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learning‑derived radiomics model for diagnosis 
of osteoporosis and osteopenia using 
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Ming Xiang3,8* and Fanxin Zeng1,3* 

Abstract 

Background:  To develop and validate a quantitative computed tomography (QCT) based radiomics model for dis-
criminating osteoporosis and osteopenia.

Methods:  A total of 635 patients underwent QCT were retrospectively included from November 2016 to November 
2019. The patients with osteopenia or osteoporosis (N = 590) were divided into a training cohort (N = 414) and a 
test cohort (N = 176). Radiomics features were extracted from the QCT images of the third lumbar vertebra. Mini-
mum redundancy and maximum relevance and least absolute shrinkage and selection operator were used for data 
dimensional reduction, features selection and radiomics model building. Multivariable logistic regression was applied 
to construct the combined clinical-radiomic model that incorporated radiomics signatures and clinical characteristics. 
The performance of the combined clinical-radiomic model was evaluated by the area under the curve of receiver 
operator characteristic curve (ROC–AUC), accuracy, specificity, sensitivity, positive predictive value, and negative 
predictive value.

Results:  The patients with osteopenia or osteoporosis were randomly divided into training and test cohort with a 
ratio of 7:3. Six more predictive radiomics signatures, age, alkaline phosphatase and homocysteine were selected 
to construct the combined clinical-radiomic model for diagnosis of osteoporosis and osteopenia. The AUC of the 
combined clinical-radiomic model was 0.96 (95% confidence interval (CI), 0.95 to 0.98) in the training cohort and 
0.96 (95% CI 0.92 to 1.00) in the test cohort, which were superior to the clinical model alone (training-AUC = 0.81, 
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Introduction
Osteoporosis is a age-related musculoskeletal disease 
characterized by reduced bone mass and increasing of 
bone fragility and fracture susceptibility [1]. Obviously, 
aging of population is becoming more severe and it has 
been estimated about 6 million fragility fractures will 
occur in China by 2050 [2]. Early screening and interven-
tion will effectively slow down the development of bone 
resorption and reduce the risk for initial or subsequent 
fractures [3].

Dual energy X-ray (DXA) is currently widely used for 
diagnosis of osteoporosis, but it may be interfered by vas-
cular calcification, osteophyte, and body position. Quan-
titative computed tomography (QCT) is also an imaging 
technique based on radiation absorption to measure vol-
umetric density, which can assess cortical and trabecular 
bone compartments separately [4]. The changes of bone 
mineral density (BMD)measured by QCT are more sen-
sitive to age-related or treatment-related than that meas-
ured by DXA for the whole vertebral body [4].

Since radiomics [5–9] was proposed in 2012, a high-
throughput approach of mining-specific image char-
acteristics from standard medical images, which has 
drawn increasing attentions. It extracts a large number of 

features and applies them to the clinical decision support 
systems to improve the accuracy of qualitative evaluation 
and prognosis of lesions. Radiomics has been successfully 
applied in prediction and differentiation of disease out-
come in high-risk prostate cancer [10], bone mineral loss 
[11], osteopenia and osteoporosis for X-ray [12], osteo-
porosis prediction [13] and types of multiple myeloma 
[5]. Tagliafico AS et  al. [5] was the first study bringing 
radiomics signatures into musculoskeletal system to dif-
ferentiate bone tissue into focal and diffuse pattern of 
multiple myeloma, and their model validation effective 
rates were 73–71%, respectively.

Therefore, our study aimed to establish and validate a 
nomogram radiomics model that incorporated both the 
radiomics signatures based on QCT images and clinic 
risk factors to evaluate osteoporosis and osteopenia for 
individual pre-treatment.

Methods
Patients
The participants were included from Dazhou Central 
Hospital between November 2016 and November 2019. 
1120 cases who received QCT were retrospectively col-
lected (Fig. 1). The exclusion criteria were as followed: i. 

test-AUC = 0.79). The calibration curve demonstrated that the radiomics nomogram had good agreement between 
prediction and observation and decision curve analysis confirmed clinically useful.

