that histopathological grading and tortuous blood vessels 
were independent predictors for the status of muscular 
invasion in bladder cancer (Table 4). Based on a few chosen 
clinical indicators, the clinical model was created. In the 
training cohorts, the clinical model’s AUC values and 95% 
CI, sensitivity, and specificity were 0.811 (95% CI, 0.742–
0.880), 0.926, and 0.579 while in the test cohorts, they were 
0.808 (95% CI, 0.703–0.913), 0.862, and 0.567 (Table 5).

Based on the clinical indicators in the clinical model, 
multifactorial analysis was then performed in conjunction 

Table 1 The training and test cohorts patients’ baseline demographics, clinical, and radiologic characteristics

a  SD standard deviation

Characteristics All Training cohort (n = 137) Test cohort (n = 59) p

Age, mean ±  SDa, years 67.821 ± 10.468 68.066 ± 11.184 67.254 ± 8.64 0.360

Sex 0.662

    Male 160 (81.6%) 117 (85.4%) 43 (72.9%)

    Female 36 (18.4%) 20 (14.6%) 16 (27.1%)

Smoking 0.773

    Yes 145 (73.9%) 108 (78.8%) 37 (62.7%)

    No 51 (26.1%) 38 (21.2%) 13 (37.3%)

Clinical complaint 0.493

    Hematuria 113 (57.7%) 82 (59.9%) 31 (52.5%)

    Hydronephrosis 2 (1.0%) 2 (1.5%) 0 (0%)

    Incidental finging 81 (41.3%) 53 (38.7%) 28 (47.5%)

Number of lesions 0.141

    Multiple 58 (29.6%) 45 (32.8%) 13 (22.0%)

    Single 138 (70.4%) 92 (67.2%) 46 (78.0%)

Histopathologic grade 0.000

    High grade 130 (66.3%) 92 (67.2%) 38 (64.4%)

    Low grade 66 (33.7%) 45 (32.8%) 21 (35.6%)

Calcification 0.915

    Yes 70 (35.7%) 47 (34.3%) 23 (39.0%)

    No 126 (64.3%) 90 (65.7%) 36 (61.0%)

Lesion length, mm 17.451 ± 9.042 16.015 ± 8.215 19.015 ± 10.341 0.109

Tortuous blood vessels 0.000

    Yes 81 (41.3%) 58 (42.3%) 23 (39.0%)

    No 115 (58.7%) 79 (57.7%) 36 (61.0%)
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with the obtained Radscore. Details are provided in Table 4. 
The two indicators clinical histopathological grading and 
Radscore were the final predictors. A radiomics-clinical 
nomogram was created based on the selected predictors, 
as shown in Fig. 3. The calibration curve showed that both 
the training and test cohorts’ predictions and observations 
had a high degree of agreement (Fig.  4). With respect to 
the radiomic-clinical nomogram, the Hosmer-Lemeshow 
test produced non-significant p values in both cohorts 
(p = 0.625 and 0.466, respectively), indicating adequate 
calibration.

Models comparison and clinical usefulness evaluation
Figure 3 displays the ROC curves for the three models. 
Details about the model’s diagnostic performance in 
the training and test cohorts are included in Table 2. A 
comparison of the three models’ ROC curves is shown 
in Fig.  5. The radiomics-clinical nomogram had good 
predictive ability, with AUC values of 0.896 (95% CI, 
0.846–0.947) in the training cohorts and 0.887 (95% CI, 
0.803–0.971) in the test cohorts, which were slightly 
better than the AUC values of the radiomics model. 

Table 2 The distribution of clinical and radiologic characteristics in the training and test cohorts

a  SD standard deviation

Characteristics Training cohort (n = 137) Test cohort (n = 59)

MIBC NMIBC p MIBC NMIBC p

Age, mean ±  SDa, years 68.735 ± 11.043 67.406 ± 11.363 0.489 68.034 ± 7.744 66.5 ± 9.497 0.500

Sex 0.604 0.937

    Male 57 (83.8%) 60 (87.0%) 21 (72.4%) 22 (73.3%)

    Female 11 (16.2%) 9 (13.0%) 8 (27.6%) 8 (26.7%)

Smoking 0.745 0.842

    Yes 51 (75%) 57 (82.6%) 15 (51.7%) 22 (73.3%)

    No 17 (25%) 12 (17.4%) 14 (48.3%) 8 (26.7%)

