
Yu et al. BMC Medical Imaging          (2022) 22:133  
https://doi.org/10.1186/s12880-022-00862-x

RESEARCH

A triple‑classification for the evaluation 
of lung nodules manifesting as pure 
ground‑glass sign: a CT‑based radiomic analysis
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Abstract 

Objectives:  To construct a noninvasive radiomics model for evaluating the pathological degree and an individual-
ized treatment strategy for patients with the manifestation of ground glass nodules (GGNs) on CT images.

Methods:  The retrospective primary cohort investigation included patients with GGNs on CT images who under-
went resection between June 2015 and June 2020. The intratumoral regions of interest were segmented semiauto-
matically, and radiomics features were extracted from the intratumoral and peritumoral regions. After feature selec-
tion by ANOVA, Max-Relevance and Min-Redundancy (mRMR) and Least Absolute Shrinkage and Selection Operator 
(Lasso) regression, a random forest (RF) model was generated. Receiver operating characteristic (ROC) analysis was 
calculated to evaluate each classification. Shapley additive explanations (SHAP) was applied to interpret the radiomics 
features.

Results:  In this study, 241 patients including atypical adenomatous hyperplasia (AAH) or adenocarcinoma in situ 
(AIS) (n = 72), minimally invasive adenocarcinoma (MIA) (n = 83) and invasive adenocarcinoma (IAC) (n = 86) were 
selected for radiomics analysis. Three intratumoral radiomics features and one peritumoral feature were finally identi-
fied by the triple RF classifier with an average area under the curve (AUC) of 0.960 (0.963 for AAH/AIS, 0.940 for MIA, 
0.978 for IAC) in the training set and 0.944 (0.955 for AAH/AIS, 0.952 for MIA, 0.926 for IAC) in the testing set for evalua-
tion of the GGNs.

Conclusion:  The triple classification based on intra- and peritumoral radiomics features derived from the noncontrast 
CT images had satisfactory performance and may be used as a noninvasive tool for preoperative evaluation of the 
pure ground-glass nodules and developing of individualized treatment strategies.

Keywords:  Lung adenocarcinoma, Pulmonary nodules, Radiomics, Random forest classification, Computed 
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Introduction
Lung adenocarcinoma (AD), as the most com-
mon histological type of peripheral lung cancer with 

manifestation of imageology-ground glass nodules 
(GGNs) on CT images [1, 2], is divided into preinva-
sive adenocarcinoma (including atypical adenomatous 
hyperplasia (AAH) and adenocarcinoma in situ (AIS)), 
minimally invasive adenocarcinoma (MIA) and invasive 
adenocarcinoma (IAC) according to the 2015 World 
Health Organization (WHO) classification [3]. Differ-
ent pathological grades of AD have different degrees of 
malignancy and disease-free survival. Several studies 
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have validated that the 5-year survival rate for preinva-
sive AD and MIA has reached nearly 100%, while that 
for IAC ranges from 38 to 74.6% [4, 5]. Some investi-
gators suggested that the preinvasive status could be 
followed up conservatively and that MIA could receive 
limited surgical resection instead of lobectomy [6, 7]. 
To avoid unnecessary surgery or biopsies, the preop-
erative classification of AD is of significance in deter-
mining the treatment strategy. One significant clinical 
problem is the noninvasive evaluation of GGNs, which 
includes the differential diagnosis of benign and malig-
nant nodules and assessment of the pathological degree 
of malignancy.

To date, nonenhanced chest computerized tomogra-
phy (CT) is the preferred and most common noninva-
sive preoperative method to screen lung diseases. With 
the improvement in the resolution and slice thickness of 
computed tomography scanners, GGNs have been gradu-
ally detected in lung CT images [8]. In current CT-based 
practice, the main reliance is on the visual evaluation of 
the shape, size and surrounding conditions of GGNs by 
radiologists [9, 10]. Due to subjective factors, the diag-
nostic accuracy showed poor performance. A noninva-
sive method for the evaluation of GGNs preoperatively is 
essential to guide clinical management [11].

Radiomics is a technology that characterizes the GGNs 
by gathering mineable high-throughput features, fol-
lowed by the machine learning method to select the 
features related to the final diagnostic model [12, 13]. 
Radiomics can quantitatively analyse the inherent hetero-
geneity of GGNs and has been broadly used in the evalu-
ation of pulmonary nodules [14]. Additionally, radiomics 
features quantifying the peritumoral tissues were related 
to the degree of invasion [15]. Recent radiomics studies 
have focused on differentiating the benign and malignant 
or invasive characteristics of GGNs by traditional dichot-
omies [16, 17]. In contrast to previous studies, we built 
a triple-classification radiomics model for the differen-
tiation of precancerosis, MIA and IAC with the manifes-
tation of GGNs based on the combination of radiomics 
features extracted from intra- and peritumoral tissues.