Conclusions:  The combined clinical-radiomic model that incorporates the radiomics score and clinical risk factors, 
can serve as a reliable and powerful tool for discriminating osteoporosis and osteopenia.

Keywords:  Combined clinical-radiomic model, Osteoporosis, Osteopenia, Quantitative computed tomography

Fig. 1  Flowchart of this study
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lumbar fracture or lumbar fracture with internal fixation; 
ii. malignant space occupying lesions of lumbar vertebra; 
iii. metabolic or endocrine diseases such as hyperthy-
roidism or hypothyroidism, occupying lesions of thyroid, 
diabetes, neurological diseases (such as parkinson’s dis-
ease and alzheimer’s disease); iv. chronic obstructive pul-
monary disease; v. poor quality images; vi. more than 3 
items of clinical characteristics were missed. Gender, age, 
hemoglobin (Hb), glucose, total bilirubin, direct biliru-
bin, indirect bilirubin, alkaline phosphatase (ALP), uric 
acid (UA), calcium (Ca), magnesium (Mg), phospho-
rus (P), homocysteine (Hcy) and other clinical informa-
tion in the same period were collected from the medical 
records of patients. The patients were classified into nor-
mal (T-score ≥ − 1), osteopenia (− 2.5 < T-score < − 1) 
and osteoporosis (T-score ≤ − 2.5) groups according to 
the T-score. The T-score was calculated from bone min-
eral density. The calculation formula is: Db = (Hb − Hw)/
(Hk − Hw) × Ck, T-score = (BMD(Patients) − BMD(Healthy 

young people))/SD(Control), which Db was the BMD, Hb was 
the CT value of ROI, Hk was the CT value ofphantom, 
Hw was the CT value of water, and the Ck was the den-
sity of phantom. The study was approved by the ethics 
committee of Dazhou Central Hospital and kept with the 
policies for a retrospective review, informed consent was 
not required.

Region of interest (ROI) segmentation and feature 
extraction
The images were acquired using SOMATOM Definition 
AS (Siemens Healthcare, Forchheim, Germany). The 
QCT scan parameters were 80  kV tube voltage, 10  mm 
slice width, 1  s exam time. The T-score were obtained 
by analyzing QCT images with osteo software (Siemens 
Healthcare, Forchheim, Germany). The image param-
eters were as follows: acquisition matrix = 512 × 512. 
The CT images were retrieved from the INFINITT Pic-
ture Archiving and Communication Systems (PACS) 
(INFINITT Healthcare, Seoul, Korea)and then exported 
to the 3D slicer software (version 4.10.2; www.​slicer.​
org) (USA National Institutes of health, Bethesda, USA)
for manual segmentation. In this study, all the images 
were Digital Imaging and Communications in Medicine 
(DICOM) format. The ROI were manually segmented by 
two medical students under the guidance of experienced 
radiologists. Pyradiomics installed in 3D slicer was used 
to extract feature [14] and the wavelet filters was applied 
in the feature extraction steps, which is compliant with 
Image Biomarker Standardization Initiative (IBSI) [15]. 
We did not perform voxel resampling. The initial set-
ting used for the feature extraction process was showed 
in Additional file  1: Table  S1. The cancellous bone of 
the third lumbar vertebrae (L3) were segmented and 

851 quantitative features were produced. These features 
included shape, gray level dependence matrix (gldm), 
gray-level co-occurrence matrix (glcm), firstorder, gray-
level run-length matrix (glrlm), gray-level size zone 
matrix (glszm), neighborhood gray-tone difference 
matrix (ngtdm).

Inter‑ and Intra‑observer Reproducibility Evaluation
Twenty consecutive patient images were selected for 
inter- and intra- observer reproducibility comparison. 
Each observer repeated the generation 851 of radiomic 
features twice within a half year period following the 
same procedure to assess intra-observer reproducibility.