Clinical complaint 0.719 0.358

    Hematuria 43 (63.2%) 39 (56.5%) 17 (58.6%) 14 (46.7%)

    Hydronephrosis 1 (1.5%) 1 (1.4%) 0 (0%) 0 (0%)

    Incidental findings 24 (35.3%) 29 (42.0%) 12 (41.4%) 16 (53.3%)

Number of lesions 0.179 0.297

    Multiple 18 (26.5%) 27 (39.1%) 6 (20.7%) 7 (23.3%)

    Single 50 (73.5%) 42 (60.9%) 23 (79.3%) 23 (76.7%)

Histopathologic grade 0.000 0.001

    High grade 63 (92.6%) 29 (42.0%) 25 (86.2%) 13 (43.3%)

    Low grade 5 (7.4%) 40 (58.0%) 4 (13.8%) 17 (56.7%)

Calcification 0.633 0.365

    Yes 22 (32.4%) 25 (36.2%) 13 (44.8%) 10 (33.3%)

    No 46 (67.6%) 44 (63.8%) 16 (55.2%) 20 (66.7%)

Lesion length, mm 17.045 ± 9.516 15.425 ± 8.341 0.191 19.851 ± 10.925 17.670 ± 9.812 0.14

Tortuous blood vessels 0.000 0.000

    Yes 41 (60.3%) 17 (24.6%) 18 (62.1%) 5 (16.7%)

    No 27(39.7%) 52 (75.4%) 11 (37.9%) 25 (83.3%)

Table 3 Twelve radiomics features and their correlation coefficients

Correlation 
coefficient

Features

−0.52898 original_shape_Sphericity

−0.1289 wavelet.HHL_ngtdm_Strength

−0.08837 wavelet.HHL_glszm_ZonePercentage

−0.07887 wavelet.LHH_glszm_LargeAreaEmphasis

−0.02766 wavelet.HHH_gldm_SmallDependenceLowGrayLevelEm-
phasis

−0.0197 wavelet.HHL_gldm_DependenceVariance

0.011777 original_gldm_LargeDependenceHighGrayLevelEmphasis

0.133743 original_shape_Elongation

0.153407 wavelet.LLL_glcm_MCC

0.16902 original_shape_LeastAxisLength

0.349792 wavelet.HLL_glcm_Correlation

0.413107 wavelet.HLH_ngtdm_Busyness
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Finally, the diagnostic capabilities of the three mod-
els were evaluated using the DeLong test, as shown in 
Table  6. In the training cohort, the DeLong’s test dis-
played significant difference in AUC between the radi-
omics-clinical nomogram and the radiomics model 
(0.896 versus 0.845, p = 0.015). The radiomics-clinical 
nomogram compared with the clinical model (0.896 
versus 0.811) for discriminating muscle invasive in the 
training cohort demonstrated significant outcomes 
with the p value of 0.002. Delong tests in the test 
cohort revealed that there was no significant difference 
among the three models (nomogram versus radiomics, 

p = 0.185; nomogram versus clinical, p = 0.098). The 
decision curve for the radiomics-clinical nomogram is 
depicted in Fig. 5.

Discussion
In the study, we successfully constructed a radiomics-
clinical nomogram for preoperative prediction of muscle 
invasion status in BCa. By comparing the AUC values 
derived from the ROC curve analysis, the radiomics-
clinical nomogram was superior to the other two models 
(clinical and radiomics) in the training and test cohorts. 
The same pattern was seen in terms of accuracy and 

Fig. 2 Employing the least absolute shrinkage and selection operator (LASSO) approach to select radiomics features from CT images. A The 
optimal penalty coefficient lambda (λ) for the feature of the CT images was obtained based on 10-fold cross-validation. B LASSO coefficient profiles 
of the 12 radiomics features

Table 4 Clinical predictors of BCa: Univariate and Multivariate Analyses

Variables Univariate analyses Multivariate analyses Multivariate analyses

OR(95% CI) p value OR(95% CI) p value OR(95% CI) p value

Age 1.002 (0.968–1.037) 0.352

Sex 1.278 (0.528–3.092) 0.664

Smoking 1.513 (0.696–5.184) 0.773

Clinical complaint 1.094 (0.518–2.310) 0.237

Number of lesions 0.483 (0.225–1.036) 0.142

Histopathologic grade 12.058 (5.133–28.325) 0.000 13.803 (4.832–39.429) 0.000 10.787 (3.438–33.842) 0.000

Calcification 0.687 (0.326–1.447) 0.916

Lesion length 0.348 (0.225–1.152) 0.109

Tortuous blood vessels 4.289 (2.064–8.912) 0.000 3.097 (1.346–7.125) 0.007 2.375 (0.752–5.049) 0.084

Radscore 6.554 (2.986–14.387) 0.000
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specificity. Finally, the results of the DeLong test dem-
onstrate that the radiomics-clinical nomogram in the 
training cohort had the best diagnostic performance. 
The nomogram combining CT radiographic features and 
clinical risk factors showed better discriminatory and 
predictive power than the radiographic models in distin-
guishing MIBC from NMIBC.