In addition, previous studies lacked the interpretability 
of radiomics models, which led to skepticism about the 
biological mechanism. In our investigation, we explained 
our classifiers by the Shapley additive explanations 
(SHAP) framework to increase the usability [18]. SHAP 
is currently the most recommended for model explana-
tion. First, a weight value is assigned to each feature in 
the model. These values are then calculated for each pre-
diction independently, and high absolute SHAP values 
indicate importance, whereas values close to zero indi-
cate low. To our knowledge, this is the first study to build 

a triple classification with an interpretable radiomics 
model for the evaluation of GGNs.

The aim of this study was to develop and validate an 
interpretable triple classification radiomics classifier that 
may be used as a noninvasive tool for the individual pre-
operative evaluation of pure ground-glass nodules.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board of Harbin Medical University, and the 
requirement for patient informed consent was waived. 
We retrospectively reviewed the medical charts and CT 
images between June 2015 and June 2020 from the Pic-
ture Archiving and Communication System (PACS). 
The inclusion criteria in the analysis were as follows: (1) 
the GGNs were confirmed by postoperative pathology 
(Fig. 1); (2) the computed tomography findings were pure 
ground glass density nodules with no solid component; 
(3) chest CT scans were performed within one week 
before biopsy or surgery; and (4) the CT images included 
in the study were all taken from the same CT device (GE 
Discovery CT750 64-detector CT scanner). The exclu-
sion criteria were as follows: (1) subsolid nodules; (2) 
obvious calcifications in nodules; (3) images that had 
significant noise or artefact; (4) lesions less than 1.0 cm, 
where the region of interest (ROI) could not be accurately 
delineated; and (5) patients who had a biopsy before the 
CT. The training cohort was the patients between June 
2015 and June 2019, and the independent testing cohort 
included patients between July 2019 and June 2020.

CT image acquisition
All patients were scanned using a GE Discovery CT750 
64-detector CT scanner (GE Medical Health care, Mil-
waukee, Wisconsin) with a tube voltage of 120 kV and a 
tube current of 80 mA with auto exposure control; pitch 
0.875–1.5; detector collimation 0.625–2.5 mm; and field 
of view (FOV) 360 mm × 360 mm. The scan included the 
entire thorax with a thickness of 1.0 mm per layer. Single 
scans were obtained during deep inspiration and breath 
hold. Lung images were reconstructed with the use of 
a high-spatial frequency algorithm, and mediastinal 
images with the use of an intermediate-spatial-frequency 
algorithm.

Region of interest segmentation
CT images were evaluated at the appropriate diagnos-
tic lung window (level, − 450 HU; width, 1500 HU). 
As Fig.  2a shows, the intratumoral volume of interests 
(VOI) was semiautomatically segmented on serial axial 
CT images by the software package ITK-SNAP version 
4.11.0 (www.​itk-​snap.​org) in two steps. First, label points 

http://www.itk-snap.org
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are marked by one radiologist (Ying Zhang, with 8 years 
of experience in lung diagnosis). Thereafter, all VOIs are 
generated automatically by computing devices, based 
on the label points. After segmentation, the peritumoral 
VOIs were created at a distance of 15 mm outside of the 
lesions according to the morphology by two radiologists 
[19]. The results were identified by one experienced radi-
ologist (Ji, with over twenty years of experience in lung 
diagnosis).

Radiomics feature extraction
We performed the feature extraction for each discretiza-
tion using the AK software (Artificial Intelligence Kit; 
version V3.2.0; GE Healthcare, China, Shanghai). Each 
ROI provided 282 texture features derived from the two 
types of features. One is the absolute signal quantisation 

including histograms (first order statistics, 42 features) 
and form factors (three-dimensional size and shape, 9 
features). The other is the relative signal quantisation, 
which contained texture parameters (appearance of the 
surface, 40 features), grey-level cooccurrence matrix 
(GLCM, 71 features) and run-length matrix (RLM, 120 
features) obtained using four angles (0°, 45°, 90° &135°) 
and two displacement vectors (1 & 4 pixel) (Fig.  2b). A 
total of 203 886 texture feature values for each discre-
tization was calculated. Texture features and the num-
ber of discretisation levels are listed in Additional file 1: 
Table S1. The radiomics features were consistent with the 
Imaging Biomarker Standardization Initiative (IBSI). The 
mathematical definitions are based on the previous stud-
ies [20, 21]. First, normalization (z score transformation) 
was performed on the imaging data to avoid dimension 