Radiomics nomogram construction
Eligible patients were randomly allocated to training and 
test cohorts in a ratio of 7:3. The “preProcess” function 
in R was used for feature standardization (centering and 
scaling). Minimum redundancy and maximum relevance 
(mRMR) [16] was used to pre-selected 851 radiomics sig-
natures, then the least absolute shrinkage and selection 
operator (LASSO) was further selected the remained 
features to reduce redundancy. The mRMR utilizes the 
information entropy and difference to select features, so 
that the selected features have the minimum redundancy 
and meet the maximum correlation. LASSO regression 
model excludes the secondary independent variable coef-
ficient by regression penalty. Multiple logistic regression 
model was used to select candidate factors of clinical 
information, such as age, gender, and other biochemis-
try metrics. An overview of the combined model process 
was shown in the Fig. 2.

Statistical analysis
Statistical analysis was performed using SPSS 20.0 (Inter-
national Business Machines Corporation, State of New 
York, USA) and R software (version 3.6.1) (R studio, Bos-
ton, USA). The “mRMRe” and “glmnet” packages in R 
were used to build mRMR and LASSO. The nomogram 
was built using “rms” package. The independent sam-
ple t-test or Mann–Whitney U test was used to analyze 
the relationship between quantitative data (Age, HGB, 
GLU, TBIL, DBIL, IBIL, ALP, UA, Ca, Mg, P, HCY), but 
the Chi-square test was used to analyze the categorical 
data (Gender). The area under the curve (AUC), accu-
racy, specificity, sensitivity, positive predictive value and 
negative predictive value were used to evaluate the per-
formance of the model for distinguishing the osteopo-
rosis and osteopenia. In order to assess the difference 
of receive operating characteristic, the Delong’s test was 
used. The calibration curves accompanied by Hosmer–
Lemeshow H test were used to evaluate whether the 
model was perfectly calibrated. Intra-class correlation 

http://www.slicer.org
http://www.slicer.org
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coefficients (ICCs) was used to evaluated the inter- and 
intra- observer reproducibility based the extracted fea-
tures, which 0.81–1.00 was considered to be perfect 
agreement. Two-tailed P < 0.05 was considered to have 
significant difference.

Results
Patients
A total of 635 patients were eligible for inclusion in our 
study (Fig. 1). We divided patients into a training cohort 
(N = 414) and a test cohort (N = 176). The characteris-
tics of patients were presented in Table 1 and Additional 
file  1: Table  S1. Age, ALP and Hcy were the top three 

different clinical characteristics between osteoporosis 
and osteopenia in the training group (P < 0.05).

Feature selection and radiomics score (rad‑score) 
construction
Supporting Information (ICCs of intra- and inter- 
observer was perfect agreement.)

A combined mRMR and LASSO methodological 
approach was used to select the 6 optimal radiom-
ics features. Firstly, there were 20 potential predictors 
from 851 features selected by the mRMR (Additional 
file  1: Fig. S1A). Then, the LASSO was further selected 
6 optimal features with nonzero coefficients (Additional 

Fig. 2  Flowchart of the radiomics method

Table 1  Characteristics of Patients in the Training and Test Cohorts

P value is derived from the univariable association analyses. Chi-Square was used to analyze the difference of categorical data (Gender), while the independent sample 
t-test or Mann–Whitney U test was used to analyze the difference of quantitative data (Age, HGB, GLU, TBIL, DBIL, IBIL, ALP, UA, Ca, Mg, P, HCY)

HGB hemoglobin, GLU glucose, TBIL total bilirubin, DBIL direct bilirubin, IBIL indirect bilirubin, ALP alkaline phosphatase, UA uric acid, Ca calcium, Mg magnesium, P 
phosphorus, HCY homocysteine, SE standard error
* P value < 0.05

Characteristics Training cohorts Test cohorts P

Osteoporosis Osteopenia P Osteoporosis Osteopenia

Gender, No. (%) 0.032* 0.897

Male 86 (28.40) 20 (18.00) 29 (22.50) 11 (23.40)