The CT examination is time-efficient and has a good 
sensitivity for detecting calcifications. It provides a visual 

representation of the bladder wall’s structure, any changes 
in thickness, and the involvement of adjacent tissues after 
augmentation [7, 11, 12]. This study included only indi-
viduals who had undergone TURBT or cystectomy and 
had BCA muscle infiltration confirmed. Notably, TURBT 
pathologic specimens included the muscular layer of the 
bladder wall, which is characteristic for NMIBC cases 
[10]. This study examined multiple clinical data points 
before arriving at statistically significant conclusions. In 

Table 5 Performance of clinical, radiomic models and radiomics-clinical nomogram

*AUC  area under the curve, **PPV positive predictive value, ***NPV negative predictive value

AUC*(95%CI) Sensitivity(95%CI) Specificity(95%CI) Accuracy(95%CI) NPV**(95%CI) PPV***(95%CI)

Train

    Radiomic 0.845 (0.781–0.908) 0.705 (0.585–0.808) 0.826 (0.739–0.913) 0.766 (0.686–0.834) 0.740 (0.642–0.838) 0.800 (0.698–0.901)

    Clinical model 0.811 (0.742–0.880) 0.926 (0.867–0.985) 0.579 (0.464–0.695) 0.752 (0.671–0.822) 0.888 (0.797–0.890) 0.685 (0.590–0.779)

    Radiomics-clinical 
nomogram

0.896 (0.846–0.947) 0.867 (0.794–0.941) 0.797 (0.696–0.884) 0.832 (0.759–0.890) 0.859 (0.774–0.944) 0.808 (0.717–0.898)

Test

    Radiomic 0.847 (0.739–0.954) 0.706 (0.588–0.809) 0.766 (0.6–0.9) 0.779 (0.653–0.877) 0.793 (0.645–0.940) 0.767 (0.615–0.918)

    Clinical model 0.808 (0.703–0.913) 0.862 (0.724–0.965) 0.567 (0.367–0.733) 0.712 (0.579–0.822) 0.809 (0.641–0.977) 0.657 (0.507–0.809)

    Radiomics-clinical 
nomogram

0.887 (0.803–0.971) 0.793 (0.655–0.931) 0.733 (0.566–0.867) 0.763 (0.634–0.864) 0.786 (0.634–0.938) 0.742 (0.587–0.895)

Fig. 3 By combining the Radscore with histopathological grading, the radiomics-clinical nomogram was created
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the clinical model of this study, we included tortuous ves-
sels and histopathological grading. BCas are blood-rich 
tumors that require nutrient supply for growth, result-
ing in neoplastic angiogenesis within the lesions [13, 14]. 
Tumor growth depends on neovascularization within the 
tumor [14]. Tortuous blood-supplying vessels may be 
detected in CT-enhanced images of larger tumor lesions 
[13, 15]. However, the clinical indicator of tortuous ves-
sels was not included in the final radiomics-clinical 
nomogram after p = 0.084 was found in the multifacto-
rial analysis. It is possible that the tortuous vessel in the 
CT imaging is a subjective judgment of the radiologist, 

so it needs to be supported by more cases or multicenter 
cases.

Clinical staging may commonly be affected by cysto-
scopic or imaging manifestations, multiple biopsies [16]. 
This study’s model incorporated pathological tissue grad-
ing of the biopsy [17]. Because of the influence of biopsy 
sampling site, the size of the tissue sampled, and other 
factors, preoperative and postoperative pathological 
findings may differ slightly between [5, 18]. Preoperative 
tissue grading, on the other hand, is useful in predict-
ing the status of BCa muscle layer infiltration. Almost 
half of newly diagnosed NMIBC are low grade, while the 