Fig. 1  Examples in the dataset of GGNs. The CT images and paraffin sections from left to right (haematoxylin and eosin, H&E, ×100) are AAH, AIS, 
MIA, and IAC, respectively

Fig. 2  Workflow of radiomics
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bias, and then we used absolute values to further com-
pare weights. The reproducibility of the extracted fea-
tures was measured by intraclass correlation coefficients 
(ICCs). We randomly selected 30 patients, and the inter-
observer reproducibility was assessed by two radiologists 
(Ying Zhang and ChenXi Xu). Subsequently, the radi-
ologist (Ying Zhang) reperformed the VOI on these 30 
patients after five days. Only the features with ICC > 0.80 
were considered to be retained for subsequent analysis.

Feature selection
The process of radiomics analysis is shown in Fig.  2c. 
To avoid redundant data, one-way ANOVA with a 
familywise error (FWE) correction was applied to 
select features in the training set. Features were con-
sidered important at FWE-cor. p < 0.05. Subsequently, 
the selected radiomics features were ranked using the 
minimum redundancy maximum relevance (mRMR) 
algorithm, which selects features by minimizing the 
redundancy and maximizing the correlation between the 
features. In our study, the first 25% features calculated by 
mRMR were reserved [22, 23]. Next, the selected radi-
omics features were analysed by least absolute shrinkage 
and selection operator (LASSO) regression, a method for 
feature selection in super dimensional data. The param-
eter λ penalty of the regression was determined by using 
a grid search on tenfold cross-validation according to the 
minimum mean squared error (MSE) in the training set.

Classification and evaluation
The random forest (RF) algorithm was used in our study 
for triple classification (Fig. 2d). To avoid model overfit-
ting, the model was constructed using tenfold cross-
validation in the training cohort. The process of RF is to 
generate multiple independent “classification and regres-
sion trees” based on the selected features with automated 
and randomized decision points. Then, the bootstrap 
method was used to randomly divide the sample sets 
to fill the decision points. In addition, the ‘out-of-bag’ 
(OOB) data, as the samples that were not included in the 
“bootstrap sample”, were subsequently used to internally 
validate the accuracy of the derived RF classifier. The fea-
tures were randomly selected as candidates for each cut-
off in the decision trees and were selected by calculating 
the Gini index [24]. Based on this calculation method, a 
set of candidate features with excellent reproducibility 
and significant differences were generated for the final 
multiple decision trees. The two key parameters were set 
according to their stability and best performance by the 
‘Grid Search CV’ algorithm (60 estimators, 7 max fea-
tures, minimum 7 samples on a leaf node). The processes 
above were performed in the Anaconda3 platform (www.​

anaco​nda.​com) with the “scikit-learn” package (scikit-
learn.org). The parameter class-weight was set as ‘bal-
anced’ to avoid sample bias.

The performance of the classifier was evaluated on the 
testing set which were independent of the training set 
without any preprocessing. We also evaluated and com-
pared the potential of CT-based radiomics in identifying 
three groups, AAH/AIS, MIA and IAC. Receiver oper-
ating characteristic (ROC) curve analysis and the area 
under the ROC curve (AUC) with 95% CI, sensitivity, 
specificity values were calculated to evaluate the effec-
tiveness of the models on the validated and test sets.

To improve the interpretability of the machine learning 
models, we calculate the SHAP value of each feature to 
explain the prediction for the model. For each predicted 
ROI, the contribution of each feature to the RF model 
was allocated based on their contribution, and the SHAP 
values were generated based on the axioms.

Statistical analysis
Analysis of variance (ANOVA) was used for the radiom-
ics features of the three groups, and post hoc testing was 
applied for the analysis of pairwise differences. Statistical 
analyses were performed using SPSS (version 25, Chi-
cago, IL, USA). A two-tailed p value less than 0.001 was 
considered statistically significant. The statistical signifi-
cance of the balanced accuracy was computed by the per-
mutation test (iteration 1,000 times) in Python version 
3.7.4.