Female 217 (71.60) 91 (82.00) 100 (77.50) 36 (76.60)

Age, mean (SE), years 70.03 (0.55) 58.32 (0.92)  < 0.001* 69.11 (0.85) 57.72 (1.45)  < 0.001*

HGB, mean (SE), g/L 122.28 (1.67) 127.83 (1.59) 0.209 125.46 (1.54) 127.17 (2.60) 0.385

GLU, mean (SE), mmol/L 5.56 (0.07) 5.21 (0.13) 0.010* 5.80 (0.15) 5.28 (0.08) 0.010*

TBIL, mean (SE), umol/L 17.18 (3.83) 13.02 (0.59) 0.354 14.52 (0.69) 14.86 (0.89) 0.341

DBIL, mean (SE), umol/L 4.66 (0.91) 3.11 (0.13) 0.001 4.30 (0.35) 3.74 (0.34) 0.435

IBIL, mean (SE), umol/L 13.56 (3.95) 9.91 (0.49) 0.935 10.22 (0.45) 11.17 (0.70) 0.115

ALP, mean (SE), U/L 84.49 (1.50) 76.13 (2.40) 0.001* 85.06 (3.36) 75.84 (3.64) 0.153

UA, mean (SE), umol/L 301.77 (4.69) 305.54 (8.48) 0.851 307.97 (8.39) 296.66 (10.19) 0.351

Ca, mean (SE), mmol/L 2.64 (0.34) 2.34 (0.01) 0.001 2.29 (0.01) 2.33 (0.02) 0.049*

Mg, mean (SE), mmol/L 1.06 (0.01) 1.04 (0.02) 0.968 1.07 (0.02) 1.01 (0.02) 0.062

P, mean (SE), mmol/L 1.09 (0.01) 1.13 (0.02) 0.047* 1.09 (0.01) 1.10 (0.02) 0.858

HCY, mean (SE), umol/L 14.83 (0.58) 11.48 (0.50)  < 0.001* 14.90 (0.86) 12.83 (0.71) 0.252
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file  1: Fig.  S1B, C). The features included wavelet_
LLL_firstorder_10Percentile, wavelet_LLH_firstorder_
InterquartileRange, original_firstorder_10Percentile, 
wavelet_LLL_firstorder_Median, wavelet_LLH_glrlm_
ShortRunLowGrayLevelEmphasis, wavelet_LLH_first-
order_Skewness. The contribution of the selected 
features was shown in Additional file  1: Fig. S2 and the 
rad-score were shown in supplementary materials. The 
rad-score showed the excellent diagnosis performance in 
discriminating the osteoporosis and osteopenia in train-
ing (P < 0.001) and test cohort (P < 0.001) (Additional 
file 1: Fig. S3).

Development and validation of a radiomics model
We constructed two models to distinguishing osteopo-
rosis and osteopenia based on the radiomics features or 
clinical variables, respectively. The AUC of the radiom-
ics model was 0.96 (95% confidence interval (CI), 0.94–
0.98) in the training cohort and 0.96 (95% CI 0.92–1.00) 
in the test cohort (Fig. 3). The clinical model yielded an 

AUC of 0.81 (95% CI 0.78–0.86) in the training cohort 
and 0.79 (95% CI 0.71–0.86) in the test cohort. Fur-
thermore, the model combined with the clinical vari-
ables and radiomics features of AUC was 0.96 (95% CI 
0.95–0.98) in the training cohort, while the AUC was 
0.96 (95% CI 0.92–1.00) in the test cohort. The results 
showed that the radiomics model was not inferior to the 
combined clinical-radiomic model both in the training 
and test cohort (Fig.  3). In addition, we compared the 
diagnostic performance among the clinics, radiomics 
and combined model using accuracy, sensitivity, speci-
ficity both in the training and test group (Table  2). A 
nomogram was conducted based on the rad-score and 
3 clinical characteristics (Age, ALP, Hcy) for differen-
tiation of osteoporosis and osteopenia (Fig.  4A). The 
calibration curve showed good agreement between pre-
diction and observation in both cohort (Fig. 4B, C). The 
P-value (0.95 in the training cohort and 0.09 in the test 
cohort) using the Hosmer–Lemeshow H test showed 
had no departure from the perfect fit. Furthermore, we 