Fig. 4 Calibration curves of the radiomics-clinical nomogram in the training (A) and test cohorts (B). Decision curve analyses (DCA) 
for the combined model in the training (C) and test cohorts (D)
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vast majority of MIBC are high-grade [17, 19, 20]. This is 
consistent with what we discovered. However, it has also 
been reported in the literature that one-third of NMIBC 
consist of high-grade BCas [21]. Pathological pheno-
types such as grading, staging, and muscle invasion sta-
tus, according to European Association of Urology (EAU) 
guidelines, have a significant impact on treatment deci-
sions and prognosis [19, 20]. Li et  al. developed a radi-
omics model for preoperative assessment of histological 
demarcation of NMIBC based on clinical and radiologi-
cal data from 169 NMIBC patients [6]. In their study, age 
and tumor number were included in the model as clinical 
factors. We also collected age and number of tumors as 
clinical baseline information, but these features were not 
finally included in the model.

Radiomics is a technique for extracting and analyzing 
quantitative imaging features from medical images (e.g., 
CT, MRI, and other images) [22]. Radiomics is used to 
develop descriptive and predictive models [14]. In this 
study, 12 features included morphological features and 
wavelet filtered features were ultimately extracted from 
each BCa by radiomics analysis to create radiomics 
model for distinguishing the infiltration status of bladder 
intrinsic muscle.

Morphological features included original_shape_Sphe-
ricity, original_shape_Elongation, original_shape_Least-
AxisLength. The likelihood of bladder cancer muscle 
invasion was higher when the tumor shape was close 
to a spherical ellipse. Some scholars predicted the 
muscle invasion status of bladder cancer based on the 

Fig. 5 The clinical, radiomics, and radiomics-clinical nomogram receiver operating characteristic (ROC) curves. The ROC curve shows 
the radiomics-clinical nomogram is better than the separate CT-based radiomics model and the clinical model in the training (A) and test (B) 
cohorts

Table 6 Comparison of the AUC Values among models

* AUC  area under the curve, p < 0.05, which is considered statistically significant difference

Training cohort Test cohort

p Value in 
Comparison to 
radiomic model

p Value in 
Comparison to 
clinical model

p Value in 
Comparison to 
radiomic model

p Value in 
Comparison to 
clinical modelModel aAUC(95% CIs) AUC(95% CIs)

Radiomic 0.845 (0.781–0.908) 0.415 0.847 (0.739–0.954) 0.567

Clinical 0.811 (0.742–0.880) 0.415 0.808 (0.703–0.913) 0.567

Radiomics-clin-
ical nomogram

0.896 (0.846–0.947) 0.015 0.002 0.887 (0.803–0.971) 0.185 0.098



Page 11 of 12Zhang et al. BMC Medical Imaging  (2024) 24:98 

tumor-bladder wall contact length (TCL) [23]. Qing Li 
et al. [23] discovered that an elevated TCL was indepen-
dently correlated with the muscle infiltration of bladder 
cancer. Akcay et  al. also found that the simultaneous 
use of VI-RADS criteria and TCL in mpMRI to assess 
muscular invasion in BCa patients was a successful and 
highly reproducible method [24]. Tumor size has prog-
nostic and predictive significance in NMIBC, according 
to EAU guidelines [25]. In this study, an original feature 
named original_shape_LeastAxisLength was included in 
the radiomics features. We also included the transverse 
axial lesion length in CTU images and revealed that the 
tumor lesion length in MIBC surpassed that of NMIBC. 
Nevertheless, the difference observed in the training and 
test groups did not attain statistical significance. This 
may suggest the superiority of lesion size-related features 
in radiomics over conventional imaging measurements. 
The radiomics features contained more wavelet filtered 
features. The wavelet transform can also gradually con-
vert image information into low- and high-frequency 
information, which improves local features, increases 
information content in tumor images, and provides more 
information about the biological behaviors and hetero-
geneity of different tumors at multiple scales [26].

The nomogram is a great illustration of how several 
pertinent pieces of information can be combined to pre-
dict a specific endpoint by showcasing the outcomes of a 
predictive model on a scale. The nomogram can be used 
to visually determine the patient’s risk for the matching 
MIBC on the prediction line at the bottom of the nomo-
gram, which can be used to inform the doctor’s decisions 
about the best course of therapy. The nomogram pro-
duced by combining the Radscore and clinical data for 
the test cohort had an AUC of 0.887, suggesting that the 
constructed model had sufficient MIBC prediction accu-
racy. Consequently, the combined nomogram prediction 
model may aid in directing physicians’ choices.