Results
Patient characteristics
At a ratio of 7:3, 168 patients were included in the train-
ing cohort (50 AAH/AIS, 58 MIA, and 60 IAC). In the 
testing cohort, 73 patients (22 AAH/AIS, 25 MIA, and 
26 IAC) were enrolled based on the stratified sampling 
method. There were no significant differences in age 
or sex in the three groups in either the training or test-
ing cohorts. The clinical characteristics are presented in 
Table 1.

Performance of radiomics feature selection and model 
construction
A total of 846 radiomics features were calculated for 
three VOIs, each including 42 histogram, 9 form fac-
tor, 40 texture parameters, 71 grey level cooccurrence 
matrix (GLCM), and 120 run-length matrix (RLM) fea-
tures. A total of 219 ineligible features with ICCs less 
than 0.8 were excluded. Subsequently, 161 features were 
selected after performing one-way ANOVA with FWE, 
and 8 valuable features were finally determined based 
on the mRMR and 10 cross-validation Lasso regression 

http://www.anaconda.com
http://www.anaconda.com
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(λ = 3.76E−02). The representative radiomics features 
are shown in Table 2. The RF classifier was built based on 
these features for triple-class classification.

The mean AUCs of the triple-class RF models for 
AAH/AIS, MIA and IAC yielded values of 0.963 (95% 
CI 0. 931–0.995), 0.940 (95% CI 0.905–0.974), and 

0.978 (95% CI 0.959–0.997), in the training set and 
0.955 (95% CI 0.907, 0.998), 0.952 95% CI 0.904, 0.997), 
and 0.926 (95% CI 0.863, 0.989) in the testing set. The 
ROC curves of the model in the training and testing 
sets are shown in Fig.  3a, b and Table  3. To evaluate 
the feature importance for the classification model, the 
SHAP values of the selected feature for each prediction 

Table 1  Demographic characteristics of AAH/AIS, MIA and IAC patients in the training and testing cohorts

SD standard deviation

Characteristics (mean ± SD) Training set (n = 168) p value Testing set (n = 73) p value

AAH/AIS MIA IAC AAH/AIS MIA IAC

Age (years) 44.66 ± 7.80 44.36 ± 7.27 44.17 ± 7.34 0.638 45.41 ± 7.68 44.88 ± 6.84 45.08 ± 7.32 0.881

Gender (male/female) 23/27 25/33 31/29 0.700 10/12 13/12 12/14 0.701

Table 2  The representative radiomics features

***p value less than 0.001

Radiomics features AAH/AIS MIA IAC F-value/P-value

Maximum3Ddiameter 1.82E+01 ± 1.66E+00 3.72E+01 ± 3.55E+00 5.65E+01 ± 4.07E+00 1.81E+03/***

GLCMEntropy_angle0_offset1 3.72E+00 ± 2.74E+00 5.24E+00 ± 1.30E+00 1.27E+01 ± 1.76E+01 3.33E+02/***

GLCMEntropy_angle135_offset1 4.90E+00 ± 6.82E−01 9.02E+00 ± 8.56E−01 1.43E+01 ± 5.75E−01 2.43E+03/***

HaralickCorrelation_angle90_offset7 8.60E+08 ± 2.04E+08 6.35E+08 ± 2.09E+08 5.29E+08 ± 1.33E+08 4.54E+01/***

Fig. 3  Receiver operating characteristic (ROC) curves of three radiomics models in both the training (a) and testing cohorts (b)

Table 3  The diagnostic performance of the radiomic models in both the training and testing sets

AUC​ area under the curve

Classifier evaluation Training set (n = 168) Testing set (n = 73)

AAH/AIS MIA IAC AAH/AIS MIA IAC

Average AUC​ 0.963 0.940 0.978 0.955 0.952 0.926

(95% CI) (0.931,0.995) (0.905,0.974) (0.959,0.997) (0.907,0.998) (0.904,0.997) (0.863,0.989)

Average balanced accuracy (%) 0.921 0.893 0.941 0.935 0.919 0.903

Average sensitivity (%) 0.900 0.850 0.918 0.909 0.880 0.885

Average specificity (%) 0.942 0.936 0.963 0.961 0.958 0.915
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were computed in the training set. A positive SHAP 
value indicated a high likelihood of a diagnosis of the 
higher pathological grade of GGNs (Fig. 4a, b).

Analysis of representative radiomics features
After assembling the one-way ANOVA, mRMR, Lasso 
regression, RF with SHAP and post hoc-ANOVA, the 
representative radiomics features were finally identified, 
which included one histogram (intratumoral feature), 
one Haralick parameter (intratumoral features) and two 
GLCM parameters (including one intratumoral feature 
GLCMEntropy_angle0_offset1 and one peritumoral fea-
ture GLCMEntropy_angle135_offset1).