Fig. 3  Receive operating characteristic curve (ROC) for the radiomics model, clinical model and combined model in distinguishing osteoporosis 
and osteopenia. A The model comparison in the training cohort. B The model comparison in the test cohort

Table 2  Diagnostic performance of clinical, radiomics and combined clinical-radiomic model

PPV positive predictive value, NPV negative predictive value

Group Model Accuracy Sensitivity Specificity PPV NPV

Training Clinics 0.78 0.90 0.56 0.79 0.76

Test Clinics 0.74 0.88 0.51 0.74 0.72

Training Radiomics 0.90 0.93 0.89 0.76 0.97

Test Radiomics 0.94 0.92 0.95 0.86 0.97

Training Combined clinical-radiomics 0.89 0.99 0.72 0.87 0.96

Test Combined clinical-radiomics 0.90 0.98 0.75 0.88 0.96



Page 6 of 9Xie et al. BMC Medical Imaging          (2022) 22:140 

compared the normal and patients with bone loss to 
validate the performance of the rad-score in different 
subgroups. The results were considerably good espe-
cially in differentiating osteoporosis and normal sub-
jects (AUC = 0.99, 95% CI 0.98–1.00), and the AUC of 
bone loss patients and normal subjects was 0.90 (95% 
CI 0.87–0.93), the AUC of osteopenia and normal was 
0.66 (95% CI 0.57–0.75) (Additional file 1: Fig. S4).

Clinical use
The decision curve of the radiomics, clinical and com-
bined clinical-radiomic model was shown in Fig.  5. The 
nomogram with rad-score was considered better than 
clinical model in discriminating the osteoporosis and 
osteopenia when the threshold probability in the early 
stage. The net benefit of combined clinical-radiomic 
model was higher than clinical model in all the range.

Fig. 4  Development and performance of nomogram. A Nomogram based on radiomics signatures and clinical factors. B Calibration curves of the 
radiomics nomogram in the training cohort. C Calibration curves of the radiomics nomogram in the test cohorts

Fig. 5  Decision curve analysis for radiomics nomogram and signature
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Discussion
This study built and validated a diagnostic model of 
bone mass individualization based on QCT images, 
with  a large sample that successfully distinguished the 
osteoporosis and osteopenia patients. We found that the 
radiomics features can supplement the current clinical 
diagnostic system, and it provides a better discrimination 
and evaluation ability for the development of bone loss 
meanwhile.

BMD is the most important parameter in the diag-
nosis of osteoporosis. However, it can not reflect the 
bone microstructure. In comparison to BMD obtained 
by QCT, bone microstructure parameters brings addi-
tional and complementary information to improve the 
prediction of fracture risk [17, 18]. As a new technol-
ogy, radiomics can produce many features that reflect 
the microstructure of images. Some studies have shown 
that there is a certain correlation between the texture 
parameters of cancellous bone extracted from radiologi-
cal images and bone microstructure [19, 20]. He et  al. 
have established a radiomics model based on MRI for the 
diagnosis of osteoporosis [21]. In our study, the model 
based on QCT images and clinical data can quantify 
the information of higher dimensions of vertebral body 
to a certain extent, which is comprehensively analyze 
the changes of bone structure and bone mineral density, 
and has certain application value for the evaluation of 
osteoporosis.