Our study have several limitations. First, the sample 
size is quite modest. Second, there is a selection bias, 
which can restrict the proposed model’s applicability. 
This study excluded some ineligible cases, for example 
cases with a small lesion size or the absence of muscle 
components in the pathological tissue. Additionally, the 
radiomics model was not externally validated in this 
study. It is necessary to perform a multicenter valida-
tion with more participants.

In summary, to assess muscle invasion in BCa prior sur-
gery, a radiomics-clinical nomogram based on CT images 
was built in this study. The nomogram showed a high 
level of diagnostic efficacy and can be used as a guide for 
BCa prognostic evaluation and tailored treatment.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12880- 024- 01276-7.

Supplementary Material 1. 

Acknowledgements
Not applicable.

Authors’ contributions
FL conceptualization and design. FL, FW and SZ: acquired and managed 
patients, reviewed the literature. RZ, SZ, and LHZ: statistical analysis and made 
the tables and figs. RZ and SJJ: drafting, review, and revision of the manuscript. 
All authors contributed to the article and approved the submitted version.

Funding
This study has received funding by the Science and Technology Program 
Projects of XiangYang Municipality (2022YL19A).

Availability of data and materials
The datasets generated during the current study are included in this 
published article. Further inquiries can be available from the corresponding 
author.

Declarations

Ethics approval and consent to participate
This study was approved by the institutional ethics review board of Xiangyang 
Central Hospital, and the informed consent requirement was waived due to 
the retrospective study.

Consent for publication
Not available.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital 
of Hubei University of Arts and Science, Xiangyang 441021, Hubei, China. 

Received: 11 November 2023   Accepted: 19 April 2024
Published: 27 April 2024

References
 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, 

et al. Global Cancer statistics 2020: GLOBOCAN estimates of incidence 
and mortality worldwide for 36 cancers in 185 countries. CA Cancer J 
Clin. 2021;71(3):209–49.

 2. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder Cancer: a review. JAMA. 
2020;324(19):1980–91.

 3. Compérat E, Amin MB, Cathomas R, Choudhury A, De Santis M, Kamat 
A, et al. Current best practice for bladder cancer: a narrative review of 
diagnostics and treatments. Lancet. 2022;400(10364):1712–21.

 4. Zheng J, Kong J, Wu S, Li Y, Cai J, Yu H, et al. Development of a noninva-
sive tool to preoperatively evaluate the muscular invasiveness of blad-
der cancer using a radiomics approach. Cancer. 2019;125(24):4388–98.

 5. Xu S, Yao Q, Liu G, Jin D, Chen H, Xu J, et al. Combining DWI radiom-
ics features with transurethral resection promotes the differentiation 
between muscle-invasive bladder cancer and non-muscle-invasive 
bladder cancer. Eur Radiol. 2020;30(3):1804–12.

 6. Li L, Zhang J, Zhe X, Chang H, Tang M, Lei X, et al. An MRI-based 
radiomics nomogram in predicting histologic grade of non-muscle-
invasive bladder cancer. Front Oncol. 2023;13:1025972.

https://doi.org/10.1186/s12880-024-01276-7
https://doi.org/10.1186/s12880-024-01276-7


Page 12 of 12Zhang et al. BMC Medical Imaging  (2024) 24:98

 7. Zhang G, Wu Z, Zhang X, Xu L, Mao L, Li X, et al. CT-based radi-
omics to predict muscle invasion in bladder cancer. Eur Radiol. 
2022;32(5):3260–8.

 8. Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, et al. Quantitative identifica-
tion of nonmuscle-invasive and muscle-invasive bladder carcinomas: 
a multiparametric MRI Radiomics analysis. J Magn Reson Imaging. 
2019;49(5):1489–98.

 9. Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins 
HM, et al. Updated 2016 EAU guidelines on muscle-invasive and meta-
static bladder Cancer. Eur Urol. 2017;71(3):462–75.

 10. Cui Y, Sun Z, Liu X, Zhang X, Wang X. CT-based radiomics for the preop-
erative prediction of the muscle-invasive status of bladder cancer and 
comparison to radiologists’ assessment. Clin Radiol. 2022;77(6):e473–82.

 11. Zhang G, Wu Z, Xu L, Zhang X, Zhang D, Mao L, et al. Deep learning on 
enhanced CT images can predict the muscular invasiveness of bladder 
Cancer. Front Oncol. 2021;11:654685.