Figure 5 shows the results of the representative radiom-
ics features. The histogram of the Maximum3Ddiameter 
is measured as the largest pairwise Euclidean distance 
between the voxels on the surface of the tumour vol-
ume. The values (1.82E+01 ± 1.66E+00 in AAH/AIS; 
3.72E+01 ± 3.55E+00 in MIA, 5.65E+01 ± 4.07E+00 
in IAC, p < 0.001) in IAC patients were the high-
est and lowest in AAH/AIS (Fig.  5a). The texture fea-
tureHaralickCorrelation_angle135_offset4 measures 
the degree of similarity of the grey level of the image 
in the row or column direction. When compared 
with that in MIA and IAC patients, the value shown 
in Fig.  5b (1.05E+09 ± 3.24E+08 in AAH/AIS; 

7.20E+08 ± 1.31E+08 in MIA, 3.68E+08 ± 1.62E+08 in 
IAC, p < 0.001) were highest in AAH/AIS patients.

The GLCM feature represents the joint probability 
of certain sets of pixels having certain grey-level val-
ues, and entropy measures the loss of information 
or the message in a transmitted signal as well as the 
image information. The intratumoral GLCMEntropy_
angle0_offset1 (3.72E+00 ± 2.74E+00 in AAH/AIS, 
5.24E+00 ± 1.30E+00 in MIA, 1.27E+01 ± 1.76E+01 
in IAC, p < 0.001) and the peritumoral GLCMEntropy_
angle135_offset1 (4.90E+00 ± 6.82E−01 in AAH/AIS, 
9.02E+00 ± 8.56E−01 in MIA, 1.43E+01 ± 5.75E−01 in 
IAC, p < 0.001) were both higher in IAC patients than in 
benign groups (Fig. 5c, d).

Discussion
The evaluation of GGNs, which are defined as slightly 
dense nodules without blocking other tissues on CT 
images, has been a challenge for clinicians. Many benign 
pulmonary diseases, such as inflammation, AAH or AIS, 
are often mistaken for lung cancer and undergo unnec-
essary surgery due to overlapping imaging characteristics 
[25]. In addition, for malignant GGNs, preoperative eval-
uation of invasion is significant for individual treatment. 
In our study, we developed and validated a machine 
learning model based on intratumoral and peritumoral 
radiomics features for the noninvasive assessment of 

Fig. 4  Summary plot of features impact on the prediction of the SVM model. The Shapley additive explanations (SHAP) values of features in every 
sample

Fig. 5  The distributions of representative radiomics features and the post-hoc statistics results in the three groups. *** denotes statistical 
significance, p < 0.001. Class 0 represents AAH/AIS; Class 1 represents MIA; and Class 2 represents IAC



Page 7 of 9Yu et al. BMC Medical Imaging          (2022) 22:133 	

GGNs on CT images, which exhibited good performance. 
The present study is the first to build a visual triple clas-
sifier by the SHAP algorithm using radiomics features 
derived from CT images to identify the status of GGNs. 
With the representative radiomics factors, the classifier 
demonstrated impressive efficiency with an average AUC 
of 0.935 in the training set, which is important for accu-
rately assessing GGNs.

Previous studies have analysed CT-based radiomics 
features andmorphology in assessing GGNs. Fan et  al. 
identified the importance of texture in the evaluation 
of the invasive degree of GGNs [17]. They found that 
the radiomics feature model had good performance in 
predicting the extent of GGNs invasion (AUC value 
of 0.936). However, their study lacked indolent GGNs 
in  situ, which could be observed during follow-up. 
Based on radiomics, Sun et  al. combined traditional 
morphological features, such as size, to establish a 
model to predict invasive lesions [24]. Although the 
combined model improved diagnostic accuracy, it also 
increased the workload and was prone to subjective 
error. In addition, Chen et  al. developed a radiomics 
nomogram to differentiate lung adenocarcinomas and 
benign granulomatous lesions; however, early-stage 
cancers were not included in their study, which has 
become the focus of clinical attention [16]. For GGNs, 
previous investigations have focused on evaluating 
of the differentiation between benign and malignant 
lesions or the degree of invasion [26]. However, clini-
cians are more concerned with the specific biological 
characteristics of GGNs that determine the subsequent 
therapeutic strategies. Although Meng et al. preopera-
tively evaluated the invasiveness of pulmonary adeno-
carcinomas manifesting as GGNs, they compared only 
two groups [27]. Our study, for the first time, built a tri-
ple classification based on intra- and peritumoural CT 
radiomics features to comprehensively predict GGNs. 
According to the SHAP values, the most representa-
tive CT radiomics features that were correlated with 
the pathological grade of GGNs were analysed among 
the three groups. After one-way analysis of variance, 
the significant features consisted of one histogram, one 
textural parameter and two GLCM parameters. The 
histogram feature described the basic characteristics 
of the VOIs. Our study found that the histogram-Max-
imu3Ddiameter was highest in the ICA group and the 
lowest in the preinvasive group, which was associated 
with malignant behaviour. Sun et  al. also confirmed 
that the size of traditional CT morphology was sig-
nificantly different between invasive and noninvasive 
groups [24]. Wu et al. found that the size of the lesion 
has limited performance between benign and malig-
nant lung lesions [28]. The measurement of tumour size 