For the construction of the radiomics signatures, 851 
candidate radiomics features were shrunk to 20 poten-
tial predictors with mRMR feature selection to eliminate 
the redundant and irrelevant features. Then, LASSO 
approach was used to reduce the regression coefficient, 
extract 6 features with high performance of discrimi-
nation for osteoporosis and osteopenia to establish 
rad-score. Signatures extracted from LASSO were con-
siderable accurately and the regression coefficients of 
most signatures were reduced toward zero during overfit-
ting [22], making the model easier to construe and availa-
ble to identify the top ranking signatures [23]. Compared 
to the clinical predictors alone (training-AUC = 0.81, 
test-AUC = 0.79), the combined model showed signifi-
cant improvement (AUC = 0.96).

We used QCT images to extract the meaningful radi-
omics features in discriminating bone density changes 
and osteoporosis and received a considerable perfor-
mance (AUC = 0.96). Previous model [24] based on DXA 
images investigate the diagnostic accuracy of bone mass 
classification using several machine learning algorithms, 
showing a small sample capacity and a lower AUC that 
ranging between 0.50 and 0.78. Lee KS et  al. explored 
the reliability the reliability of using dental tablets to 
screen osteoporosis (AUC = 0.858) [25]. Several studies 

has confirmed that [26–28] the lumbar spine is the good 
observation site for bone loss in all skeletal structures, 
among long bone backbone, femoral neck, and spinal 
segment [29, 30]. Among the lumbar vertebrae, the L3 
has the highest specificity [26], because L3 is found to be 
the vertebral body with the highest bone metabolism rate 
and the lowest bone density in all vertebral bodies. In our 
study, the L3 was used to extract radiomics signatures, 
and it was proved that the extracted signatures could sig-
nificantly discriminate the osteoporosis and osteopenia 
(AUC = 0.96). In comparison, some studies developed a 
predictive model for BMD based on hip BMD [31], lum-
bar and hip BMD [32] or unspecified [33]. The delinea-
tion of ROI is the most important part in the analysis of 
radiomics, because the subsequent data is generated by 
the delineated area, and the gray scale of cancellous bone 
and cortical bone is clear and easy to distinguish.

The 6 more predictive radiomics signatures mainly 
concluded wavelet_LLH features, which had been proved 
having high discriminating and predictable performance 
of model verification, especially in distant metastases of 
lung cancer [34] and improvement of radiomics repro-
ducibility for pulmonary nodules or masses [35]. In these 
6 features, 2 were the wavelet_LLL features, 3 were wave-
let_LLH features and 1 was original feature. In addition, 
features include both first-order features and grayscale 
features. Wavelet features could reflect the spatial het-
erogeneity of vertebral body synthetically cause they 
contain high-order image [36]. Studies have shown that 
both skewness and glrlm can reflect the heterogeneity of 
regions of interest [37–39]. Our analysis demonstrated 
that the 6 radiomics features had a strong discrimination 
ability to evaluate osteoporosis and osteopenia. Previous 
studies [40–42] proposed that age, gender, Hb, UA, Hcy, 
ALP, Ca, are related with osteoporosis, but the correla-
tions are weakly positive compared to BMD [40]. In our 
study, the specific clinical predictors performed a train-
ing AUC of 0.81 and a test AUC of 0.79. Therefore, our 
results showed that adding the rad-score to the model 
can improve the performance of clinical nomogram 
(training-AUC = 0.96, test-AUC = 0.96). This finding may 
support multi-dimension data is most effectively way to 
construct clinical decision model. However, some studies 
only use clinical data to diagnose osteoporosis [43, 44]. 
There are several limitations in our study. First, this study 
was derived from single center and there is no exter-
nal data, so its performance evaluation may be overly 
optimistic. Second, the follow-up data like therapeutic 
response and fracture rate was not considered currently.

In summary, a rad-score derived from QCT images was 
proposed in this study, which was an independent risk fac-
tor for abnormal BMD patients. In addition, diagnostic 
nomograms combining rad-score and clinical predictors 
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provided a convenient way to discriminate osteoporosis 
and osteopenia and may influence decision-making on the 
possible benefit of treatment.
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