 12. Chen W, Gong M, Zhou D, Zhang L, Kong J, Jiang F, et al. CT-based deep 
learning radiomics signature for the preoperative prediction of the 
muscle-invasive status of bladder cancer. Front Oncol. 2022;12:1019749.

 13. Raman SP, Fishman EK. Upper and lower tract urothelial imag-
ing using computed tomography urography. Urol Clin North Am. 
2018;45(3):389–405.

 14. Huang X, Wang X, Lan X, Deng J, Lei Y, Lin F. The role of radiomics with 
machine learning in the prediction of muscle-invasive bladder cancer: a 
mini review. Front Oncol. 2022;12:990176.

 15. Roudnicky F, Dieterich LC, Poyet C, Buser L, Wild P, Tang D, et al. High 
expression of insulin receptor on tumour-associated blood vessels 
in invasive bladder cancer predicts poor overall and progression-free 
survival. J Pathol. 2017;242(2):193–205.

 16. Hensley PJ, Panebianco V, Pietzak E, Kutikov A, Vikram R, Galsky MD, et al. 
Contemporary staging for muscle-invasive bladder Cancer: accuracy and 
limitations. Eur Urol Oncol. 2022;5(4):403–11.

 17. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W, 
et al. Bladder cancer. Lancet. 2016;388(10061):2796–810.

 18. Xu X, Wang H, Guo Y, Zhang X, Li B, Du P, et al. Study Progress of nonin-
vasive imaging and Radiomics for decoding the phenotypes and recur-
rence risk of bladder Cancer. Front Oncol. 2021;11:704039.

 19. Babjuk M, Böhle A, Burger M, Capoun O, Cohen D, Compérat EM, et al. 
EAU guidelines on non-muscle-invasive urothelial carcinoma of the blad-
der: update 2016. Eur Urol. 2017;71(3):447–61.

 20. Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G, et al. 
European Association of Urology guidelines on muscle-invasive and metastatic 
bladder Cancer: summary of the 2020 guidelines. Eur Urol. 2021;79(1):82–104.

 21. Wang H, Hu D, Yao H, Chen M, Li S, Chen H, et al. Radiomics analysis of 
multiparametric MRI for the preoperative evaluation of pathological 
grade in bladder cancer tumors. Eur Radiol. 2019;29(11):6182–90.

 22. Sylvester RJ, Rodríguez O, Hernández V, Turturica D, Bauerová L, Bruins 
HM, et al. European Association of Urology (EAU) prognostic factor risk 
groups for non-muscle-invasive bladder Cancer (NMIBC) incorporating 
the WHO 2004/2016 and WHO 1973 classification Systems for Grade: an 
update from the EAU NMIBC guidelines panel. Eur Urol. 2021;79(4):480–8.

 23. Li Q, Cao B, Liu K, Sun H, Ding Y, Yan C, et al. Detecting the muscle inva-
siveness of bladder cancer: an application of diffusion kurtosis imaging 
and tumor contact length. Eur J Radiol. 2022;151:110329.

 24. Akcay A, Yagci AB, Celen S, Ozlulerden Y, Turk NS, Ufuk F. VI-RADS score 
and tumor contact length in MRI: a potential method for the detection of 
muscle invasion in bladder cancer. Clin Imaging. 2021;77:25–36.

 25. Kozikowski M, Suarez-Ibarrola R, Osiecki R, Bilski K, Gratzke C, Shariat SF, et al. 
Role of Radiomics in the prediction of muscle-invasive bladder Cancer: a 
systematic review and Meta-analysis. Eur Urol Focus. 2022;8(3):728–38.

 26. Wu Y, Wang S, Chen Y, Liao Y, Yin X, Li T, et al. A multicenter study on 
preoperative assessment of Lymphovascular space invasion in early-
stage cervical Cancer based on multimodal MR Radiomics. J Magn Reson 
Imaging. 2023;58:1638–48.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Predicting preoperative muscle invasion status for bladder cancer using computed tomography-based radiomics nomogram
	Abstract 
	Objectives 
	Methods 
	Results 
	Conclusions 

	Introduction
	Materials and methods
	Patients
	CT data and image acquisition
	CT image segmentation and feature extraction
	Feature selection and Radiomics model building
	Development and performance of a Radiomics-clinical nomogram
	Models comparison and clinical usefulness evaluation
	Statistics

	Results
	Clinical characteristics
	Feature selection and Radiomics score building
	Development and performance of a Radiomics-clinical nomogram
	Models comparison and clinical usefulness evaluation

	Discussion
	Acknowledgements
	References