in previous studies was mainly based on the maximum 
diameter of the image axis, which may lead to subjec-
tive bias. In our study, the parameter-Maximum3Ddi-
ameter could measure the largest pairwise Euclidean 
distance between voxels on the surface of the tumour 
volume and was more consistent with the actual char-
acteristics. We also found that the entropy of the 
GLCM is related to the pathology grade of GGNs. The 
entropy of the GLCM is the texture feature that repre-
sents the randomness of intensity and spatial heteroge-
neity. For pathological grade, AAH or AIS are localized 
to inert lesions with noninvasive biological behaviour. 
In contrast, IAC consists of multiple compartments 
that may result in a large range of intensity. A grow-
ing number of studies have proven that GLCM features 
may play an important role in reflecting pathological 
invasion and the composition of lesions [29, 30]. In our 
study, the values of GLCM entropy were in descending 
order among IAC, MIA and AAH/AIS, which reflected 
that the texture features of the images are disordered 
with the deterioration of biological behaviour. Fur-
thermore, the Haralick parameter was also analysed in 
our context. Recently, some scholars have confirmed 
that the Haralick parameter is a stable and reliable 
index in texture analysis [31, 32]. The Haralick param-
eter correlation is used to measure the direction of the 
greyscale and represent the correlation of grey values 
among neighbouring voxels. The parameter was found 
to be lowest in IAC patients and highest in AAH/AIS 
patients suggesting heterogeneous subcompartmental 
decomposition and microscopic infiltration in the IAC 
group. In our study, the radiomics features served as 
objective indicators to evaluate the composition of the 
GGNs and predict the degree of pathological invasion 
preoperatively.

Furthermore, we built a random forest classifier on the 
basis of these contributing features. The random forest 
method was first invented by Ho in 1995 and was proven 
in recent years to be very efficient and effective in sorting 
through high-dimensional data and especially suitable for 
triple classification. In recent years, RF has been applied 
to various body systems in medical images and is suitable 
for screening texture parameters [33, 34]. Several stud-
ies have focused on the application of machine learning-
aided approaches for the diagnosis of lung tumours. Cho 
et al. built three classifications to differentiate IAC from 
MIA. The best performance was achieved by the logistic 
model, an algorithm that might be suited for predicting 
the risk of a single event [35]. For multiple classifications, 
Wang et  al. built an RF model for predicting peripheral 
lung cancer presenting as GGNs [36]. In contrast to the 
previous study, the parameters of the RF model in our 
study were selected by the “Grid Search” CV method 
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according to the best performance of the total out-of-bag 
error based on the 10 cross-validation, and a permutation 
test was used to confirm the learning outcomes. Hence, 
the RF model based on radiomics features in our study 
had average AUCs of 0.960 and 0.944 in the training and 
testing sets, respectively.

Generalizability issues and limitations
There were some limitations to the present study. First, 
although our study included 241 patients, the sample size 
was relatively small. Second, the study design was only 
one centre and lacked an independent dataset for cross-
validation. Therefore, multicentre with larger case num-
bers are required to further validate in our future work. 
In addition, future investigations might combine radiom-
ics with genomics.

Conclusions
In conclusion, we proposed a triple random forest model 
to facilitate the preoperative evaluation of GGNs. The 
triple classification based on intra- and peritumoral radi-
omics features derived from noncontrast CT images had 
a satisfactory performance, which may be used as a non-
invasive tool for the individual preoperative evaluation of 
pure ground-glass nodules.
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